RESUMO
Cyclotides are mini-proteins with potent bioactivities and outstanding potential for agricultural and pharmaceutical applications. More than 450 different plant cyclotides have been isolated from six angiosperm families. In Brazil, studies involving this class of natural products are still scarce, despite its rich floristic diversity. Herein were investigated the cyclotides from Anchietea pyrifolia roots, a South American medicinal plant from the family Violaceae. Fourteen putative cyclotides were annotated by LC-MS. Among these, three new bracelet cyclotides, anpy A-C, and the known cycloviolacins O4 (cyO4) and O17 (cyO17) were sequenced through a combination of chemical and enzymatic reactions followed by MALDI-MS/MS analysis. Their cytotoxic activity was evaluated by a cytotoxicity assay against three human cancer cell lines (colorectal carcinoma cells: HCT 116 and HCT 116 TP53-/- and breast adenocarcinoma, MCF 7). For all assays, the IC50 values of isolated compounds ranged between 0.8 and 7.3 µM. CyO17 was the most potent cyclotide for the colorectal cancer cell lines (IC50, 0.8 and 1.2 µM). Furthermore, the hemolytic activity of anpy A and B, cyO4, and cyO17 was assessed, and the cycloviolacins were the least hemolytic (HD50 > 156 µM). This work sheds light on the cytotoxic effects of the anpy cyclotides against cancer cells. Moreover, this study expands the number of cyclotides obtained to date from Brazilian plant biodiversity and adds one more genus containing these molecules to the list of the Violaceae family.
Assuntos
Produtos Biológicos , Ciclotídeos , Proteínas de Plantas , Violaceae , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Brasil , Linhagem Celular Tumoral , Ciclotídeos/química , Ciclotídeos/isolamento & purificação , Ciclotídeos/farmacologia , Humanos , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Espectrometria de Massas em Tandem , Violaceae/químicaRESUMO
Cyclotides are plant-derived peptides characterized by an â¼30-amino acid-long cyclic backbone and a cystine knot motif. Cyclotides have diverse bioactivities, and their cytotoxicity has attracted significant attention for its potential anticancer applications. Hybanthus enneaspermus (Linn) F. Muell is a medicinal herb widely used in India as a libido enhancer, and a previous study has reported that it may contain cyclotides. In the current study, we isolated 11 novel cyclotides and 1 known cyclotide (cycloviolacin O2) from H. enneaspermus and used tandem MS to determine their amino acid sequences. We found that among these cyclotides, hyen C comprises a unique sequence in loops 1, 2, 3, 4, and 6 compared with known cyclotides. The most abundant cyclotide in this plant, hyen D, had anticancer activity comparable to that of cycloviolacin O2, one of the most cytotoxic known cyclotides. We also provide mechanistic insights into how these novel cyclotides interact with and permeabilize cell membranes. Results from surface plasmon resonance experiments revealed that hyen D, E, L, and M and cycloviolacin O2 preferentially interact with model lipid membranes that contain phospholipids with phosphatidyl-ethanolamine headgroups. The results of a lactate dehydrogenase assay indicated that exposure to these cyclotides compromises cell membrane integrity. Using live-cell imaging, we show that hyen D induces rapid membrane blebbing and cell necrosis. Cyclotide-membrane interactions correlated with the observed cytotoxicity, suggesting that membrane permeabilization and disintegration underpin cyclotide cytotoxicity. These findings broaden our knowledge on the indigenous Indian herb H. enneaspermus and have uncovered cyclotides with potential anticancer activity.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Ciclotídeos/farmacologia , Descoberta de Drogas , Plantas Medicinais/química , Violaceae/química , Sequência de Aminoácidos , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Tumoral , Ciclotídeos/química , Ciclotídeos/isolamento & purificação , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Ressonância de Plasmônio de Superfície , Espectrometria de Massas em TandemRESUMO
Biologically active cyclotides have been found on some flowering plants species and are involved in the role of the plant protection. As part of studies focusing on peptides from Brazilian plant species, we are reporting the detection by LC-MS of several cyclotides from leaves and stems of Noisettia orchidiflora (Violaceae). From stems it was possible to isolate and characterize a cyclotide named Nor A. Its primary structure (amino acid sequence) was established by MALDI-TOF-MS, based on the y- and b-type ion series, after reduction and alkylation reactions, as well as enzymatic digestion using the enzymes endoproteinase glutamic acid (endoGlu-C), trypsin, and chymotrypsin. Furthermore, the amino acid analysis was also described.
Assuntos
Ciclotídeos/isolamento & purificação , Violaceae/química , Sequência de Aminoácidos , Cromatografia Líquida , Ciclotídeos/química , Folhas de Planta/química , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Caules de Planta/química , Alinhamento de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
Modification of metal surfaces with antimicrobial peptides is a promising approach to reduce bacterial adhesion. Here, cyclic peptides or cycloids, possessing remarkable stability and antimicrobial activities, were extracted and purified from Viola philippica Cav., and identified using mass spectrometry. Cyclotides were subsequently utilized to modify stainless steel surfaces via polydopamine-mediated coupling. The resulting cyclotide-modified surfaces were characterized by Fourier transform infrared (FTIR) spectroscopy and contact angle analysis. The antibacterial capacity of these cyclotides against Staphylococcus aureus was assessed by Alamar blue assay. The antibiofilm capacity of the modified surfaces was assessed by crystal violet assay, and scanning electron microscopy (SEM). A composite of Kalata b1, Varv A, Viba 15 and Viba 17 (P1); Varv E (P2); and Viphi G (P3) were isolated and identified. FTIR analysis of the modified surfaces demonstrated that cyclotides bound to the surfaces and induced reduction of contact angles. Antimicrobial effects showed an order P3 > P1 and P2, with P3-treated surfaces demonstrating the strongest antibiofilm capacity. SEM confirmed reduced biofilm formation for P3-treated surfaces. This study provides novel evidence for cyclotides as a new class for development of antibacterial and antibiofilm agents.
Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Ciclotídeos/farmacologia , Metais/química , Extratos Vegetais/farmacologia , Viola/química , Sequência de Aminoácidos , Antibacterianos/química , Ciclotídeos/química , Ciclotídeos/isolamento & purificação , Indóis/química , Microscopia Eletrônica de Varredura , Extratos Vegetais/química , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Polímeros/química , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologiaRESUMO
Cyclotides are cyclic cystine knotted macrocyclic plant peptides that have several promising applications. This study was undertaken to detect and identify known and new cyclotides in Viola odorata, a commercially important medicinal plant, from three geographical locations in India. The number of cyclotides in the plant varied with the tissue (leaves, petioles, flowers, runners, and roots) and with geographical locations in India. Using liquid chromatography coupled to Fourier transform mass spectrometry (FTMS), 166 cyclotide-like masses were observed to display cyclotide-diagnostic mass shifts following reduction, alkylation, and digestion, and 71 of these were positively identified based on automated spectrum matching. Of the remaining 95 putative cyclotides observed, de novo peptide sequencing of three new cyclotides, namely, vodo I1 (1), vodo I2 (2), and vodo I3 (3), was carried out with tandem mass spectrometry.
Assuntos
Ciclotídeos/isolamento & purificação , Plantas Medicinais/química , Viola/química , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Ciclotídeos/química , Índia , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Folhas de Planta/químicaRESUMO
Cyclotides are an interesting family of circular plant peptides. Their unique three-dimensional structure, comprising a head-to-tail circular backbone chain and three disulfide bonds, confers them stability against thermal, chemical, and enzymatic degradation. Their unique stability under extreme conditions creates an idea about the possibility of using harsh extraction methods such as microwave-assisted extraction (MAE) without affecting their structures. MAE has been introduced as a potent extraction method for extraction of natural compounds, but it is seldom used for peptide and protein extraction. In this work, microwave irradiation was applied to the extraction of cyclotides. The procedure was performed in various steps using a microwave instrument under different conditions. High-performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) results show stability of cyclotide structures on microwave radiation. The influential parameters, including time, temperature, and the ratio of solvents that are affecting the MAE potency, were optimized. Optimal conditions were obtained at 20 min of irradiation time, 1200 W of system power in 60 °C, and methanol/water at the ratio of 90:10 (v/v) as solvent. The comparison of MAE results with maceration extraction shows that there are similarities between cyclotide sequences and extraction yields.
Assuntos
Ciclotídeos/análise , Micro-Ondas , Extratos Vegetais/química , Viola/química , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Ciclotídeos/isolamento & purificação , Dados de Sequência Molecular , Extratos Vegetais/isolamento & purificação , Alinhamento de Sequência , Extração em Fase Sólida , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
Cyclotides are plant-derived mini proteins. They are genetically encoded as precursor proteins that become post-translationally modified to yield circular cystine-knotted molecules. Because of this structural topology cyclotides resist enzymatic degradation in biological fluids, and hence they are considered as promising lead molecules for pharmaceutical applications. Despite ongoing efforts to discover novel cyclotides and analyze their biodiversity, it is not clear how many individual peptides a single plant specimen can express. Therefore, we investigated the transcriptome and cyclotide peptidome of Viola tricolor. Transcriptome mining enabled the characterization of cyclotide precursor architecture and processing sites important for biosynthesis of mature peptides. The cyclotide peptidome was explored by mass spectrometry and bottom-up proteomics using the extracted peptide sequences as queries for database searching. In total 164 cyclotides were discovered by nucleic acid and peptide analysis in V. tricolor. Therefore, violaceous plants at a global scale may be the source to as many as 150â¯000 individual cyclotides. Encompassing the diversity of V. tricolor as a combinatorial library of bioactive peptides, this commercially available medicinal herb may be a suitable starting point for future bioactivity-guided screening studies.
Assuntos
Ciclotídeos/química , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Processamento de Proteína Pós-Traducional , Transcriptoma , Violaceae/genética , Cromatografia Líquida de Alta Pressão , Ciclotídeos/genética , Ciclotídeos/isolamento & purificação , Ciclotídeos/metabolismo , Motivos Nó de Cisteína/genética , Mineração de Dados , Biblioteca Gênica , Extração Líquido-Líquido , Modelos Moleculares , Dados de Sequência Molecular , Componentes Aéreos da Planta/química , Extratos Vegetais/química , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Alinhamento de Sequência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Violaceae/metabolismoRESUMO
MCoTI-I and MCoTI-II (short for Momordica cochinchinensis Trypsin Inhibitor-I and -II, respectively) are attractive candidates for developing novel intracellular-targeting drugs because both are exceptionally stable and can internalize into cells. These seed-derived cystine knot peptides are examples of how natural product discovery efforts can lead to biomedical applications. However, discovery efforts are sometimes hampered by the limited availability of seed materials, highlighting the need for efficient extraction methods. In this study, we assessed five extraction methods using M. cochinchinensis seeds, a source of well-characterized cystine knot peptides. The most efficient extraction of nine known cystine knot peptides was achieved by a method based on acetonitrile/water/formic acid (25:24:1), followed by methods based on sodium acetate (20 mM, pH 5.0), ammonium bicarbonate (5 mM, pH 8.0), and boiling water. On average, the yields obtained by these four methods were more than 250-fold higher than that obtained using dichloromethane/methanol (1:1) extraction, a previously applied standard method. Extraction using acetonitrile/water/formic acid (25:24:1) yielded the highest number of reconstructed masses within the majority of plant-derived cystine knot peptide mass range but only accounted for around 50% of the total number of masses, indicating that any single method may result in under-sampling. Applying acetonitrile/water/formic acid (25:24:1), boiling water, and ammonium bicarbonate (5 mM, pH 8.0) extractions either successively or discretely significantly increased the sampling number. Overall, acetonitrile/water/formic acid (25:24:1) can facilitate efficient extraction of cystine-knot peptides from M. cochinchinensis seeds but for discovery purposes the use of a combination of extraction methods is recommended where practical.
Assuntos
Ciclotídeos/isolamento & purificação , Momordica/química , Extratos Vegetais/isolamento & purificação , Sequência de Aminoácidos , Ciclotídeos/análise , Motivos Nó de Cisteína , Dados de Sequência Molecular , Extratos Vegetais/química , Proteínas de Plantas/análise , Proteínas de Plantas/isolamento & purificação , Sementes/química , Solventes/químicaRESUMO
Cyclotides are plant-produced, bioactive, cyclic mini-proteins with interesting pharmaceutical and agricultural applications. A reverse phase liquid chromatography electrospray ionization mass spectrometry (RP-LC-ESI-MS) method for analysis of cyclotides in plant materials with a minimum of sample pre-treatment is presented. Three exemplary cyclotides (kalata B1, kalata B2 and cycloviolacin O2) were used as reference substances for the method development. Linearity (r(2)>0.99) was achieved in the concentration range 0.05-10 mg/L and the limit of detection was 1.7-4.0 µg/L. The present study is the first to demonstrate that cyclotides dissolved in water sorb to glass vials, but the addition of 15% of acetonitrile or 40 mg/L of bovine serum albumin is sufficient to keep the cyclotides in solution. Cyclotides were extracted from candied violets, violet tea, and the plants Oldenlandia affinis and Viola odorata using 70% methanol containing 0.1% formic acid (v/v). The plant content was determined to be 23.5-14,200 µg/g (dry weight). The highest content of cyclotide was found in wild Danish V. odorata, and it is the highest content of cyclotide in a plant reported hitherto. Candied violets contained 0.00-8.66 µg/g (dry weight), while no cyclotides were detected in commercial violet tea.
Assuntos
Cromatografia de Fase Reversa/métodos , Ciclotídeos/análise , Extratos Vegetais/química , Proteínas de Plantas/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Adsorção , Sequência de Aminoácidos , Animais , Bovinos , Ciclotídeos/isolamento & purificação , Extração Líquido-Líquido , Modelos Moleculares , Dados de Sequência Molecular , Oldenlandia/química , Proteínas de Plantas/isolamento & purificação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Alinhamento de Sequência , Soroalbumina Bovina/química , Viola/químicaRESUMO
Cyclotides are plant proteins whose defining structural features are a head-to-tail cyclized backbone and three interlocking disulfide bonds, which in combination are known as a cyclic cystine knot. This unique structural motif confers cyclotides with exceptional resistance to proteolysis. Their endogenous function is thought to be as plant defense agents, associated with their insecticidal and larval growth-inhibitory properties. However, in addition, an array of pharmaceutically relevant biological activities has been ascribed to cyclotides, including anti-HIV, anthelmintic, uterotonic, and antimicrobial effects. So far, >150 cyclotides have been elucidated from members of the Rubiaceae, Violaceae, and Cucurbitaceae plant families, but their wider distribution among other plant families remains unclear. Clitoria ternatea (Butterfly pea) is a member of plant family Fabaceae and through its usage in traditional medicine to aid childbirth bears similarity to Oldenlandia affinis, from which many cyclotides have been isolated. Using a combination of nanospray and matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) analyses, we examined seed extracts of C. ternatea and discovered cyclotides in the Fabaceae, the third-largest family of flowering plants. We characterized 12 novel cyclotides, thus expanding knowledge of cyclotide distribution and evolution within the plant kingdom. The discovery of cyclotides containing novel sequence motifs near the in planta cyclization site has provided new insights into cyclotide biosynthesis. In particular, MS analyses of the novel cyclotides from C. ternatea suggest that Asn to Asp variants at the cyclization site are more common than previously recognized. Moreover, this study provides impetus for the examination of other economically and agriculturally significant species within Fabaceae, now the largest plant family from which cyclotides have been described.
Assuntos
Ciclotídeos/química , Fabaceae/química , Extratos Vegetais/química , Proteínas de Plantas/química , Sementes/química , Sequência de Aminoácidos , Ciclotídeos/isolamento & purificação , Evolução Molecular , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Extratos Vegetais/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Conformação Proteica , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
Cyclotides, the largest known family of head-to-tail cyclic peptides, have approximately 30 amino acid residues with a complex structure containing a circular peptide backbone and a cystine knot. They are found in plants from the Violaceae and Rubiaceae families and are speculated to function in plant protection. In addition to their insecticidal properties, cyclotides display cytotoxic, anti-HIV, antimicrobial, and inhibition of neurotensin binding activities. Although cyclotides are present in all violaceous species hitherto screened, their distribution and expression in Rubiaceae are not fully understood. In this study, we show that Psychotria leptothyrsa var. longicarpa (Rubiaceae) contains a suite of different cyclotides. The cyclotide fractions were isolated by RP-HPLC, and sequences of six new peptides, named psyles A-F, were determined by MS/MS sequencing. One of these, psyle C, is the first rubiaceous linear variant known. Psyles A, C, and E were analyzed in a fluorometric microculture assay to determine cytotoxicity toward the human lymphoma cell line U937-GTB. The IC(50) values of psyles A, C, and E were 26, 3.50, and 0.76 muM, respectively. This study expands the number of known rubiaceous cyclotides and shows that the linear cyclotide maintains cytotoxicity.
Assuntos
Ciclotídeos/isolamento & purificação , Ciclotídeos/farmacologia , Plantas Medicinais/química , Rubiaceae/química , Sequência de Aminoácidos , Ciclotídeos/química , Motivos Nó de Cisteína , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Micronésia , Dados de Sequência MolecularRESUMO
Many plants of the Violaceae plant family have been used in traditional remedies, and these plants often contain cyclotides, a particular type of plant cyclopeptide that is distinguished by a cyclic cystine knot motif. In general, bioactive plant cyclopeptides are interesting candidates for drug development. In the current study, a suite of 14 cyclotides, which includes seven novel cyclotides [vitri B, C, D, E, F, varv Hm, and He], together with seven known cyclotides [varv A, D, E, F, H, vitri A, and cycloviolacin O2], was isolated from Viola tricolor, a common flower. A chromatography-based method was used to isolate the cyclotides, which were characterized using tandem mass spectrometry and NMR spectroscopy. Several of the cyclotides showed cytotoxic activities against five cancer cell lines, U251, MDA-MB-231, A549, DU145, and BEL-7402. Three cyclotides, vitri A, vitri F, and cycloviolacin O2, were the most cytotoxic. The cytotoxic activity of the cyclotides did not correlate well with their hemolytic activity, indicating that different interactions, most likely with membranes, are involved for cytotoxic and hemolytic activities. Homology modeling of the structures was used in deriving structure-activity relationships.
Assuntos
Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Ciclotídeos/isolamento & purificação , Ciclotídeos/farmacologia , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Viola/metabolismo , Sequência de Aminoácidos , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Ciclotídeos/efeitos adversos , Ciclotídeos/química , Motivos Nó de Cisteína , Descoberta de Drogas , Medicamentos de Ervas Chinesas , Hemólise/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Concentração Inibidora 50 , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Componentes Aéreos da Planta/metabolismo , Proteínas de Plantas/efeitos adversos , Proteínas de Plantas/química , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Propriedades de SuperfícieRESUMO
The cyclotides are a family of cyclic "mini" proteins that occur in Violaceae, Rubiaceae and Cucurbitaceae plant families and contain a head-to-tail cyclic backbone and a cystine knot arranged by three disulfide bonds. To study the natural cyclotides of V tianshanica, dried herb was extracted with 50% ethanol, and the concentrated aqueous extract was subjected to a solvent-solvent partitioning between water and hexane, ethyl acetate and n-butanol, separately. The n-butanol extract containing cyclotides was subjected to column chromatography over Sephadex LH-20, eluted with 30% methanol. The subfractions were directly reduced by DTT and analyzed by reverse-phase HPLC. The peaks with different retention times were shown on the profile of RP-HPLC and collected. The cyclotides were speculated based on masses range from 3 000 to 3 500 Da. The purified cyclotides were reduced with DTT, alkylated with iodoacetamide, and then were cleaved with endoproteinase Glu-C, endoproteinase Lys-C and Trypsin, separately. The digested peptides were purified on RP-HPLC and analyzed on MALDI TOF/TOF analyzer. A new cyclotide, cycloviolacin T1 and a reported cyclotide varv E were systemically determined using MALDI TOF/TOF system. So the method for the isolation and characterization of cyclotides was quickly built up in succession.
Assuntos
Ciclotídeos/isolamento & purificação , Viola/química , Sequência de Aminoácidos , Cromatografia Líquida de Alta Pressão , Ciclotídeos/química , Dados de Sequência Molecular , Estrutura Molecular , Plantas Medicinais/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em TandemRESUMO
Cyclotides are macrocyclic plant peptides characterized by a knotted arrangement of three disulfide bonds. They display a range of interesting bioactivities, including anti-HIV and insecticidal activities. More than 100 different cyclotides have been isolated from two phylogenetically distant plant families, the Rubiaceae and Violaceae. In this study we have characterized the cyclotides from Viola yedoensis, an important Chinese herb from the Violaceae family that has been reported to contain potential anti-HIV agents. From V. yedoensis five new and three known cyclotides were identified and shown to have anti-HIV activity. The most active of these is cycloviolacin Y5, which is one of the most potent of all cyclotides tested so far using in vitro XTT-based anti-HIV assays. Cycloviolacin Y5 is the most hydrophobic of the cyclotides from V. yedoensis. We show that there is a positive correlation between the hydrophobicity and the anti-HIV activity of the new cyclotides and that this trend tracks with their ability to disrupt membranes, as judged from hemolytic assays on human erythrocytes.
Assuntos
Fármacos Anti-HIV/isolamento & purificação , Fármacos Anti-HIV/farmacologia , Ciclotídeos/isolamento & purificação , Ciclotídeos/farmacologia , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Plantas Medicinais/química , Viola/química , Sequência de Aminoácidos , Animais , Fármacos Anti-HIV/química , Austrália , Ciclotídeos/química , Motivos Nó de Cisteína , Medicamentos de Ervas Chinesas/química , Eritrócitos/efeitos dos fármacos , Hemólise , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Estrutura Molecular , Conformação Proteica , Coelhos , Homologia de Sequência de Aminoácidos , Homologia Estrutural de ProteínaRESUMO
Cyclotides, a family of disulfide-rich mini-proteins, show a wide range of biological activities, making them interesting targets for pharmaceutical and agrochemical applications, but little is known about their natural function and the events that trigger their expression. An investigation of nutritional variations and irradiation during a batch process involving plant cell cultures has been performed, using the native African medical herb, Oldenlandia affinis, as a model plant. The results demonstrated the biosynthesis of kalata B1, the main cyclotide in O. affinis, in a combined growth/nongrowth-associated pattern. The highest concentration, 0.37 mg g(-1) dry weight, was accumulated in irradiated cells at 35 mumol m(-2) s(-1). Furthermore, 12 novel cyclotides were identified and the expression of various cyclotides compared in irradiated vs non-irradiated cultures. The results indicate that cyclotide expression varies greatly depending on physiological conditions and environmental stress. Kalata B1 is the most abundant cyclotide in plant suspension cultures, which underlies its importance as a natural defense molecule. The identification of novel cyclotides in suspension cultures, compared to whole plants, indicates that there may be more novel cyclotides to be discovered and that the genetic network regulating cyclotide expression is a very sensitive system, ready to adapt to the current environmental growth condition.
Assuntos
Ciclotídeos/biossíntese , Oldenlandia/crescimento & desenvolvimento , Oldenlandia/metabolismo , Sequência de Aminoácidos , Biomassa , Biotecnologia/métodos , Ciclotídeos/química , Ciclotídeos/classificação , Ciclotídeos/isolamento & purificação , Regulação da Expressão Gênica de Plantas , Gliceraldeído-3-Fosfato Desidrogenases/genética , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Oldenlandia/genética , Oldenlandia/efeitos da radiação , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/metabolismo , Extratos Vegetais/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
A new approach to prepare an acyclic permutant of kalata B1, a cysteine-rich plant cyclopeptide with uterotonic activity, is described. The synthetic codon-optimized cDNA sequence encoding this 29-residue peptide was cloned and fused in-frame to the His(6)-tagged thioredoxin gene in the bacterial expression vector pET-32a. The fusion protein was overexpressed in the bacterial host, Escherichia coli strain BL21 (DE3), and isolated by affinity chromatography on a metal-chelating Sepharose column. An enterokinase recognition sequence incorporated immediately upstream of the target peptide allowed the 29-residue peptide to be released without any unwanted residues upon treatment with enterokinase. This peptide was subsequently separated from the larger thioredoxin moiety by ultracentrifugation through a semipermeable membrane. Further purification was achieved using reversed-phase HPLC. Hydrogen peroxide was found to enhance the rate of enterokinase cleavage in a concentration-dependent manner. Thermal stability studies demonstrated that the recombinant acyclic kalata B1 (ac kalata) was exceptionally stable against thermal denaturation. Mass spectrometric analysis revealed that the recombinant ac kalata was obtained in a fully oxidized form, indicating a high reducing potential and a strong tendency of the 29-residue peptide to form a tightly folded structure.
Assuntos
Ciclotídeos/isolamento & purificação , Ciclotídeos/metabolismo , Melhoramento Genético/métodos , Extratos Vegetais/isolamento & purificação , Engenharia de Proteínas/métodos , Tiorredoxinas/isolamento & purificação , Tiorredoxinas/metabolismo , Fracionamento Químico/métodos , Ciclotídeos/química , Ciclotídeos/genética , Hidrocarbonetos Acíclicos/química , Hidrocarbonetos Acíclicos/isolamento & purificação , Hidrocarbonetos Acíclicos/metabolismo , Extratos Vegetais/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Tiorredoxinas/química , Tiorredoxinas/genéticaRESUMO
In recent years, the cyclotides have emerged as the largest family of naturally cyclized proteins. Cyclotides display potent cytotoxic activity that varies with the structure of the proteins, and combined with their unique structure, they represent novel cytotoxic agents. However, their mechanism of action is yet unknown. In this work we show that disruption of cell membranes plays a crucial role in the cytotoxic effect of the cyclotide cycloviolacin O2 (1), which has been isolated from Viola odorata. Cell viability and morphology studies on the human lymphoma cell line U-937 GTB showed that cells exposed to 1 displayed disintegrated cell membranes within 5 min. Functional studies on calcein-loaded HeLa cells and on liposomes showed rapid concentration-dependent release of their respective internal contents. The present results show that cyclotides have specific membrane-disrupting activity.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Ciclotídeos/farmacologia , Plantas Medicinais/química , Sequência de Aminoácidos , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Linhagem Celular Transformada , Membrana Celular/efeitos dos fármacos , Ciclotídeos/química , Ciclotídeos/isolamento & purificação , Fluoresceínas/farmacologia , Células HeLa , Humanos , Linfoma , Dados de Sequência MolecularRESUMO
Kalata peptides are isolated from an African medicinal plant, Oldenlandia affinis, an aqueous decoction of which can be ingested to accelerate uterine contraction during childbirth. The closely packed disulfide core of kalata peptides confers unusual stability against thermal, chemical, and enzymatic degradation. The molecular arrangement may hamper NMR-assisted disulfide connectivity assignment. We have combined NMR with high-resolution mass spectrometry (MS) and MS/MS of native and chemically derivatized kalata B2 to determine its amino acid sequence and disulfide connectivity. Infrared multiphoton dissociation establishes the disulfide bond linkages in kalata B2 as I-IV, II-V and III-VI.