Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Open Vet J ; 14(1): 70-89, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633150

RESUMO

Background: Organic selenium (Sel-Plex®) supplementation holds considerable promise for improving the effectiveness of fish production. Aim: This experiment was accomplished to judge the potential benefits of Sel-Plex® nutritional additive on growth outcomes, physiological response, oxidative status, and immunity-linked gene expression in Nile tilapia (Oreochromis niloticus) fingerlings exposed to bacterial infection with Aeromonas hydrophila. Methods: Utilizing a basal diet of 30% protein, four experimental diets were prepared, each of which contained Sel-Plex® at concentrations of 0.0, 0.5, 1, and 2 mg/kg, respectively. Three replicates of 20 fish/treatment were used using 240 healthy Nile tilapia fingerlings. Fish were placed in 12 glass aquariums and separated into 4 groups at random. For the entire span of 8 weeks, diets were admitted to fish at a 3% rate of fish biomass/aquarium. After the feeding trial, pathogenic A. hydrophila was intraperitoneally injected into fish of each treatment, and fish were observed for 15 days to track the survival rate (SR) after the challenge. Results: Growth performance, physiological response, immunological parameters (phagocytic activity, phagocytic index, and lysozyme), and antioxidant parameters [catalase, superoxide dismutase (SOD), malondialdehyde, and glutathione peroxidase (GPx)] were noticeably improved in Sel-Plex® treated groups. Moreover, Sel-Plex® increased gene expression linked with the immune system in the liver (tumor necrosis factor-alpha and interleukin 1ß), to growth (insulin-like growth factor 1 and growth hormone receptor), and antioxidants (SOD and GPx). Under pathogen-challenge conditions, the employed dietary Sel-Plex® supplementation could successfully lower fish oxidative stress, offering a potential preventive additive for Nile tilapia instead of antibiotics. On the other hand, Sel-Plex® significantly enhanced each of three intestinal morphological measurements (villus width, villus length, and crypt depth), demonstrating the greatest influence on the improvement of intestinal structure overall. In the Nile tilapia control group, the infection with A. hydrophila caused noticeable degenerative alterations in the gut, hepatopancreas, spleen, and posterior kidney. The severity of the lesion was significantly reduced and significantly improved with higher Sel-Plex® concentrations. Sel-Plex® supplemented groups had 100% SRs among the A. hydrophila-challenged groups. Conclusion: It could be advised to enrich the diets of Nile tilapia fingerlings with 1-2 mg.kg-1 of Sel-Plex® to enhance growth rate, physiological response, immunological reaction, and intestinal absorptive capacity.


Assuntos
Ciclídeos , Infecções por Bactérias Gram-Negativas , Animais , Aeromonas hydrophila/metabolismo , Ciclídeos/metabolismo , Resistência à Doença , Infecções por Bactérias Gram-Negativas/microbiologia , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Suplementos Nutricionais , Antioxidantes/metabolismo , Superóxido Dismutase/metabolismo , Estresse Oxidativo , Expressão Gênica
2.
Open Vet J ; 14(1): 116-135, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38633169

RESUMO

Background: Mannanoligosaccharides (MOS) usage in fish production has drawn more attention because of their positive benefits on disease resistance and fish performance. Aim: The ongoing research was executed to assess the potential advantages of Bio-Mos® dietary supplementation regarding the growth outcomes, physiological response, oxidative biomarkers, and immunity-linked gene expression in Nile tilapia (Oreochromis niloticus) fingerlings exposed to bacterial infection with Aeromonas hydrophila. Methods: Four experimental diets were developed using a 30% protein baseline diet, with Bio-Mos® added at variable levels; 0.0, 0.5, 1, and 2 g/kg, respectively. 240 healthy Nile tilapia fingerlings were split into 4 groups at random and assigned to 12 glass aquariums (three replicates of 20 fish/treatment). Diets were admitted at a 3% rate of fish biomass/aquarium for 8 weeks. Following the feeding trial, fish from every treatment were intraperitoneally injected with pathogenic A. hydrophila, and then observed for 15 days to record the survival rate percent (SR%) post challenge. Results: Results revealed significant improvement in growth performance, physiological response, immunological parameters (phagocytic index, phagocytic activity, and lysozyme), and antioxidant parameters [catalase, malondialdehyde, glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD)] among Bio-Mos® treated groups. Moreover, Bio-Mos® increased the expression of tumor necrosis factor alpha and Interleukin 1ß, genes linked to the liver immune system. Growth-related genes (GHr), antioxidant-related genes (SOD and GSH-Px). In fish subjected to pathogens, dietary MOS supplementation could significantly lower oxidative stress, showing promise as a preventative supplement for Nile tilapia in place of antibiotics. On the other hand, Bio-Mos® considerably improved each of the three intestinal morphological measures (villus width, villus length, and crypt depth), showing the best overall intestinal structure-improving impact. The challenge with A. hydrophila caused marked degenerative alterations in the intestine, hepatopancreas, spleen, and posterior kidney of Nile tilapia, in the control group. However, lesion severity was greatly decreased and showed marked amelioration with an increased concentration of Bio-Mos®. The A. hydrophila-challenged groups revealed a 100% SR% mainly among the Bio-Mos® supplemented groups. Conclusion: It is recommended to enrich the Nile tilapia fingerlings diets with 2 g.kg-1 of MOS for better results on the growth rate, physiological response, immunological response, and intestinal absorptive capacity.


Assuntos
Antioxidantes , Ciclídeos , Animais , Antioxidantes/metabolismo , Aeromonas hydrophila/metabolismo , Ciclídeos/metabolismo , Suplementos Nutricionais , Superóxido Dismutase/metabolismo , Estresse Oxidativo , Expressão Gênica
3.
Mar Drugs ; 22(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38667767

RESUMO

Chitosan (CH) shows great potential as an immunostimulatory feed additive in aquaculture. This study evaluates the effects of varying dietary CH levels on the growth, immunity, intestinal morphology, and antioxidant status of Nile tilapia (Oreochromis niloticus) reared in a biofloc system. Tilapia fingerlings (mean weight 13.54 ± 0.05 g) were fed diets supplemented with 0 (CH0), 5 (CH5), 10 (CH10), 20 (CH20), and 40 (CH40) mL·kg-1 of CH for 8 weeks. Parameters were assessed after 4 and 8 weeks. Their final weight was not affected by CH supplementation, but CH at 10 mL·kg-1 significantly improved weight gain (WG) and specific growth rate (SGR) compared to the control (p < 0.05) at 8 weeks. Skin mucus lysozyme and peroxidase activities were lower in the chitosan-treated groups at weeks 4 and 8. Intestinal villi length and width were enhanced by 10 and 20 mL·kg-1 CH compared to the control. However, 40 mL·kg-1 CH caused detrimental impacts on the villi and muscular layer. CH supplementation, especially 5-10 mL·kg-1, increased liver and intestinal expressions of interleukin 1 (IL-1), interleukin 8 (IL-8), LPS-binding protein (LBP), glutathione reductase (GSR), glutathione peroxidase (GPX), and glutathione S-transferase (GST-α) compared to the control group. Overall, dietary CH at 10 mL·kg-1 can effectively promote growth, intestinal morphology, innate immunity, and antioxidant capacity in Nile tilapia fingerlings reared in biofloc systems.


Assuntos
Ração Animal , Aquicultura , Quitosana , Ciclídeos , Intestinos , Animais , Quitosana/farmacologia , Ciclídeos/crescimento & desenvolvimento , Ciclídeos/imunologia , Ciclídeos/metabolismo , Intestinos/efeitos dos fármacos , Aquicultura/métodos , Suplementos Nutricionais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Expressão Gênica/efeitos dos fármacos
4.
Ann N Y Acad Sci ; 1532(1): 73-82, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38240562

RESUMO

Social behaviors are regulated by sex steroid hormones, such as androgens and estrogens. However, the specific molecular and neural processes modulated by steroid hormones to generate social behaviors remain to be elucidated. We investigated whether some actions of androgen signaling in the control of social behavior may occur through the regulation of estradiol synthesis in the highly social cichlid fish, Astatotilapia burtoni. Specifically, we examined the expression of cyp19a1, a brain-specific aromatase, in the brains of male A. burtoni lacking a functional ARα gene (ar1), which was recently found to be necessary for aggression in this species. We found that cyp19a1 expression is higher in wild-type males compared to ar1 mutant males in the anterior tuberal nucleus (ATn), the putative fish homolog of the mammalian ventromedial hypothalamus, a brain region that is critical for aggression across taxa. Using in situ hybridization chain reaction, we determined that cyp19a1+ cells coexpress ar1 throughout the brain, including in the ATn. We speculate that ARα may modulate cyp19a1 expression in the ATn to govern aggression in A. burtoni. These studies provide novel insights into the hormonal mechanisms of social behavior in teleosts and lay a foundation for future functional studies.


Assuntos
Síndrome de Resistência a Andrógenos , Ciclídeos , Humanos , Animais , Masculino , Aromatase/genética , Aromatase/metabolismo , Ciclídeos/genética , Ciclídeos/metabolismo , Hipotálamo , Estradiol/metabolismo , Mamíferos/metabolismo
5.
J Anim Physiol Anim Nutr (Berl) ; 108(2): 511-526, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38054788

RESUMO

The dietary effects of the green microalga Tetraselmis suecica (TS) on the growth, digestive enzymes, immune and antioxidant responses, genes expression, and disease resistance of Nile tilapia (Oreochromis niloticus) fingerlings were investigated. This microalga was mixed with the diet' ingredients at doses of 0.0 (the control), 5, 10, 15, and 20 g/kg diet and then fed to fish daily for 84 days. After the feeding trial, fish were experimentally challenged with Aeromonas sobria, infection and fish mortalities were recorded for another 10 days. Dietary TS significantly (p < 0.05) enhanced growth, digestive enzymes activities, and blood proteins, particularly at the level of 15 g/kg diet. Feeding the fish on 15 TS/kg feed exhibited highest mRNA expressions of GH and IGF-1 genes as well as SOD, CAT, and GPx genes compared to other TS groups. Moreover, highest levels of hepatic antioxidant and immune indices were found in the treatment of 15 g TS/kg feed. Significant downregulation of IL-1ß and IL-8 genes expression and significant upregulation of IL-10 gene expression were observed in TS-fed fish, principally in fish groups fed on 15-20 g TS/kg feed. Conversely, hepatic malondialdehyde levels, blood glucose, and the activities of transaminases (ALT and AST) were significantly (p < 0.05) decreased in fish fed with 15-20 g TS/kg diet. Serum bactericidal activity against A. sobria was significantly higher in TS-fed fish groups, and its highest levels were found in treatments of 15-20 g/kg diet. Of interest, the survival rates of fish groups fed diets with 10-20 g TS/kg feed were higher after the challenge with A. sobria infection than the control group. Accordingly, we can conclude that supplementing fish diets with a 15 g TS/kg diet enhanced the growth, antioxidant and immune activities, and resistance of Nile tilapia fingerlings to possible A. sobria infection.


Assuntos
Aeromonas , Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Microalgas , Animais , Antioxidantes/metabolismo , Suplementos Nutricionais , Citocinas/metabolismo , Ciclídeos/metabolismo , Dieta/veterinária , Inflamação/veterinária , Ração Animal/análise , Infecções por Bactérias Gram-Negativas/veterinária
6.
Environ Toxicol Pharmacol ; 105: 104341, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38072218

RESUMO

Aquaponics is a method of producing food in a sustainable manner through the integration of aquaculture and hydroponics, which allows simultaneous cultivation of fish and economic crops. The use of natural fungicides are crucial to the sustainable control of diseases in aquaponics. We assessed the potential impacts of natural fungicides, such as clove oil and lecithin, as well as a synthetic fungicide, tebuconazole, following foliar application in aquaponics. This study examined the runoff rates of the fungicides in decoupled aquaponics, and the subsequent effects of the runoffs on nitrification processes and Nile tilapia (Oreochromis niloticus). The runoffs of the foliar-applied fungicides, clove oil, lecithin, and tebuconazole, were detected in aquaponics water at a percentage runoff rate of 0.3 %, 2.3 %, and 0.3-0.8 % respectively. In the biofilter, lecithin altered the ammonium levels by increasing ammonium-nitrogen levels by 7 mg L-1, 6 h post application. Clove oil, on the other hand, showed no significant effect on ammonium, nitrite, and nitrate-nitrogen. Similarly, the toxicity test showed that eugenol had no significant effects on the hematological, biochemical and antioxidative activities of O. niloticus. Conversely, tebuconazole exhibited significant and persistent effects on various biochemical parameters, including lactate, albumin, and total protein, as well as hematological parameters like hemoglobin and MCH. The use of lecithin and tebuconazole should only be limited to decoupled aquaponics.


Assuntos
Compostos de Amônio , Ciclídeos , Fungicidas Industriais , Animais , Nitrificação , Fungicidas Industriais/toxicidade , Óleo de Cravo , Lecitinas , Ciclídeos/metabolismo , Aquicultura/métodos , Nitrogênio/análise
7.
Artigo em Inglês | MEDLINE | ID: mdl-38103625

RESUMO

In the present study, we explored the capability of manganese nanoparticles (Mn-NPs) to alleviate the toxicity induced by lead (Pb) and ammonia (NH3) toxicity in Oreochromis niloticus (GIFT strain). The experiment followed a completely randomized design, including a control group (Mn-NPs-0 mg kg-1 diet) and groups exposed to Pb and NH3 alongwith Mn-NPs at 2 and 3 mg kg-1. Cortisol levels were significantly elevated in Pb + NH3 group whereas reduced by Mn-NPs diets. Gene expressions of HSP 70, iNOS, CYP 450, and Cas 3a were notably upregulated by Pb + NH3 group and downregulated by Mn-NPs diets. The cellular metabolic enzymes were affected by Pb + NH3 exposure and mitigated by Mn-NPs diets. The liver and kidney exhibited reduced activities of catalase, superoxide dismutase, and glutathione-s-transferase with Mn-NPs diets. Concurrently, immune-related genes such as total immunoglobulin (Ig) and tumor necrosis factor (TNFα) were upregulated in the Mn-NPs-fed groups. Growth performance indicators, including weight gain %, feed conversion ratio, specific growth rate, protein efficiency ratio, and relative feed intake were adversely affected by Pb + NH3 stress but improvement with Mn-NPs diets. Genes associated with growth performance, such as growth hormone (GH), growth hormone regulatory (GHR1), and myostatin, exhibited enhancements in response to Mn-NPs diets. Digestive enzymes, including protease and amylase were also enhanced by Mn-NPs diets. Additionally, Mn-NPs diets led to a reduction in the bioaccumulation of lead. This study aims to investigate the role of Mn-NPs in mitigating the effects of lead and ammonia toxicity on fish by examining various biochemical and gene regulatory factors to enhance fish wellbeing.


Assuntos
Ciclídeos , Suplementos Nutricionais , Animais , Manganês , Amônia/toxicidade , Chumbo/toxicidade , Dieta/veterinária , Antioxidantes/metabolismo , Peixes/metabolismo , Hormônio do Crescimento , Ração Animal/análise , Ciclídeos/metabolismo
8.
Fish Shellfish Immunol ; 145: 109302, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128680

RESUMO

Feeding high-fat (HF) diets has been shown to cause hepatic and intestinal impairment in fish species, but the mode of action, especially the pathways involved in the intestine, has not been determined yet. In this study, the effects of resveratrol (RES) supplementation on the intestinal structure, microbial flora, and fat metabolism in red tilapia (Oreochromis niloticus) were determined. The results showed RES maintained the structural integrity of the intestine and significantly increased the number of goblet cells in the midgut. RES significantly induced interferon (IL)-1ß, IL-6, IL-10, and tumor necrosis factor (TNF)-α, serumal and fecal trimetlylamine oxide (TMAO) and lipopolysaccharides (LPS), intestinal acetic acid levels. However, the concentrations of bound bile acids increased in HF-fed red tilapia. Atp5fa1 and Pafah1b3 significantly increased, Pmt and Acss2 significantly decreased, respectively, with RES supplementation, which was alleviated and retained at the same level in the selisistat (EX527) group. While for transcriptome and proteomics results, RES was found to promote fatty acid ß-oxidation and arachidonic acid metabolism associated with the peroxisome proliferator-activated receptor (PPAR) signaling pathway. The next validation experiment showed some genes related to apoptosis and fatty acid metabolism pathways were altered by RES supplementation. Namely, sn6, loc100702698, new_14481, and prkaa1 were upregulated, while ffrs1, ap3s1, and loc100705861 were downregulated. RES significantly increased Planctomycetes and Verrucomicrobia while decreased Moonvirus, Citrobacter, and Pseudomonas. Akkermansia and Fusobacterium significantly increased and Aeromonas significantly decreased. Thus, unsaturated fatty acid biosynthesis significantly increased and carbohydrate/energy metabolism decreased. To conclude, RES enabled the body to complete fatty acid ß-oxidation and arachidonic acid metabolism, whereas the addition of inhibitors increased the expression of the phagosome transcriptome and reduced fatty acid ß-oxidative metabolism.


Assuntos
Ciclídeos , Tilápia , Animais , Tilápia/metabolismo , Ciclídeos/metabolismo , Dieta Hiperlipídica , Resveratrol/metabolismo , Metabolismo dos Lipídeos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/farmacologia , Intestinos , Transdução de Sinais , Ácidos Graxos/metabolismo , Ácidos Araquidônicos/metabolismo , Ácidos Araquidônicos/farmacologia , Dieta , Suplementos Nutricionais , Ração Animal/análise
9.
Aquat Toxicol ; 265: 106738, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922777

RESUMO

This study was established to look into the toxicological consequences of chronic exposure to a fungicide (mancozeb; MAZ) on the immune-antioxidant response, gene expressions, hepato-renal functions, and histological pictures of Nile tilapia (Oreochromis niloticus). Additionally, the effectiveness of Indian frankincense resin extract (IFRE) to mitigate their toxicity was taken into account. Fish (n =240; average body weight: 22.45 ± 2.21 g) were randomized into four groups for eight weeks in six replicates (control, IFRE, MAZ, and IFRE + MAZ), where ten fish were kept per replicate. The control and IFRE groups received basal diets that included 0.0 and 5 g/kg of IFRE without MAZ exposure. The MAZ and IFRE+MAZ groups received the same diets and were exposed to 1/10 of the 96-h of LC50 of MAZ (1.15 mg/L). The outcomes displayed that MAZ exposure resulted in a lower survival rate (56.67 %) and significantly decreased levels of immune-antioxidant variables (antiprotease, complement3, phagocytic activity, lysozyme, glutathione peroxidase, superoxide dismutase, and total antioxidant capacity) compared to the control group. The MAZ-exposed fish showed the greatest levels of lipid peroxide (malondialdehyde), alkaline phosphatase, alanine amino-transferase, and stress indicators (cortisol and glucose). Additionally, histopathological alterations, including vacuolation, severe necrosis, degeneration, and mononuclear cell infiltrations in the hepatic, renal, and splenic tissues resulted, besides a reduction in the melanomacrophage center in the spleen. A down-regulation of immune-antioxidant-associated genes [toll-like receptors (TLR-2 and TLR-7), nuclear factor kappa beta (NF-κß), transforming growth factor-beta (TGF-ß), phosphoinositide-3-kinase regulatory subunit 3 gamma b (pik3r3b), interleukins (IL-1ß and IL-8), glutathione synthetase (GSS), glutathione peroxidase (GPx), and superoxide dismutase (SOD)] were the consequences of the MAZ exposure. Remarkably, the dietary inclusion of IFRE in MAZ-exposed fish augmented the immune-antioxidant parameters, including their associated genes, decreased stress response, and increased survival rate (85 %) compared with the MAZ-exposed fish. Moreover, dietary IFRE improved hepato-renal function indices by preserving the histological architecture of the hepatic, renal, and splenic tissues. The insights of this study advocate the use of an IFRE-dietary addition to protect Nile tilapia from MAZ toxicity, which provides perspectives for future implementations in enhancing fish health for sustainable aquaculture.


Assuntos
Boswellia , Ciclídeos , Doenças dos Peixes , Franquincenso , Fungicidas Industriais , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Fungicidas Industriais/toxicidade , Boswellia/metabolismo , Ciclídeos/metabolismo , Franquincenso/metabolismo , Poluentes Químicos da Água/toxicidade , Dieta/veterinária , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/metabolismo , Suplementos Nutricionais/análise , Ração Animal/análise , Doenças dos Peixes/induzido quimicamente
10.
Sci Rep ; 13(1): 16235, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37758826

RESUMO

Many governments have approved the use of oxytetracycline as an antibiotic additive to food fish, with oxytetracycline now routinely used in many nations. However, oxytetracycline is known to have immunosuppression impacts. We, therefore, evaluated the immunological, antioxidative, and histopathological status of Nile tilapia fed a diet containing silymarin (100 mg/kg fish feed) for 0, 2, 4, 6, and 8 weeks. The protective effects of silymarin against Aeromonas hydrophila (A. hydrophila) infection and oxytetracycline treatment were evaluated. Blood parameters (erythrocyte count, white blood cell count, hemoglobin, and packed cell volume) improved over time in fish fed on dietary silymarin. Serum levels of alanine aminotransferase (ALT) were lower in fish fed on dietary silymarin, whereas serum levels of aspartate transferase (AST)and alkaline phosphatase (ALK) were unchanged. Dietary silymarin affected serum lipid profiles as decreases in serum triglyceride and low-density lipoprotein cholesterol levels and a trend toward lower cholesterol levels, whereas serum high-density lipoprotein cholesterol levels were increased compared to fish fed on the control diet. Dietary silymarin resulted in an increase of serum total protein levels and globulin fractions. Significant and progressive increases in catalase and glutathione peroxidase levels were observed after six weeks of feeding on a dietary silymarin before decreasing to control levels at the end of the experimental period. Fish fed on dietary silymarin, interleukin-1 and fish tumor necrosis factor-alpha were upregulated in hepatic tissues; however, interleukin-10 levels decreased to comparable levels to controls after eight weeks. Fish infected with A. hydrophila displayed septicemia (opaque eye, hemorrhagic ulcers, dentated fins, hepatomegaly, and splenomegaly). Reduced mortality was observed in Nile tilapia infected with A. hydrophila and fed a diet containing silymarin, indicating that silymarin improves fish responses to oxytetracycline with a 37% reduction in mortality.


Assuntos
Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Oxitetraciclina , Silimarina , Animais , Suplementos Nutricionais/análise , Silimarina/farmacologia , Oxitetraciclina/farmacologia , Oxitetraciclina/uso terapêutico , Oxitetraciclina/metabolismo , Aeromonas hydrophila/fisiologia , Ciclídeos/metabolismo , Dieta/veterinária , Colesterol/metabolismo , Ração Animal/análise , Doenças dos Peixes/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/veterinária
11.
Chemosphere ; 339: 139727, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37541441

RESUMO

In this study, the effects of 100 nm boron nanoparticles (B-NPs) on the primary antioxidant status of Nile tilapia were researched via analysis of enzyme activities and related gene expressions. This is a new study which focuses on the relationship between B-NPs and oxidative stress that contribute to the literature in terms of its scope. Fish (n = 15) for each group were exposed to three different concentrations as 5, 25 (n2) and 125 (n3) mg/L during 96 h to see the response of the primary antioxidant system. According to the results, SOD expressions differed in all treatment groups compared to the control group (P < 0.05). CAT expressions were different in 5 and 125 mg/L groups compared to control and 25 mg/L groups (P < 0.05). GPX expressions were only different in 125 mg/L group (P < 0.05). The changes in enzyme activities of SOD and CAT were significantly different in 25 mg/L groups. GPX enzyme activities were not significant (P > 0.05). TBARS concentrations in 25 mg/L group were significantly different from those in the control and 125 mg/L groups (P < 0.05).


Assuntos
Ciclídeos , Nanopartículas , Animais , Antioxidantes/metabolismo , Ciclídeos/genética , Ciclídeos/metabolismo , Boro/toxicidade , Boro/metabolismo , Estresse Oxidativo , Nanopartículas/toxicidade , Superóxido Dismutase/metabolismo , Ração Animal/análise , Dieta , Suplementos Nutricionais
12.
J Trace Elem Med Biol ; 79: 127265, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37478799

RESUMO

BACKGROUND: Zinc nanoparticles are documented to be harmful to fish because their accumulation in fish bring about many irreversible changes in their health. Nigella sativa and its oil have been endorsed in aquaculture to improve fish health. METHODS: Two hundred seventy experimental fish (113 ± 5 g body weight) were divided into 6 groups G1-6; control fish fed a diet without any treatment (G1), 0.3% of NSO (G2), 0.5% of NSO (G3), ZnO NPs (40 mg/kg diet) (G4), 0.3% of NSO and ZnO NPs (40 mg/kg diet) (G5), 0.5% of NSO and ZnO NPs (40 mg/kg diet) (G6), the trial lasted for six weeks. RESULTS: Growth performance was enhanced in fish received diets containing NSO, final weight (FW), weight gain (WG), daily weight gain (DWG), and relative growth rate (RGR) were significantly increased with lower food conversion ratios (FCR) compared to the control. The hepatic glutathione peroxidase (GPx), catalase (CAT), and metallothionein (MT) were increased in response to ZnO NPs stress and only 0.5% NSO supplementation could ameliorate such increment. The immune-related genes [interleukin1-beta (IL-1ß), tumor necrosis factor-beta (TNF-ß), transforming growth factor-beta 2 (TGF-ß2) and C-type lysozyme] as well as growth-related gene [insulin-like growth factor 1 (IGF1)] in liver showed an upregulation in fish fed with NSO diets. Administration of ZnO NPs lowered the resistance of Oreochromis niloticus against bacterial infection with Aeromonas hydrophila and NSO could enhance the immunity in the highest tested concentration (0.5%) (G6). CONCLUSIONS: The obtained results implied that NSO could enhance the oxidative and immune status of O. niloticus which could compensate ZnO NPs stress as well as experimental infection of a virulent strain of A. hydrophila. Our results revealed that NSO might increase fish growth and immunity only at a high dose (0.5%).


Assuntos
Ciclídeos , Nanopartículas Metálicas , Óxido de Zinco , Animais , Óxido de Zinco/farmacologia , Suplementos Nutricionais , Ciclídeos/metabolismo , Óxidos , Resistência à Doença , Zinco/metabolismo , Dieta , Ração Animal/análise , Antioxidantes/metabolismo
13.
Environ Pollut ; 332: 121946, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37307860

RESUMO

The aim of the present study was a qualitative assessment of potential microplastics (MPs) in the sewage effluent collected from a local sewage treatment plant located in Riyadh City, Saudi Arabia. The composite samples of domestic sewage effluent were subjected to UV (ultraviolet) light-induced zinc oxide nanoparticles (ZnONPs) mediated photocatalysis. The first phase of the study included the synthesis of the ZnONPs with an extensive characterization. The synthesized nanoparticles were 220 nm in size with a characteristic spherical/hexagonal shape. These NPs were then used at three different concentrations (10 mM, 20 mM, and 30 mM) for the UV light-induced photocatalysis. A shift in the Raman spectra on photodegradation mirrored the surface changes of the functional groups shown by the FTIR spectra; presence of functional groups containing oxygen and C-C bonds associated with oxidation and chain scission. SEM micrographs showed photodegraded particles. Complementary elemental maps from the EDS analysis showed the presence of C, O, and Cl suggesting the potential presence of MPs. The O/C ratio was used to assess potential oxidation degree. In addition, an evaluation of the toxicological effects of the potential MPs in the sewage effluent on Nile tilapia (Oreochromis niloticus) exposed to the effluent at two concentrations (50% and 75%) elicited a marked response in the endpoints evaluated; EROD activity, MDA (malondialdehyde), 8-oxo-2'-deoxyguanosine levels in and AChE (acetylcholinesterase) activity in the brain. Thus, the key results provide new insights into the use of clean technologies to combat global MP pollution in aquatic ecosystems.


Assuntos
Ciclídeos , Nanopartículas , Óxido de Zinco , Animais , Ciclídeos/metabolismo , Microplásticos/metabolismo , Óxido de Zinco/química , Plásticos/metabolismo , Esgotos , Acetilcolinesterase/metabolismo , Ecossistema
14.
Fish Physiol Biochem ; 49(3): 529-542, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37138041

RESUMO

Supplementation of phosphorus nanoparticles is a promising strategy to reduce water pollution, improve phosphorus concentration in fish diet, and provide better production quality. We used 300 fingerlings of Nile tilapia that were randomly distributed into 3 groups; each one was attributed to 5 replicates of 20 fish per aquarium with initial weight (gm) (156 ± 1.25). The first diet contained traditional Di-calcium phosphate (D-group), the second supplemented with phosphorus nanoparticles in a dose equal to the previous conventional one (N-D group), and the last one included with phosphorus nanoparticles with the half dose of the conventional phosphorus group (1/2 N-D group). After 3 months of feeding, the N-D group showed the best growth performance including its feed conversion ratio (FCR), feed intake (FI), or body weight gain (BWG). Furthermore, the growth-related gene expression findings considering growth hormone receptor (GHR) and insulin-like growth factor-1 (IGF-1) were upregulated as well. Moreover, whole body chemical composition revealed higher Fe, Zn, P, and crude protein level in the N-D group than the other two groups. Lipoprotein lipase (LPL) and fatty acid synthetase (FAS) mRNA expression showed a significant increase in 1/2 N-D and N-D groups compared with the control group. To sum up, using of nano-phosphorus particles improved the growth rate and immunity response of Nile tilapia, besides decreasing water pollution.


Assuntos
Ciclídeos , Doenças dos Peixes , Animais , Ciclídeos/metabolismo , Fósforo , Dieta/veterinária , Suplementos Nutricionais , Ingestão de Alimentos , Ração Animal/análise
15.
Aquat Toxicol ; 259: 106523, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37058790

RESUMO

Zinc oxide nanoparticles (ZnO-NPs) have many exciting properties that make their use in a continuous increase in various biomedical, industrial, and agricultural applications. This is associated with accumulation in the aquatic ecosystems and fish exposure with consequent deleterious effects. To determine the potential of thymol to counteract the immunotoxic effects of ZnO-NPs, Oreochromis niloticus was exposed to ZnO-NPs (⅕ LC50 =1.14 mg/L, for 28 days) with or without feeding a thymol-incorporated diet (1 or 2 g/kg diet). Our data demonstrated a reduction of aquaria water quality, leukopenia, and lymphopenia with a decrease in serum total protein, albumin, and globulin levels in exposed fish. At the same time, the stress indices (cortisol and glucose) were elevated in response to ZnO-NPs exposure. The exposed fish also revealed a decline in serum immunoglobulins, nitric oxide, and the activities of lysozyme and myeloperoxidase, in addition to reduced resistance to the Aeromonas hydrophila challenge. The RT-PCR analysis showed downregulation of antioxidant (SOD) superoxide dismutase and (CAT) catalase gene expression in the liver tissue with overexpression of the immune-related genes (TNF-α and IL-1ß). Importantly, we found that thymol markedly protected against ZnO-NPs-induced immunotoxicity in fish co-supplemented with thymol (1 or 2 g/kg diet) in a dose-dependent manner. Our data confirm the immunoprotective and antibacterial effects of thymol in ZnO-NPs exposed fish, supporting the potential utility of thymol as a possible immunostimulant agent.


Assuntos
Ciclídeos , Doenças dos Peixes , Nanopartículas , Poluentes Químicos da Água , Óxido de Zinco , Animais , Ciclídeos/metabolismo , Aeromonas hydrophila , Óxido de Zinco/toxicidade , Óxido de Zinco/metabolismo , Timol/toxicidade , Timol/análise , Timol/metabolismo , Ecossistema , Poluentes Químicos da Água/toxicidade , Suplementos Nutricionais/análise , Dieta/veterinária , Antioxidantes/metabolismo , Resistência à Doença , Ração Animal/análise
16.
Artigo em Inglês | MEDLINE | ID: mdl-36906246

RESUMO

Liver health is important to maintain survival and growth of fish. Currently, the role of dietary docosahexaenoic acid (DHA) in improving fish liver health is largely unknown. This study investigated the role of DHA supplementation in fat deposition and liver damage caused by D-galactosamine (D-GalN) and lipopolysaccharides (LPS) in Nile tilapia (Oreochromis niloticus). Four diets were formulated as control diet (Con), Con supplemented with 1 % DHA, 2 % DHA and 4 % DHA diets, respectively. The diets were fed to 25 Nile tilapia (2.0 ± 0.1 g, average initial weight) in triplicates for four weeks. After the four weeks, 20 fish in each treatment were randomly selected and injected with a mixture of 500 mg D-GalN and 10 µL LPS per mL to induce acute liver injury. The results showed that the Nile tilapia fed on DHA diets decreased visceral somatic index, liver lipid content and serum and liver triglyceride concentrations than those fed on the Con diet. Moreover, after D-GalN/LPS injection, the fish fed on DHA diets decreased alanine aminotransferase and aspartate transaminase activities in the serum. The results of liver qPCR and transcriptomics assays together showed that the DHA diets feeding improved liver health by downregulating the expression of the genes related to toll-like receptor 4 (TLR4) signaling pathway, inflammation and apoptosis. This study indicates that DHA supplementation in Nile tilapia alleviates the liver damage caused by D-GalN/LPS through increasing lipid catabolism, decreasing lipogenesis, TLR4 signaling pathway, inflammation, and apoptosis. Our study provides novel knowledge on the role of DHA in improving liver health in cultured aquatic animals for sustainable aquaculture.


Assuntos
Ciclídeos , Animais , Ração Animal/análise , Ciclídeos/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Galactosamina/toxicidade , Galactosamina/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Fígado/metabolismo , Receptor 4 Toll-Like/metabolismo
17.
Artigo em Inglês | MEDLINE | ID: mdl-36368505

RESUMO

Astragaloside IV (ASIV) has effects of antioxidation and immunologic enhancement. However, there are few reports on the application and potential mechanism of ASIV in aquaculture. In this study, we investigated the effect of ASIV on growth, antioxidation, and immune function of tilapia. Tilapia were fed a diet containing 0.1, 0.2, and 0.5 g·kg-1 ASIV for 60 days, followed by an intrapleural injection of 50 mg·kg-1 cyclophosphamide (CTX) to induce oxidative damage and immunosuppression. Then tilapia were weighed and blood, liver, spleen, kidney, and intestinal were collected. The results showed ASIV increased the final weight, relative weight rate, and specific growth rate of tilapia, reduce conversion ratio, and reduced the morphological lesions of tissues. Meanwhile, ASIV alleviated CTX-induced oxidative damage by improving antioxidant activity in serum and tissues and inhibiting lipid peroxidation. Additionally, ASIV attenuated the immunosuppression of tilapia caused by CTX, regulated immunochemical indexes in serum, increased the viability of peripheral blood leukocytes and head kidney macrophages, and restored respiratory burst activity (O2-) in head kidney macrophages and splenocytes. Furthermore, qPCR data showed ASIV up-regulated antioxidant-related gene expression of nrf2, ho-1, gpx3, and cat and immune-related gene expression including C3 and igm. In conclusion, ASIV as a feed additive can not only improve the growth performance but also enhance the antioxidant capacity and immune function of tilapia, which may be associated with the ability of ASIV to scavenge free radicals, reduce lipid peroxidation levels, and stabilize numbers of immune cells.


Assuntos
Ciclídeos , Tilápia , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Tilápia/metabolismo , Ciclídeos/metabolismo , Estresse Oxidativo , Dieta , Terapia de Imunossupressão , Ração Animal/análise , Suplementos Nutricionais
18.
Sci Rep ; 12(1): 21748, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36526884

RESUMO

This study assessed the restorative dietary effects of Moringa oleifera (MO) leaves extract against the negative impacts of sub-lethal fipronil (FIP) toxicity in Nile tilapia. To achieve this purpose, the growth, body composition, haemato-biochemical measurements, serum immunity, and antioxidant condition of Nile tilapia have been examined. Fish were arranged into 6 experimental groups in quadruplicates. Three groups were fed on diets supplemented with 0.0 (reference group), 1.0 (MO1), and 2.0 (MO2) g kg-1 of MO leaf extract. The other three groups were fed on the same MO levels and concomitantly subjected to a sub-lethal FIP concentration (4.2 µg L-1 for 3 h only per day) and defined as FIP, FIP + MO1, and FIP + MO2. The experiment lasted for 8 weeks. Results unveiled that growth parameters were significantly decreased alongside an increased feed conversion ratio in the FIP-intoxicated group. The moisture and crude protein (%) were decreased significantly together with a significant increase of the crude lipids (%) in the fish body of the FIP group. Sub-lethal FIP toxicity induced hypochromic anemia, leukopenia, hypoproteinemia, hypoalbuminemia, hypoglobulinemia, and hepato-renal failure (increased urea and creatinine concentrations, as well as ALT and AST enzymes). Exposure to sub-lethal FIP also induced (a) immunosuppression manifested by a decline in total IgM, complement C3, and lysozyme activities, (b) enzymatic antioxidant misbalance manifested by decreases in SOD and CAT activities, and (c) oxidative stress (declined T-AOC and elevated of MDA concentrations). On the other side, dietary supplementation with MO leaf extract in FIP + MO1 and FIP + MO2 groups noticeably modulated the aforementioned parameters. Therefore, we can conclude that dietary MO could reduce sub-lethal FIP toxicity in Nile tilapia with a possible recommendation for regular prophylaxis supplementation in Nile tilapia diets.


Assuntos
Ciclídeos , Moringa oleifera , Animais , Ciclídeos/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ração Animal/análise , Suplementos Nutricionais , Dieta , Extratos Vegetais/química
19.
Aquat Toxicol ; 250: 106257, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35933907

RESUMO

The existing study was designed to inspect the toxicological consequences of two pesticides; lambda-cyhalothrin (LCT) and methomyl (MTM) and their combination on Nile tilapia (Oreochromis niloticus) behaviors, oxidative stress, hepato-renal function indices and microarchitectural alterations. In addition, the efficiency of taurine (TUR) to rescue their toxicity was also considered. Juvenile O. niloticus were assigned into eight groups. The control and TUR groups were fed on a basal diet and TUR-enriched (10 g kg1) diet, respectively. The other groups were fed on a basal diet, and exposed to LCT (0.079 µg L-1), MTM (20.39 µg L-1 and (LCT + MTM). The last three groups were (LCT + TUR), (MTM + TUR), and (LCT + MTM + TUR) and fed on a TUR-enriched diet during exposure to LCT and/or MTM for 60 days. The exposure to LCT and/or MTM resulted in several behavioral alterations and stress via enhanced cortisol and nor-epinephrine levels. A significant elevation of serum 8-hydroxy-2- deoxyguanosine, aspartate and alanine aminotransferases, lactate dehydrogenase, Alkaline phosphatase, urea, creatinine was also observed in these groups. Furthermore, reduced antioxidant enzymes activities, including (catlase, glutathione peroxidase, and superoxide dismutase) with marked histopathological lesions in both liver and kidney tissues were detected. The up-regulated Bax and down-regulated Bcl-2 proteins were expressed in the liver and kidney tissues of LCT and/or MTM -exposed groups. Interestingly, all the observed alterations in behaviors, biochemical indices, and histo-architecture of renal and hepatic tissues were mitigated by TUR supplementation. The findings suggest that feeding O. niloticus dietary TUR may help to reduce the negative effects of LCT and/or MTM, and can also support kidney and liver health in O. niloticus, making it a promising aquaculture feed supplement.


Assuntos
Ciclídeos , Poluentes Químicos da Água , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Ciclídeos/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Fígado , Metomil/metabolismo , Metomil/farmacologia , Nitrilas , Estresse Oxidativo , Piretrinas , Taurina/metabolismo , Taurina/farmacologia , Poluentes Químicos da Água/toxicidade
20.
Fish Shellfish Immunol ; 127: 836-842, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35843526

RESUMO

Carbohydrates are widely distributed in nature as an important nutritional substance and energy source. However, the utilization efficiency of carbohydrates is very poor in fish. Over consumption of carbohydrates will cause excessive inflammatory response and result in lower pathogen resistance in fish. Probiotics have been widely used to prevent inflammation, but the underlying mechanism still needs more exploration. In this study, three diets, including a control diet (CD), a high-carbohydrate diet (HD) and the HD supplemented with Bacillus amyloliquefaciens SS1 (HDB) were used to feed Nile tilapia for 10 weeks. At the end of the feeding trial, fish were challenged with Aeromonas hydrophila (A. hydrophila) for 7 days. The data showed that the addition of Bacillus amyloliquefaciens SS1 (B. amyloliquefaciens SS1) significantly increased the survival rate and enhanced the respiratory burst activity of head kidney leukocytes in Nile tilapia. B. amyloliquefaciens SS1 treatment significantly elevated the anti-oxidative capability, which was evidenced by higher activities of superoxide dismutase (SOD) and total antioxidant capacity (T-AOC), and higher content of reduced glutathione (GSH) in the serum. Administration with B. amyloliquefaciens SS1 effectively suppressed inflammatory response in the liver by inhibiting nuclear factor kappa-B (NF-κB)/interleukin-1 beta (IL-1ß) inflammatory signaling pathway. In vitro analysis suggested that intestinal bacteria derived-acetate has the antioxidant capability, which may account for the alleviation of inflammation. Overall, this study demonstrated that dietary supplementation with B. amyloliquefaciens SS1 protected Nile Tilapia against A. hydrophila infection and suppressed liver inflammation by enhancing antioxidant capability.


Assuntos
Bacillus amyloliquefaciens , Ciclídeos , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Aeromonas hydrophila/fisiologia , Ração Animal/análise , Animais , Antioxidantes/metabolismo , Carboidratos , Ciclídeos/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Doenças dos Peixes/microbiologia , Doenças dos Peixes/prevenção & controle , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Negativas/veterinária , Inflamação/prevenção & controle , Inflamação/veterinária , Fígado/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA