Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Nat Med ; 77(4): 829-838, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37450205

RESUMO

Safranal is one flavor component of saffron, which is used as a spice, food additive, and crude drug. In ISO3632, safranal is defined as the compound that contributes to the quality of saffron, and many quantitative determination methods for safranal have been reported. However, safranal is volatile and degrades easily during storage, and an analytical standard with an exact known purity is not commercially available, making it difficult to quantify accurately the content of safranal in saffron. Here, we developed a method for quantifying safranal using relative molar sensitivity (RMS), called the RMS method, using a GC-flame ionization detector (GC-FID). We determined the RMS of safranal to 1,4-bis(trimethylsilyl)benzene-d4, a certified reference material commercially available, by a combination of quantitative NMR and chromatography. Using two GC-FID instruments made by different manufacturers to evaluate inter-instrument effect, the resultant RMS was 0.770, and the inter-instrument difference was 0.6%. The test solution, with a known safranal concentration, was measured by the RMS method, with an accuracy of 99.4-101%, repeatability of 0.81%, and reproducibility of 0.81-1.3%. Given the ease of degradation, high volatility, and uncertain purity of safranal reagents, the RMS method is a more accurate quantification approach compared to the calibration curve method and methods based on absorption spectrophotometry. Moreover, our findings revealed that the GC-FID makeup gas affected the RMS and quantitative values.


Assuntos
Crocus , Crocus/química , Ionização de Chama , Reprodutibilidade dos Testes , Extratos Vegetais/química , Terpenos/metabolismo , Cicloexenos/análise , Cicloexenos/metabolismo
2.
Plant Cell ; 33(3): 671-696, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33955484

RESUMO

The plant shikimate pathway directs bulk carbon flow toward biosynthesis of aromatic amino acids (AAAs, i.e. tyrosine, phenylalanine, and tryptophan) and numerous aromatic phytochemicals. The microbial shikimate pathway is feedback inhibited by AAAs at the first enzyme, 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DHS). However, AAAs generally do not inhibit DHS activities from plant extracts and how plants regulate the shikimate pathway remains elusive. Here, we characterized recombinant Arabidopsis thaliana DHSs (AthDHSs) and found that tyrosine and tryptophan inhibit AthDHS2, but not AthDHS1 or AthDHS3. Mixing AthDHS2 with AthDHS1 or 3 attenuated its inhibition. The AAA and phenylpropanoid pathway intermediates chorismate and caffeate, respectively, strongly inhibited all AthDHSs, while the arogenate intermediate counteracted the AthDHS1 or 3 inhibition by chorismate. AAAs inhibited DHS activity in young seedlings, where AthDHS2 is highly expressed, but not in mature leaves, where AthDHS1 is predominantly expressed. Arabidopsis dhs1 and dhs3 knockout mutants were hypersensitive to tyrosine and tryptophan, respectively, while dhs2 was resistant to tyrosine-mediated growth inhibition. dhs1 and dhs3 also had reduced anthocyanin accumulation under high light stress. These findings reveal the highly complex regulation of the entry reaction of the plant shikimate pathway and lay the foundation for efforts to control the production of AAAs and diverse aromatic natural products in plants.


Assuntos
Plântula/metabolismo , Triptofano/metabolismo , Aminoácidos Dicarboxílicos/metabolismo , Arabidopsis/metabolismo , Cicloexenos/metabolismo , Fenilalanina/metabolismo , Ácido Chiquímico/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo
3.
Mol Biol Rep ; 48(2): 1707-1715, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33611780

RESUMO

Saffron stigmas are widely used as food additives and as traditional medicine in Iran and many other countries. The unique taste, flavor and pharmaceutical properties of saffron stigmas are due to the presence of three apocarotenoids secondary metabolites crocin, picrocrocin and safranal. There is limited knowledge about the effect of environmental stresses on the metabolism of apocarotenoids in saffron. We analyzed the content of crocin and picrocrocin and the expression of key genes of apocarotenoid biosynthesis pathways (CsCCD2, CsCCD4, CsUGT2, CsCHY-ß and CsLCYB) in saffron plants exposed to moderate (90 mM) and high (150 mM) salt (NaCl) concentrations. Measuring ion concentrations in leaves showed an increased accumulation of Na+ and decreased uptake of K+ in salt treated compared to control plants indicating an effective salt stress. HPLC analysis of apocarotenoids revealed that crocin production was significantly halted (P < 0.05) with increasing salt concentration while picrocrocin level did not change with moderate salt but significantly dropped by high salt concentration. Real-time PCR analysis revealed a progressive decrease in transcript levels of CsUGT2 and CsLCYB genes with increasing salt concentration (P < 0.05). The expression of CsCCD2 and CsCHY-ß tolerated moderate salt concentration but significantly downregulated with high salt concentration. CsCCD4 however responded differently to salt concentration being decreased with moderate salt but increased at higher salt concentration. Our result suggested that salt stress had an adverse effect on the production of saffron apocarotenoids and it is likely influencing the quality of saffron stigma produced.


Assuntos
Carotenoides/metabolismo , Crocus/química , Crocus/metabolismo , Cicloexenos/metabolismo , Estresse Salino/genética , Terpenos/metabolismo , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Cromatografia Líquida de Alta Pressão , Crocus/efeitos dos fármacos , Crocus/genética , Regulação da Expressão Gênica de Plantas/genética , Glucosídeos/metabolismo , Folhas de Planta/química , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Potássio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sódio/metabolismo , Cloreto de Sódio/toxicidade
4.
New Phytol ; 224(2): 725-740, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31356694

RESUMO

Saffron, a spice derived from the dried red stigmas of Crocus sativus, is one of the oldest natural food additives. The flowers have long red stigmas, which store significant quantities of the glycosylated apocarotenoids crocins and picrocrocin. The apocarotenoid biosynthetic pathway in saffron starts with the oxidative cleavage of zeaxanthin, from which crocins and picrocrocin are derived. In the processed stigmas, picrocrocin is converted to safranal, giving saffron its typical aroma. By a targeted search for differentially expressed uridine diphosphate glycosyltransferases (UGTs) in Crocus transcriptomes, a novel apocarotenoid glucosyltransferase (UGT709G1) from saffron was identified. Biochemical analyses revealed that UGT709G1 showed a high catalytic efficiency toward 2,6,6-trimethyl-4-hydroxy-1-carboxaldehyde-1-cyclohexene (HTCC), making it suited for the biosynthesis of picrocrocin, the precursor of safranal. The role of UGT709G1 in picrocrocin/safranal biosynthesis was supported by the absence or presence of gene expression in a screening for HTCC and picrocrocin production in different Crocus species and by a combined transient expression assay with CsCCD2L in Nicotiana benthamiana leaves. The identification of UGT709G1 completes one of the most highly valued specialized metabolic biosynthetic pathways in plants and provides novel perspectives on the industrial production of picrocrocin to be used as a flavor additive or as a pharmacological constituent.


Assuntos
Crocus/metabolismo , Cicloexenos/metabolismo , Glucosídeos/biossíntese , Glicosiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Terpenos/metabolismo , Cromatografia Líquida , Clonagem Molecular , DNA Complementar , DNA de Plantas , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Glicosiltransferases/genética , Espectrometria de Massas , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Nicotiana/genética , Nicotiana/metabolismo
5.
Nat Prod Res ; 33(4): 486-493, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29124962

RESUMO

The expression of biosynthesis controlling genes of crocin and safranal in saffron (Crocus sativus) can be influenced by ultrasonic waves. Sterilized saffron corms were cultured in a ½-MS medium supplemented by 2-4-D and BAP.  Saffron callus cells were treated with ultrasonic waves in a cellular suspension culture under optimal growth conditions. The samples were collected at 24 and 72 hours after treatment in three replications. The secondary metabolites were measured by high-performance liquid chromatography and the gene expression was analysed by the real-time polymerase chain reaction. Results indicate that this elicitor can influence the expressions of genes CsBCH, CsLYC and CsGT-2; the ultrasonic waves acted as an effective mechanical stimulus to the suspension cultures. The analysis of variance of the ultrasonically produced amounts of safranal and crocin indicates that there is a significant difference between once- and twice-treated samples in that the amount of safranal was the highest within the samples taken from the twice-treated suspension culture at 72 h after the ultrasound treatment, and the crocin was maximised after 24 h passed the twice-applied ultrasound treatment.


Assuntos
Carotenoides/metabolismo , Crocus/genética , Crocus/metabolismo , Cicloexenos/metabolismo , Terpenos/metabolismo , Técnicas de Cultura de Tecidos/métodos , Carotenoides/análise , Cromatografia Líquida de Alta Pressão , Crocus/citologia , Cicloexenos/análise , Enzimas/genética , Enzimas/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Metabolismo Secundário , Terpenos/análise , Ondas Ultrassônicas
6.
Food Funct ; 9(12): 6517-6525, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30474680

RESUMO

To enhance production of Antrodia cinnamomea triterpenoids (ACTs) from mycelia in solid-state culture, α-terpineol was added to the medium as an elicitor at an optimal concentration of 0.05 mL L-1. Multi-stage solvent extraction and HPLC analysis were performed, and the compositions of ACTs-E (from culture with elicitor) and ACTs-NE (from culture without elicitor) were found to be quite different. In assays of in vitro antitumor activity, ACTs-E, in comparison with ACTs-NE, produced stronger viability reduction in several tumor cell lines and stronger apoptosis induction in HeLa in a dose-dependent manner. Several related proteins involved in the mitochondrial pathway of apoptosis (p53, Bax, caspase-3) did not show expression upregulation by ACTs-E, suggesting that apoptosis induction occurred through a p53-independent process. Further analysis revealed that ACTs-E strongly inhibited synthesis of topoisomerase I (TOP1) and tyrosyl-DNA phosphodiesterase I (TDP1), which are involved in DNA repair, at both transcriptional and protein levels. Our findings suggest that ACTs-E have potential for applications in the pharmaceutical, clinical, and functional food industries, as a novel antitumor agent and a dual TOP1/TDP1 inhibitor.


Assuntos
Antineoplásicos Fitogênicos/biossíntese , Antrodia/metabolismo , Cicloexenos/metabolismo , Monoterpenos/metabolismo , Extratos Vegetais/antagonistas & inibidores , Triterpenos/metabolismo , Antineoplásicos Fitogênicos/análise , Antineoplásicos Fitogênicos/farmacologia , Antrodia/química , Antrodia/crescimento & desenvolvimento , Apoptose/efeitos dos fármacos , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Meios de Cultura/metabolismo , Monoterpenos Cicloexânicos , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Humanos , Micélio/química , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Triterpenos/análise , Triterpenos/farmacologia
7.
Biosci Rep ; 38(6)2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30287506

RESUMO

Monocyclic monoterpenes have been recognized as useful pharmacological ingredients due to their ability to treat numerous diseases. Limonene and perillyl alcohol as well as their metabolites (especially perillic acid and its methyl ester) possess bioactivities such as antitumor, antiviral, anti-inflammatory, and antibacterial agents. These therapeutic properties have been well documented. Based on the aforementioned biological properties of limonene and its metabolites, their structural modification and development into effective drugs could be rewarding. However, utilization of these monocyclic monoterpenes as scaffolds for the design and developments of more effective chemoprotective agents has not received the needed attention by medicinal scientists. Recently, some derivatives of limonene metabolites have been synthesized. Nonetheless, there have been no thorough studies on their pharmacokinetic and pharmacodynamic properties as well as their inhibition against isoprenylation enzymes. In this review, recent research progress in the biochemical significance of limonene and its metabolites was summarized with emphasis on their antitumor effects. Future prospects of these bioactive monoterpenes for drug design and development are also highlighted.


Assuntos
Desenho de Fármacos , Limoneno/uso terapêutico , Neoplasias/tratamento farmacológico , Cicloexenos/química , Cicloexenos/metabolismo , Cicloexenos/uso terapêutico , Humanos , Limoneno/química , Limoneno/metabolismo , Éteres Metílicos/química , Éteres Metílicos/metabolismo , Éteres Metílicos/uso terapêutico , Monoterpenos/química , Monoterpenos/metabolismo , Monoterpenos/uso terapêutico , Neoplasias/patologia
8.
Food Chem ; 257: 310-315, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29622216

RESUMO

In this study cold low pressure radiofrequency oxygen plasma was used for the first time to inactivate toxicogenic fungi proliferation on saffron. Varieties of plasma produced reactive oxygen species which were investigated by optical emission spectroscopy. The data were indicative of the absence of UV radiation. Effects of plasma treatment on antioxidant activity, metabolic content, colour, odour and flavour parameters and physical impact on saffron were investigated. A range of plasma powers and exposure times were assayed in suppression of fungal growth. Amongst which power of 60 W for 15 min was used to eradicate Aspergillus and other microorganisms. The ferric reducing antioxidant power was changed from 1778.21 to 1674.25 mM/g dry weight following plasma treatment. Moreover, crocin ester, picrocrocin and safranal metabolites reduced insignificantly. Additionally, plasma had no significant impact on colour, odour and flavour of saffron.


Assuntos
Crocus/metabolismo , Extratos Vegetais/química , Gases em Plasma/química , Antioxidantes/química , Aspergillus/efeitos dos fármacos , Carotenoides/química , Carotenoides/metabolismo , Crocus/microbiologia , Cicloexenos/química , Cicloexenos/metabolismo , Glucosídeos/química , Glucosídeos/metabolismo , Microscopia Eletrônica de Varredura , Penicillium/efeitos dos fármacos , Gases em Plasma/farmacologia , Rhizopus/efeitos dos fármacos , Terpenos/química , Terpenos/metabolismo
9.
Molecules ; 23(1)2017 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-29295497

RESUMO

The spice saffron is made from the dried stigmas of the plant Crocus sativus L. The main use of saffron is in cooking, due to its ability to impart colour, flavour and aroma to foods and beverages. However, from time immemorial it has also been considered a medicinal plant because it possesses therapeutic properties, as illustrated in paintings found on the island of Santorini, dated 1627 BC. It is included in Catalogues of Medicinal Plants and in the European Pharmacopoeias, being part of a great number of compounded formulas from the 16th to the 20th centuries. The medicinal and pharmaceutical uses of this plant largely disappeared with the advent of synthetic chemistry-produced drugs. However, in recent years there has been growing interest in demonstrating saffron's already known bioactivity, which is attributed to the main components-crocetin and its glycosidic esters, called crocins, and safranal-and to the synergy between the compounds present in the spice. The objective of this work was to provide an updated and critical review of the research on the therapeutic properties of saffron, including activity on the nervous and cardiovascular systems, in the liver, its antidepressant, anxiolytic and antineoplastic properties, as well as its potential use as a functional food or nutraceutical.


Assuntos
Crocus/química , Alimento Funcional , Compostos Fitoquímicos/metabolismo , Plantas Medicinais/química , Antidepressivos/química , Antidepressivos/metabolismo , Antidepressivos/uso terapêutico , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/uso terapêutico , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/uso terapêutico , Carotenoides/metabolismo , Cor , Crocus/metabolismo , Cicloexenos/metabolismo , Glucosídeos/metabolismo , Humanos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/uso terapêutico , Plantas Medicinais/metabolismo , Especiarias , Terpenos/metabolismo , Vitamina A/análogos & derivados
10.
Genet Mol Res ; 15(3)2016 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-27706657

RESUMO

This is the first comprehensive study of the genetic analysis of the majority of oleoresin components of slash pine (Pinus elliottii). Pine oleoresin, the resin secreted from the pine tree, is a raw material widely used in industrial products. The objective of this study was to explore the genetic variation and correlation between the major oleoresin components of 50 open pollinated families of slash pine. The individual narrow-sense heritability of the 23 oleoresin components and genetic correlations between them were estimated using the residual maximum likelihood in the flexible mixed modeling program, ASReml-R. A high heritability of 0.424 was observed for ß-pinene. Moderate levels of heritability were estimated for ß-phellandrene, methyl abietate, estragole, 15-hydroxy-dehydroabietic acid, and isopimaric acid methyl ester at 0.303, 0.294, 0.27, 0.258, and 0.2, respectively. The heritabilities for pimaric acid methyl ester, abieta-8, 13-diene-18-oic acid methyl ester, sandaracopimaric acid, methyl ester, and camphene were relatively low and ranged from 0.11 to 0.17. Many negative genetic correlations were observed as unfavorable while the corresponding phenotypic correlations presented no significant relationships or positive phenotypic correlations. However, the heritabilities and genetic correlations showed that single or multiple component selections and improvement, directly or indirectly, were effective. We postulate that genetic parameters estimated in this study will work as a reference in breeding programs of oleoresin components, especially in slash pine.


Assuntos
Genótipo , Padrões de Herança , Pinus/genética , Extratos Vegetais/genética , Abietanos/biossíntese , Abietanos/genética , Derivados de Alilbenzenos , Anisóis/metabolismo , Monoterpenos Bicíclicos , Compostos Bicíclicos com Pontes/metabolismo , Monoterpenos Cicloexânicos , Cicloexenos/metabolismo , Diterpenos/metabolismo , Variação Genética , Funções Verossimilhança , Monoterpenos/metabolismo , Fenótipo , Pinus/química , Pinus/metabolismo , Extratos Vegetais/biossíntese , Terpenos/metabolismo
11.
Cell Mol Biol (Noisy-le-grand) ; 62(3): 7-9, 2016 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-27064866

RESUMO

Medicinal plants are known as important sources of secondary metabolites. Because of the economic value of pennyroyal [Mentha pulegium L. (Lamiaceae)] in food industries, propagation of this valuable plant has special importance. Plant cell suspension culture can increase some produced components. The aim of this research was performing cell culture for induction of some secondary metabolites of M. pulegium and compares it with native one. The MS medium was used for suspension culture. To investigate quantitative materials, 4 levels of yeast extract elicitor (20, 40, 60 and 80 mg/L) and salicylic acid in 4 levels (2, 4, 6 and 8 mg/L) were used. Obtained extracts were analyzed by GC-MS. Statistical analysis showed that the amount of limonene, menthone, menthol and α-pinene were more than mentioned compounds in natural plant as control. The maximum amount of this metabolites were obtained as limonene (in 60 mg/l yeast extract), menthone (in 40 mg/l yeast extract and 2 mg/l salicylic acid), menthol (in 6 mg/l salicylic acid) and α-pinene (in 4 mg/l salicylic acid) in the M. pulegium cell culture. The Pulegone was fond more in natural plants than cell culture mass. The most important secondary metabolites were increased by cell culture containing of salicylic acid and yeast extract elicitors in M. pulegume.


Assuntos
Técnicas de Cultura de Células/métodos , Cicloexenos/metabolismo , Mentha pulegium/citologia , Mentol/metabolismo , Monoterpenos/metabolismo , Terpenos/metabolismo , Monoterpenos Bicíclicos , Biotecnologia/métodos , Monoterpenos Cicloexânicos , Cicloexenos/análise , Limoneno , Mentha pulegium/química , Mentha pulegium/metabolismo , Mentol/análise , Monoterpenos/análise , Ácido Salicílico/metabolismo , Terpenos/análise , Leveduras/metabolismo
12.
Appl Microbiol Biotechnol ; 100(7): 2927-38, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26915992

RESUMO

This mini review describes novel, biotechnology-based, ways of producing the monoterpene limonene. Limonene is applied in relatively highly priced products, such as fragrances, and also has applications with lower value but large production volume, such as biomaterials. Limonene is currently produced as a side product from the citrus juice industry, but the availability and quality are fluctuating and may be insufficient for novel bulk applications. Therefore, complementary microbial production of limonene would be interesting. Since limonene can be derivatized to high-value compounds, microbial platforms also have a great potential beyond just producing limonene. In this review, we discuss the ins and outs of microbial limonene production in comparison with plant-based and chemical production. Achievements and specific challenges for microbial production of limonene are discussed, especially in the light of bulk applications such as biomaterials.


Assuntos
Cicloexenos/metabolismo , Escherichia coli/metabolismo , Liases Intramoleculares/metabolismo , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Terpenos/metabolismo , Biotecnologia/métodos , Citrus/química , Citrus/metabolismo , Cicloexenos/isolamento & purificação , Escherichia coli/genética , Fermentação , Expressão Gênica , Liases Intramoleculares/genética , Limoneno , Redes e Vias Metabólicas , Óleos de Plantas/química , Saccharomyces cerevisiae/genética , Estereoisomerismo , Streptomyces/genética , Streptomyces/metabolismo , Synechococcus/genética , Synechococcus/metabolismo , Synechocystis/genética , Synechocystis/metabolismo , Terpenos/isolamento & purificação
13.
J Agric Food Chem ; 63(39): 8662-8, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26340688

RESUMO

The cellular transport and bioactivity of the second major saffron apocarotenoid, picrocrocin, was examined in parallel to that of the major group, crocetin sugar esters, in aqueous extracts. The transport of pure picrocrocin was investigated in comparison to that of other saffron apocarotenoids, trans-crocetin (di-ß-D-gentiobiosyl) ester and crocetin using the Caco-2 cell model coupled with an in vitro digestion procedure. RP-HPLC-DAD was employed to quantify the bioaccessible and bioavailable amounts of individual apocarotenoids. Picrocrocin and crocetin sugar esters though highly bioaccessible (75% and 60%, respectively) were transported at minute quantities (0.2% and 0.5%, respectively; 10-fold lower than crocetin). Picrocrocin did not protect against oxidant-induced DNA damage in U937, human monocytic blood cells at the concentration investigated, however, it reduced the proliferation of human adenocarcinoma and hepatocarcinoma cells. Our findings may be useful for the requirements of food legislation regarding saffron preparations, in which both apocarotenoid groups coexist.


Assuntos
Crocus/metabolismo , Cicloexenos/metabolismo , Glucosídeos/metabolismo , Extratos Vegetais/metabolismo , Terpenos/metabolismo , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Crocus/química , Cicloexenos/farmacologia , Digestão , Flores/química , Flores/metabolismo , Glucosídeos/farmacologia , Humanos , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Terpenos/farmacologia
14.
Chem Biol Interact ; 238: 151-60, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26102007

RESUMO

Safranal, a component of saffron, indicates anti-tumor activities; however, the precise mechanism of this effect has remained elusive. In this study we investigated tubulin assembly and structure in the presence of safranal to open the new horizons about the potential of safranal as an anti-tumor agent via microtubule disfunction. Anti-microtubule activity of safranal was evaluated by turbidimetric method and transmission electron microscopy (TEM). Safranal (0.1-70µM) was incubated with tubulin (5µM) and tubulin structural changes was surveyed using fluorometry. Tubulin binding site with safranal was estimated by molecular docking. Microtubule polymerization decreased significantly in the presence of safranal, regardless of its concentration and the IC50 value was obtained 72.19µM. Safranal was situated between α and ß tubulin closer to α-tubulin and hydrogen bond with Gly 142 and hydrophobic interactions played critical roles for safranal molecule stabilization in binding site. It seems that decline of tubulin assembly could result from tubulin structural changes through safranal bindings between alpha and beta tubulin with ΔG(0) of -5.63kcal/mol. Safranal can be taken into account as an anticancer agent; however, in vivo experiments are required to confirm this conclusion.


Assuntos
Cicloexenos/química , Terpenos/química , Tubulina (Proteína)/química , Animais , Sítios de Ligação , Encéfalo/metabolismo , Cicloexenos/metabolismo , Ligação de Hidrogênio , Microtúbulos/metabolismo , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Ovinos , Terpenos/metabolismo , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/metabolismo
15.
Plant Signal Behav ; 10(6): e1028704, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26023857

RESUMO

Volatile organic compounds (VOCs) are secondary metabolites acting as a language for the communication of plants with the environment. In orange fruits, the monoterpene D-limonene accumulates at very high levels in oil glands from the peel. Drastic down-regulation of D-limonene synthase gene expression in the peel of transgenic oranges harboring a D-limonene synthase transgene in antisense (AS) configuration altered the monoterpene profile in oil glands, mainly resulting in reduced accumulation of D-limonene. This led to fruit resistance against Penicillium digitatum (Pd), Xanthomonas citri subsp. citri (Xcc) and other specialized pathogens. Here, we analyze resistance to pathogens in independent AS and empty vector (EV) lines, which have low, medium or high D-limonene concentrations and show that the level of resistance is inversely related to the accumulation of D-limonene in orange peels, thus explaining the need of high D-limonene accumulation in mature oranges in nature for the efficient attraction of specialized microorganism frugivores.


Assuntos
Citrus/anatomia & histologia , Citrus/microbiologia , Cicloexenos/metabolismo , Resistência à Doença , Regulação para Baixo , Doenças das Plantas/microbiologia , Óleos de Plantas/metabolismo , Terpenos/metabolismo , Citrus/genética , DNA de Plantas/isolamento & purificação , Resistência à Doença/genética , Limoneno , Doenças das Plantas/genética , Plantas Geneticamente Modificadas , RNA Antissenso/metabolismo , Compostos Orgânicos Voláteis/análise
16.
Nat Prod Commun ; 10(1): 219-31, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25920247

RESUMO

Sponge derived bromotyrosines are a multifaceted class of marine bioactive compounds that are important for the chemical defense of sponges but also for drug discovery programs as well as for technical applications in the field of antifouling constituents. These compounds, which are mainly accumulated by Verongid sponges, exhibit a diverse range of bioactivities including antibiotic, cytotoxic and antifouling effects. In spite of the simple biogenetic building blocks, which consist only of brominated tyrosine and tyramine units, an impressive diversity of different compounds is obtained through different linkages between these precursors and through structural modifications of the side chains and/or aromatic rings resembling strategies that are known from combinatorial chemistry. As examples for bioactive, structurally divergent bromotyrosines psammaplin A, Aplysina alkaloids featuring aerothionin, aeroplysinin-1 and the dienone, and the bastadins, including the synthetically derived hemibastadin congeners, have been selected for this review. Whereas all of these natural products are believed to be involved in the chemical defense of sponges, some of them may also be of particular relevance to drug discovery due to their interaction with specific molecular targets in eukaryotic cells. These targets involve important enzymes and receptors, such as histone deacetylases (HDAC) and DNA methyltransferases (DNMT), which are inhibited by psammaplin A, as well as ryanodine receptors that are targeted by bastadine type compounds. The hemibastadins such as the synthetically derived dibromohemibastadin are of particular interest due to their antifouling activity. For the latter, a phenoloxidase which catalyzes the bioglue formation needed for firm attachment of fouling organisms to a given substrate was identified as a molecular target. The Aplysina alkaloids finally provide a vivid example for dynamic wound induced bioconversions of natural products that generate highly efficient chemical weapons precisely when and where needed.


Assuntos
Poríferos/química , Tirosina/análogos & derivados , Acetonitrilas/química , Acetonitrilas/metabolismo , Animais , Cicloexenos/química , Cicloexenos/metabolismo , Dissulfetos/química , Descoberta de Drogas , Ecossistema , Humanos , Estrutura Molecular , Poríferos/metabolismo , Tirosina/biossíntese , Tirosina/química , Tirosina/metabolismo
17.
FEMS Microbiol Lett ; 358(1): 36-43, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25053476

RESUMO

Antrodia cinnamomea is a medicinal mushroom producing potent bioactive triterpenoids. However, triterpenoids of A. cinnamomea in submerged culture are much less than those in fruiting bodies. Here we evaluated effects of different extracts from a host-related species, Cinnamomum camphora, on the mycelial growth and triterpenoid production of A. cinnamomea in submerged culture. The hot water extract of the stem showed the strongest promotion of the mycelial growth. The petroleum ether extract of the stem (PES) (0.05 g L(-1)) showed the greatest stimulatory effect on content and production of triterpenoids. A total of 39 compounds including terpenoids, phenolic and aromatic compounds were identified in the PES by GC-MS analysis. Furthermore, the effects of seven compounds contained in the PES on the mycelial growth and triterpenoid production of A. cinnamomea were evaluated. Among them, α-terpineol (0.5 mg L(-1)) showed the greatest stimulatory effect on the triterpenoid content (23.31 mg g(-1)) and triterpenoid production (91.33 mg L(-1)) of A. cinnamomea. Results of LC-MS analysis showed that α-terpineol (0.5 mg L(-1)) stimulated the syntheses of six triterpenoids in the mycelia of A. cinnamomea. This indicates that α-terpineol can act as an elicitor for triterpenoid biosynthesis in A. cinnamomea.


Assuntos
Antrodia/crescimento & desenvolvimento , Antrodia/metabolismo , Cicloexenos/metabolismo , Monoterpenos/metabolismo , Extratos Vegetais/metabolismo , Triterpenos/metabolismo , Antrodia/efeitos dos fármacos , Cinnamomum camphora/química , Monoterpenos Cicloexânicos , Cicloexenos/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Monoterpenos/isolamento & purificação , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Extratos Vegetais/isolamento & purificação , Caules de Planta/metabolismo
18.
Food Chem ; 143: 446-51, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24054265

RESUMO

Saffron's quality depends on the concentration of secondary metabolites, such as crocins, picrocrocin and safranal. The aim of this research was to evaluate the influence of drying conditions on the secondary metabolite contents of saffron produced in the area of Cascia, in central Italy. Different aliquots of the same saffron sample were subjected to various dehydration conditions and analysed by UV-Vis spectrophotometry to determine crocins, picrocrocin and safranal.. Safranal was also analysed by high resolution gas chromatography, while the crocins and picrocrocin were determined by high-performance liquid chromatography with diode array and mass spectrometric detectors. The results of chromatographic analyses showed that the samples dried in the milder conditions had the lowest content of secondary metabolites. Moreover the sample dried at 60°C for 55min presented the highest contents of trans-crocin-4 and picrocrocin, while safranal was most represented in saffron dried at 55°C for 95min.


Assuntos
Carotenoides/análise , Crocus/química , Cicloexenos/análise , Glucosídeos/análise , Extratos Vegetais/análise , Terpenos/análise , Carotenoides/metabolismo , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Crocus/metabolismo , Cicloexenos/metabolismo , Glucosídeos/metabolismo , Itália , Extratos Vegetais/metabolismo , Metabolismo Secundário , Terpenos/metabolismo
19.
J Sci Food Agric ; 94(9): 1872-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24288269

RESUMO

BACKGROUND: Saffron (Crocus sativus L.) is one of the most expensive medicinal and aromatic plants in the world. Due to the excessive application of chemical fertilisers in saffron farms and alkalinity of most cultivated soils, split foliar fertilisation has been suggested. The primary goal of this study was to propose split foliar fertilisation as a technique in increasing the quality and quantity of active constituents in saffron. HPLC analysis was used to quantify the most important saffron components; crocins (colour), picrocrocin (taste), and safranal (odour). This study was carried out in Kashmar, Iran, to determine the effect of split foliar fertilisations on quality and quantity of saffron in 2011 and 2012. A split-plot design experiment based on randomised complete block with three replications was conducted to examine three fertiliser types in three regimes for split foliar fertilisation. RESULTS: Statistical analysis showed that split foliar fertilisation and the fertiliser type significantly increased saffron yield, number of flowers and crocin; whereas it decreased the picrocrocin and safranal content of the saffron stigmas (P < 0.05). CONCLUSION: Overall, split foliar fertilisation increased saffron yield and colour but decreased the taste and the odour of saffron.


Assuntos
Agricultura/métodos , Carotenoides/metabolismo , Crocus/metabolismo , Cicloexenos/metabolismo , Flores/metabolismo , Folhas de Planta/metabolismo , Terpenos/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Fertilizantes , Glucosídeos/metabolismo , Humanos , Irã (Geográfico) , Extratos Vegetais/metabolismo
20.
Chem Biodivers ; 10(11): 2014-20, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24243610

RESUMO

The essential oils obtained by hydrodistillation from Daucus sahariensis Murb. harvested at three different growth stages were characterized by GC/MS analysis. In total, 88 compounds were identified, with myristicin (29.8-51.7%), myrcene (6.7-31.1%), α-pinene (11.6-14.8%), and limonene (5.3-11.5%) as main constituents. Monoterpene hydrocarbons were the most represented compounds in the oils of the plant samples collected during the flower-budding and full-flowering periods. On the contrary, during the fruiting stage, the oils were dominated by phenylpropanoids. The essential oils were subject of considerable variation in their composition during the various developmental stages, particularly concerning the content of myrcene that decreased significantly passing from the vegetative to the fruiting stage. Conversely, for myristicin, the opposite trend was observed. Furthermore, the essential-oil yields were quite low during the flower-budding phase (0.27%), but rapidly increased during plant development (0.63 and 0.68% for the flowering and fruiting phases, resp.).


Assuntos
Apiaceae/química , Apiaceae/crescimento & desenvolvimento , Óleos Voláteis/análise , Óleos de Plantas/análise , Monoterpenos Acíclicos , Alcenos/análise , Alcenos/metabolismo , Derivados de Alilbenzenos , Compostos de Benzil/análise , Compostos de Benzil/metabolismo , Monoterpenos Bicíclicos , Cicloexenos/análise , Cicloexenos/metabolismo , Dioxolanos/análise , Dioxolanos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Limoneno , Monoterpenos/análise , Monoterpenos/metabolismo , Óleos Voláteis/metabolismo , Óleos de Plantas/metabolismo , Pirogalol/análogos & derivados , Pirogalol/análise , Pirogalol/metabolismo , Terpenos/análise , Terpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA