Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 560
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 252(Pt 1): 118826, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579999

RESUMO

Nitration of allergenic proteins caused by atmospheric pollutants O3 and NO2 may enhance their allergenic potential. In the study, the influence of nitration was investigated on the allergenicity of Der p 2, which is a main allergen from house dust mites and plays an important role in allergenic rhinitis and asthma. The results reveal that nitrated Der p 2 enhanced the IgE-binding capacity, upregulated the mRNA expression and release of IL-6 and IL-8 from bronchial epithelial cells, and induced higher levels of specific-IgE, TH2 cytokines and white blood cells in mice. Besides, nitrated Der p 2 caused more severe oxidative stress and allergenic symptoms in mice. It is concluded that nitration enhanced the allergenicity of Der p 2 through not only directly inducing higher amount of specific-IgE and stronger responses of TH2 cytokines, but also indirectly aggravating allergic symptoms by oxidative stress and adjuvant-like activation airway epithelial cells. The study suggests that the contribution of nitration to the promotion in allergenicity should not be ignored when precisely assessing the risk of house dust mite allergens in real environment.


Assuntos
Antígenos de Dermatophagoides , Proteínas de Artrópodes , Animais , Antígenos de Dermatophagoides/imunologia , Proteínas de Artrópodes/imunologia , Proteínas de Artrópodes/química , Camundongos , Tirosina , Cisteína Endopeptidases/imunologia , Camundongos Endogâmicos BALB C , Humanos , Imunoglobulina E/imunologia , Alérgenos/imunologia , Feminino , Citocinas/imunologia , Citocinas/metabolismo , Estresse Oxidativo
2.
Prep Biochem Biotechnol ; 54(1): 95-102, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37167555

RESUMO

Three phase partitioning (TPP) method was effectively utilized for the extraction and purification of milk clotting protease (actinidin) from the kiwifruit pulp. The different purification parameters of TPP such as ammonium sulfate saturation, ratio of the crude kiwifruit extract to tert-butanol, and the pH value of extract were optimized. The 40% (w/v) salt saturation having 1.0:0.75 (v/v) ratio of crude kiwifruit extract to tert-butanol at 6.0 pH value exhibited 3.14 purification fold along with 142.27% recovery, and the protease was concentrated exclusively at intermediate phase (IP). This fraction showed milk-clotting activity (MCA), but there was no such activity in lower aqueous phase (AP). The enzyme molecular weight was found to be 24 kDa from Tricine SDS-PAGE analysis. Recovered protease demonstrated greater stability at pH 7.0 and temperature 50 °C. The Vmax and Km values were 121.9 U/ml and 3.2 mg/ml respectively. Its cysteine nature was demonstrated by inhibition studies. This study highlighted that the TPP is an economic and effective method for extraction and purification of actinidin from kiwifruit, and it could be used as a vegetable coagulant for cheesemaking.


Assuntos
Actinidia , Actinidia/química , terc-Butil Álcool/química , Cisteína Endopeptidases , Peptídeo Hidrolases , Extratos Vegetais
3.
Int J Antimicrob Agents ; 63(1): 107039, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981073

RESUMO

The emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) resulted in the coronavirus disease 2019 (COVID-19) pandemic. Given the advent of subvariants, there is an urgent need to develop novel drugs. The aim of this study was to find SARS-CoV-2 inhibitors from Scutellaria baicalensis Georgi targeting the proteases 3CLpro and PLpro. After screening 25 flavonoids, chrysin 7-O-ß-D-glucuronide was found to be a potent inhibitor of SARS-CoV-2 on Vero E6 cells, with half-maximal effective concentration of 8.72 µM. Surface plasmon resonance assay, site-directed mutagenesis and enzymatic activity measurements indicated that chrysin-7-O-ß-D-glucuronide inhibits SARS-CoV-2 by binding to H41 of 3CLpro, and K157 and E167 of PLpro. Hydrogen-deuterium exchange mass spectrometry analysis showed that chrysin-7-O-ß-D-glucuronide changes the conformation of PLpro. Finally, chrysin 7-O-ß-D-glucuronide was shown to have anti-inflammatory activity, mainly due to reduction of the levels of the pro-inflammatory cytokines interleukin (IL)-1ß and IL-6.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Glucuronídeos/farmacologia , Cisteína Endopeptidases/química , Inibidores de Proteases/farmacologia , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Simulação de Acoplamento Molecular
4.
Gene Ther ; 30(1-2): 51-63, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34545207

RESUMO

Genetic association between E3 ubiquitin ligase SMURF2 and colorectal cancer (CRC) has been identified, while the mechanism remains undefined. Tumor-promoting gene YY1 represents a downstream factor of SMURF2. The study was designed to evaluate the effect of SMURF2 on the malignant phenotypes of CRC cells and the underlying mechanism. The expression pattern of SMURF2 and YY1 in CRC clinical tissues and cells was characterized by immunohistochemistry (IHC) and Western blot. Gain- and loss-of-function experiments were conducted to assess the effect of SMURF2 and YY1 on the behaviors of CRC cells. After bioinformatics analysis, the relationship between YY1 and SENP1 as well as between SENP1 and c-myc was determined by luciferase reporter and ChIP assays. Rescue experiments were performed to show their involvement during CRC progression. Finally, in vivo models of tumor growth were established for validation. SMURF2 was lowly expressed and YY1 was highly expressed in CRC tissues and cells. YY1 overexpression resulted in promotion of CRC cell proliferation, migration, and invasion, which could be reversed by SMURF2. Furthermore, SMURF2 could induce ubiquitination-mediated degradation of YY1, which bound to the SENP1 promoter and upregulated SENP1 expression, leading to enhancement of c-myc expression. The in vivo data revealed the suppressive role of SMURF2 gain-of-function in tumor growth through downregulation of YY1, SENP1, or c-myc. Altogether, our data demonstrate the antitumor activity of SMURF2 in CRC and the anti-tumor mechanism associated with degradation of YY1 and downregulation of SENP1/c-myc.


Assuntos
Neoplasias Colorretais , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proliferação de Células/genética , Regulação para Baixo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
5.
Planta Med ; 89(11): 1074-1086, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35598603

RESUMO

Periodontal diseases are a global oral health problem affecting almost 10% of the global population. Porphyromonas gingivalis is one of the main bacteria involved in the initiation and progression of inflammatory processes as a result of the action of the cysteine proteases lysin- and arginine-gingipain. Surelease/polycarbophil microparticles containing a lyophilized proanthocyanidin-enriched fraction from the rhizomes of Limonium brasiliense, traditionally named "baicuru" (ethyl acetate fraction), were manufactured. The ethyl acetate fraction was characterized by UHPLC by the presence of samarangenins A and B (12.10 ± 0.07 and 21.05 ± 0.44%, respectively) and epigallocatechin-3-O-gallate (13.44 ± 0.27%). Physiochemical aspects of Surelease/polycarbophil microparticles were characterized concerning particle size, zeta potential, entrapment efficiency, ethyl acetate fraction release, and mucoadhesion. Additionally, the presence of the ethyl acetate fraction-loaded microparticles was performed concerning potential influence on viability of human buccal KB cells, P. gingivalis adhesion to KB cells, gingipain activity, and P. gingivalis biofilm formation. In general, all Surelease/polycarbophil microparticles tested showed strong adhesion to porcine cheek mucosa (93.1 ± 4.2% in a 30-min test), associated with a prolonged release of the ethyl acetate fraction (up to 16.5 ± 0.8% in 24 h). Preincubation of KB cells with Surelease/polycarbophil microparticles (25 µg/mL) resulted in an up to 93 ± 2% reduced infection rate by P. gingivalis. Decreased activity of the P. gingivalis-specific virulence factors lysin- and arginine-gingipain proteases by Surelease/polycarbophil microparticles was confirmed. Surelease/polycarbophil microparticles decreased biofilm formation of P. gingivalis (97 ± 2% at 60 µg/mL). Results from this study prove the promising activity of Surelease/polycarbophil microparticles containing ethyl acetate fraction microparticles as a prophylaxis strategy to prevent the recurrence of P. gingivalis.


Assuntos
Plumbaginaceae , Proantocianidinas , Humanos , Animais , Suínos , Cisteína Endopeptidases Gingipaínas , Porphyromonas gingivalis , Adesinas Bacterianas , Proantocianidinas/farmacologia , Cisteína Endopeptidases , Plumbaginaceae/química
6.
Cancer Gene Ther ; 30(5): 683-693, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36575317

RESUMO

Glioma is a primary brain tumor with limited treatment approaches and glioblastoma stem cells (GSCs) are manifested with the self-renewal capability and high tumorigenic capacity. This study was performed to investigate the regulatory effect of the SUMO-specific protease 1 (SENP1)/methyltransferase-like 3 (METTL3)/MYC axis on the self-renewal of GSCs mediated by transcription factor Yin Yang 1 (YY1). Following bioinformatics analysis and clinical and cellular experiments, we found that YY1 was highly expressed in GBM tissues and cells, while silencing its expression reduced the self-renewal ability of GSCs. Functionally, YY1 promoted the transcriptional expression of SENP1 by binding to the promoter region of SENP1, while the deSUMOase SENP1 facilitated the methylase activity of m6A through deSUMOylation of the methylase METTL3, thereby promoting the m6A modification of MYC mRNA via METL3 and promoting the expression of MYC. A nude mouse xenograft model of GBM was also constructed to examine the tumorigenicity of GSCs. The obtained findings demonstrated that YY1 promoted tumorigenicity of GSCs by promoting the expression of MYC in vivo. Conclusively, YY1 can transcriptionally upregulate the SUMOylase SENP1 and enhance the methylase activity of METTL3, resulting in the increased m6A modification level of MYC mRNA, thereby promoting the self-renewal of GSCs.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Humanos , Glioblastoma/patologia , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo , Peptídeo Hidrolases/metabolismo , Células-Tronco Neoplásicas/patologia , RNA Mensageiro/metabolismo , Neoplasias Encefálicas/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Metiltransferases/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo
7.
Acta Pharmacol Sin ; 44(3): 561-572, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35986213

RESUMO

Nitidine chloride (NC) is a standard active component from the traditional Chinese medicine Zanthoxylum nitidum (Roxb.) DC. (ZN). NC has shown a variety of pharmacological activities including anti-tumor activity. As a number of anti-tumor drugs cause cardiotoxicity, herein we investigated whether NC exerted a cardiotoxic effect and the underlying mechanism. Aqueous extract of ZN (ZNE) was intraperitoneally injected into rats, while NC was injected into beagles and mice once daily for 4 weeks. Cardiac function was assessed using echocardiography. We showed that both ZNE administered in rats and NC administered in mice induced dose-dependent cardiac hypertrophy and dysfunction, whereas administration of NC at the middle and high dose caused death in Beagles. Consistently, we observed a reduction of cardiac autophagy levels in NC-treated mice and neonatal mouse cardiomyocytes. Furthermore, we demonstrated that autophagy-related 4B cysteine peptidase (ATG4B) may be a potential target of NC, since overexpression of ATG4B reversed the cardiac hypertrophy and reduced autophagy levels observed in NC-treated mice. We conclude that NC induces cardiac hypertrophy via ATG4B-mediated downregulation of autophagy in mice. Thus, this study provides guidance for the safe clinical application of ZN and the use of NC as an anti-tumor drug.


Assuntos
Cardiomegalia , Cisteína Endopeptidases , Animais , Cães , Camundongos , Ratos , Autofagia , Benzofenantridinas/farmacologia , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Peptídeo Hidrolases/efeitos dos fármacos , Cisteína Endopeptidases/efeitos dos fármacos
8.
Molecules ; 27(20)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36296552

RESUMO

The tracing of an alternative drug, Phytochemicals is a promising approach to the viral threats that have emerged over the past two years. Across the world, herbal medicine is a better solution against anti-viral diseases during pandemic periods. Goniothalamus wightii is an herbal plant, which has diverse bioactive compounds with anticancer, antioxidant, and anti-viral properties. The aim of the study was to isolate the compound by chromatography studies and functionalization by FT-IR, LC-MS, and NMR (C-NMR, H-NMR). As a result, the current work focuses on whether (S)-Goniathalamin and its analogue could act as natural anti-viral molecules for multiple target proteins viz., MPro, RdRp, and SPro, which are required for SARS-CoV-2 infection. Overall, 954 compounds were examined and the molecular-docking studies were performed on the maestro platform of Schrodinger software. Molecular-dynamics simulation studies were performed on two complex major compounds to confirm their affinity across 150 simulations. This research suggests that plant-based drugs have high levels of antiviral properties against coronavirus. However, more research is needed to verify its antiviral properties.


Assuntos
Tratamento Farmacológico da COVID-19 , Goniothalamus , Humanos , SARS-CoV-2 , Proteases 3C de Coronavírus , Antioxidantes , Espectroscopia de Infravermelho com Transformada de Fourier , Cisteína Endopeptidases/química , Antivirais/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , RNA Polimerase Dependente de RNA
9.
J Nat Prod ; 85(10): 2340-2350, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36098617

RESUMO

The current COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) created a global health crisis. The ability of vaccines to protect immunocompromised individuals and from emerging new strains are major concerns. Hence antiviral drugs against SARS-CoV-2 are essential. The SARS-CoV-2 main protease Mpro is vital for replication and an important target for antivirals. Using CMap analysis and docking studies, withaferin A (wifA) and withanone (win), two natural products from the medicinal herb Withania somnifera (ashwagandha), were identified as promising candidates that can covalently inhibit the viral protease Mpro. Cell culture, enzymatic, LC-MS/MS, computational, and equilibrium dialysis based assays were performed. DFT calculations indicated that wifA and win can form stable adducts with thiols. The cytotoxicity of Mpro was significantly reduced by wifA and win. Both wifA and win were found to irreversibly inhibit 0.5 µM Mpro with IC50 values of 0.54 and 1.8 µM, respectively. LC-MS/MS analysis revealed covalent adduct formation with wifA at cysteines 145 and 300 of Mpro. The natural products wifA and win can irreversibly inhibit the SARS-CoV-2 main protease Mpro. Based on the work presented here we propose that both wifA and win have the potential to be safely used as preventative and therapeutic interventions for COVID-19.


Assuntos
Produtos Biológicos , Tratamento Farmacológico da COVID-19 , Plantas Medicinais , Withania , Humanos , Produtos Biológicos/farmacologia , Cromatografia Líquida , Cisteína Endopeptidases , Simulação de Acoplamento Molecular , Pandemias , Inibidores de Proteases/farmacologia , SARS-CoV-2 , Espectrometria de Massas em Tandem , Proteínas não Estruturais Virais
10.
Anal Methods ; 14(36): 3552-3561, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36039658

RESUMO

The actinidin proteinase family has a striking sequence diversity; isoelectric points range from 3.9 to 9.3. The biological drive for this variation is thought to be actinidin's role as a defense-related protein. In this study we map mutations in the primary sequence onto the 3D structure of the protein and show that the region with the highest diversity is close to the substrate binding groove. Non-conservative substitutions in the active site determine substrate preference and therefore create problems for quantification of actinidin activity. Here we use a peptide substrate library to compare two actinidin isoforms, one from the kiwiberry cultivar 'Hortgem Tahi' (Actinidia arguta), and the other from the familiar kiwifruit cultivar 'Hayward' (Actinidia chinensis var. deliciosa). Among 360 octamer substrates we find one substrate (RVAAGSPI) with the useful property of being readily cleaved by all the functionally active actinidins in a set of A. arguta and A. chinensis var. deliciosa isoforms. In addition, we find that two substrates (LPPKSQPP & ILRDKDNT) have the ability to differentiate different isoforms from a single fruit. We compare actinidins from 'Hayward' and A. arguta for their ability to digest the allergenic gluten peptide (PFPQPQLPY) but find the peptide to be indigestible by all sources of actinidin. The ability to inactivate salivary amylase is shown to be a common trait in Actinidia cultivars due to proteolysis by actinidin and is particularly strong in 'Hortgem Tahi'. A mixture of 10% 'Hortgem Tahi' extract with 90% saliva inactivates 100% of amylase activity within 5 minutes. Conceivably, 'Hortgem Tahi' might lower the glycaemic response in a meal rich in cooked starch.


Assuntos
Actinidia , Actinidia/química , Actinidia/metabolismo , Amilases , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Glutens , Extratos Vegetais , Isoformas de Proteínas/genética , Amido
11.
Fitoterapia ; 162: 105261, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35944753

RESUMO

Streptococcus pneumoniae (S. pneumoniae) is a major Gram-positive opportunistic pathogen that causes pneumonia, bacteremia, and other fatal infections. This bacterium is responsible for more deaths than any other single pathogen in the world. Inexplicably, these symptoms persist despite the administration of effective antibiotics. Targeting pneumolysin (PLY) and sortase A (SrtA), the major virulence factors of S. pneumoniae, this study uncovered a novel resistance mechanism to S. pneumoniae infection. Using protein phenotype assays, we determined that the small molecule inhibitor alnustone is a potent drug that inhibits both PLY and SrtA. As essential virulence factors of S. pneumoniae, PLY and SrtA play a significant role in the occurrence of infection. Furthermore, evaluation using PLY-mediated hemolysis assay demonstrated alunstone had the potential to interrupt the haemolytic activity of PLY with treatment alunstone (4 µg/ml). Co-incubation of S. pneumoniae D39 SrtA with small-molecule inhibitors decreases cell wall-bound Nan A (pneumococcal-anchored surface protein SrtA), inhibits biofilm formation, and reduces biomass significantly. The protective effect of invasive pneumococcal disease (IPD) on murine S. pneumoniae was demonstrated further. Our study proposes a comprehensive bacteriostatic mechanism for S. pneumoniae and highlights the significant translational potential of targeting both PLY and SrtA to prevent pneumococcal infections. Our findings indicate that the antibacterial strategy of directly targeting PLY and SrtA with alnustone is a promising treatment option for S. pneumoniae and that alnustone is a potent inhibitor of PLY and SrtA.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Aminoaciltransferases , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias , Cisteína Endopeptidases , Hemólise , Camundongos , Estrutura Molecular , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/microbiologia , Estreptolisinas , Virulência , Fatores de Virulência/farmacologia , Fatores de Virulência/uso terapêutico
12.
Molecules ; 27(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35807545

RESUMO

Coming into the second year of the pandemic, the acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants continue to be a serious health hazard globally. A surge in the omicron wave, despite the discovery of the vaccines, has shifted the attention of research towards the discovery and use of bioactive compounds, being potential inhibitors of the viral structural proteins. The present study aimed at the green synthesis of zinc oxide (ZnO) nanoparticles with seed extracts of Nigella sativa and Pimpinella anisum-loaded nanostructured oil carriers (NLC)-using a mixture of olive and black seed essential oils. The synthesized ZnO NLC were extensively characterized. In addition, the constituent compounds in ZnO NLC were investigated as a potential inhibitor for the SARS-CoV-2 main protease (3CLpro or Mpro) where 27 bioactive constituents, along with ZnO in the nanostructure, were subjected to molecular docking studies. The resultant high-score compounds were further validated by molecular dynamics simulation. The study optimized the compounds dithymoquinone, δ-hederin, oleuropein, and zinc oxide with high docking energy scores (ranging from -7.9 to -9.9 kcal/mol). The RMSD and RMSF data that ensued also mirrored these results for the stability of proteins and ligands. RMSD and RMSF data showed no conformational change in the protein during the MD simulation. Histograms of every simulation trajectory explained the ligand properties and ligand-protein contacts. Nevertheless, further experimental investigations and validation of the selected candidates are imperative to take forward the applicability of the nanostructure as a potent inhibitor of COVID-19 (Coronavirus Disease 2019) for clinical trials.


Assuntos
Tratamento Farmacológico da COVID-19 , Nanoestruturas , Nigella sativa , Pimpinella , Óxido de Zinco , Cisteína Endopeptidases/química , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Nigella sativa/metabolismo , Peptídeo Hidrolases/metabolismo , Extratos Vegetais/farmacologia , Inibidores de Proteases/química , SARS-CoV-2 , Sementes/metabolismo , Proteínas não Estruturais Virais/metabolismo , Óxido de Zinco/farmacologia
13.
Zhongguo Zhong Yao Za Zhi ; 47(12): 3312-3319, 2022 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-35851125

RESUMO

The effect of paeoniflorin on apoptosis and cell cycle in human B-cell acute lymphoblastic leukemia(B-ALL) and its underlying mechanism were investigated in this study. Nalm-6 and SUP-B15 cells were cultured in vitro and divided into control group(0 µg·mL~(-1)) and experimental groups(200, 400, and 800 µg·mL~(-1) paeoniflorin). Cell counting kit-8(CCK-8) was used to measure the viability of Nalm-6 and SUP-B15 cells, and cell apoptosis and cell cycle distribution were analyzed by flow cytometry. Western blot was used to detect the protein levels of cleaved caspase-3, cleaved poly(ADP-ribose) polymerase(cleaved PARP), c-Myc, and small ubiquitin-like modifier-specific protease 1(SENP1). The mRNA levels of c-Myc and SENP1 in acute lymphoblastic leukemia(ALL) patients were analyzed based on the Oncomine database. AutoDock was used for molecular docking to analyze the interaction of paeoniflorin with c-Myc and SENP1 proteins. RESULTS:: showed that paeoniflorin inhibited the viability of Nalm-6 and SUP-B15 cells in concentration and time-dependent manners. Compared with the control group, paeoniflorin significantly up-regulated the expression of apoptosis-related proteins cleaved caspase-3 and cleaved PARP to induce apoptosis, evidently increased the proportion of G_2/M phase cells and induced G_2/M phase arrest, and obviously down-regulated the expression of c-Myc and SENP1 proteins in Nalm-6 and SUP-B15 cells. The mRNA levels of c-Myc and SENP1 in ALL patients were higher than those in the normal cell. Molecular docking demonstrated that paeoniflorin had good binding to c-Myc and SENP1 proteins. In summary, paeoniflorin inhibits the proliferation of Nalm-6 and SUP-B15 cells by inducing apoptosis and G_2/M phase arrest, which may be related to the down-regulation of c-Myc and SENP1 proteins.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Transdução de Sinais , Apoptose , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/farmacologia , Cisteína Endopeptidases/uso terapêutico , Glucosídeos , Humanos , Simulação de Acoplamento Molecular , Monoterpenos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro
14.
J Allergy Clin Immunol ; 149(1): 440-444.e2, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34118248

RESUMO

BACKGROUND: Observational studies have yielded inconsistent findings for the relation between vitamin D level and total IgE or allergic sensitization. OBJECTIVE: To determine whether vitamin D supplementation reduces levels of total IgE and IgE to each of 2 common indoor allergens in children with asthma and low vitamin D levels. METHODS: Total IgE, IgE to Dermatophagoides pteronyssinus, and IgE to Blattella germanica were measured at the randomization and exit visits for 174 participants in the Vitamin D Kids Asthma Study, a multicenter, double-blind, randomized placebo-controlled trial of vitamin D3 supplementation (4000 IU/d) to prevent severe exacerbations in children with persistent asthma and vitamin D levels less than 30 ng/mL. Multivariable linear regression was used for the analysis of the effect of vitamin D supplementation on change in each IgE measure. RESULTS: Participants were followed for an average of 316 days. At the exit visit, more subjects in the vitamin D arm achieved a vitamin D level equal to or more than 30 ng/mL compared with those in the placebo arm (87% vs 30%; P < .001). In a multivariable analysis, vitamin D3 supplementation had no significant effect on change in total IgE, IgE to Dermatophagoides pteronyssinus, or IgE to Blattella germanica between the exit and randomization visits (eg, for log10 total IgE, ß = 0.007; 95% CI, -0.061 to 0.074; P = .85). CONCLUSIONS: Vitamin D supplementation, compared with placebo, has no significant effect on serum levels of total IgE, IgE to dust mite, or IgE to cockroach in children with asthma and low vitamin D levels.


Assuntos
Alérgenos/imunologia , Antígenos de Dermatophagoides/imunologia , Proteínas de Artrópodes/imunologia , Asma/tratamento farmacológico , Cisteína Endopeptidases/imunologia , Imunoglobulina E/sangue , Vitamina D/uso terapêutico , Vitaminas/uso terapêutico , Animais , Asma/sangue , Asma/imunologia , Criança , Suplementos Nutricionais , Método Duplo-Cego , Feminino , Humanos , Masculino
15.
J Biomol Struct Dyn ; 40(15): 6755-6770, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33618628

RESUMO

Eventhough the development of vaccine against COVID-19 pandemic is progressing in different part of the world a well-defined treatment plan is not yet developed. Therefore, we investigate the inhibitory activity of a group of dietary bioactive flavonoids against SARS-CoV-2 main protease (Mpro), which are identified as one of the potential targets in the drug discovery process of COVID-19. After the initial virtual screening of a number of bioactive flavonoids, the binding affinity of three compounds - Naringin, Naringenin and Amentoflavone - at the active site of Mpro was investigated through MD Simulations, MM-PBSA and DFT Binding Energy calculations. From the MD trajectory analysis, Amentoflavone and Naringin showed consistent protein-ligand interactions with the aminoacid residues of the active site domains of Mpro. The excellent inhibitory activity of Amentoflavone and Naringin was established from its MM-PBSA binding energy values of -190.50 and -129.87 kJ/mol respectively. The MET165 residue of Mpro is identified as one of the key residue which contributed significantly to MM-PBSA binding energy through hydrophobic interactions. Furthermore, the DFT binding energy values of Amentoflavone (-182.92 kJ/mol) and Naringin (-160.67 kJ/mol) in active site molecular clusters with hydrogen bonds confirmed their potential inhibitory activity. These compounds are of high interest because of their wide availability, low cost, no side effects, and long history of use. We can prevent the severity of this disease for home care patients using these effective dietary supplements. We are hopeful that our results have implications for the development of prophylaxis of COVID-19.Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Cisteína Endopeptidases/química , Flavonoides/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/química
16.
Folia Microbiol (Praha) ; 67(1): 1-13, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34401996

RESUMO

Bromelia karatas L. is a plant species from the Americas. The presence of proteases in fruits of B. karatas has been reported but scarcely studied in detail. Proteolytic enzymes from Ananas comosus have displayed antifungal and antibacterial activity. Thus, novel proteases present in B. karatas may be useful as a source of compounds against microorganisms in medicine and food production. In this work, the protein extract from the fruits of B. karatas was characterized and its antibacterial activity against Salmonella Typhimurium and Listeria monocytogenes was determined for the first time. Proteins highly similar to ananain and the fruit bromelain from A. comosus were identified as the main proteases in B. karatas fruits using liquid chromatography with tandem mass spectrometry (LC-MS/MS). The soluble protein extract (SPE) at a concentration of 2.0 mg/mL displayed up to 80% of antibacterial activity against S. Typhimurium. Complete inhibition of L. monocytogenes was reached with up to 1.65 mg/mL of SPE. Plant protease extract containing ananain-like enzyme inhibited up to 90% against S. Typhimurium and up to 85% against L. monocytogenes using only 10 µg/mL of the partial-purified enzyme.


Assuntos
Antibacterianos , Bromelia , Cisteína Proteases , Listeria monocytogenes , Extratos Vegetais/farmacologia , Salmonella typhimurium , Antibacterianos/farmacologia , Bromelaínas , Bromelia/química , Cromatografia Líquida , Cisteína Endopeptidases , Listeria monocytogenes/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos , Espectrometria de Massas em Tandem
17.
Molecules ; 26(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34770920

RESUMO

Malaria is a huge global health burden with resistance to currently available medicines resulting in the search for newer antimalarial compounds from traditional medicinal plants in malaria-endemic regions. Previous studies on two chalcones, homobutein and 5-prenylbutein, present in E. abyssinica, have shown moderate antiplasmodial activity. Here, we describe results from experimental and computational investigations of four structurally related chalcones, butein, 2',4'-dihydroxy-3,4-dimethoxychalcone (DHDM), homobutein and 5-prenylbutein to elucidate possible molecular mechanisms by which these compounds clear malaria parasites. The crystal structures of butein and DHDM show that butein engages in more hydrogen bonding and consequently, more intermolecular interactions than DHDM. Rotating ring-disk electrode (RRDE) voltammetry results show that butein has a higher antioxidant activity towards the superoxide radical anion compared to DHDM. Computational docking experiments were conducted to examine the inhibitory potential of all four compounds on falcipain-2, a cysteine protease that is involved in the degradation of hemoglobin in plasmodium-infected red blood cells of the host. Overall, this work suggests butein as a better antimalarial compound due to its structural features which allow it to have greater intermolecular interactions, higher antioxidant activity and to create a covalent complex at the active site of falcipain-2.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Chalconas/química , Chalconas/farmacologia , Sítios de Ligação , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
18.
Virulence ; 12(1): 2149-2161, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34369293

RESUMO

Drug-resistant pathogenic Staphylococcus aureus (S. aureus) has severely threatened human health and arouses widespread concern. Sortase A (SrtA) is an essential virulence factor of S. aureus, which is responsible for the covalent anchoring of a variety of virulence-related proteins to the cell wall. SrtA has always been regarded as an ideal pharmacological target against S. aureus infections. In this research, we have determined that orientin, a natural compound isolated from various medicinal plants, can effectively inhibit the activity of SrtA with an IC50 of 50.44 ± 0.51 µM. We further demonstrated that orientin inhibited the binding of S. aureus to fibrinogen and diminished biofilm formation and the attaching of Staphylococcal protein A (SpA) to the cell wall in vitro. Using the fluorescence quenching assay, we demonstrated a direct interaction between orientin and SrtA. Further mechanistic studies revealed that the residues Glu-105, Thr-93, and Cys-184 were the key sites for the binding of SrtA to orientin. Importantly, we demonstrated that treatment with orientin attenuated S. aureus virulence of in vivo and protected mice against S. aureus-induced lethal pneumonia. These findings indicate that orientin is a potential drug to counter S. aureus infections and limit the development of drug resistance.


Assuntos
Aminoaciltransferases/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores , Flavonoides/farmacologia , Glucosídeos/farmacologia , Pneumonia Bacteriana , Infecções Estafilocócicas , Aminoaciltransferases/genética , Animais , Cisteína Endopeptidases , Staphylococcus aureus Resistente à Meticilina , Camundongos , Pneumonia Bacteriana/prevenção & controle , Infecções Estafilocócicas/prevenção & controle
19.
Biotechnol Lett ; 43(9): 1905-1911, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34228234

RESUMO

OBJECTIVES: To develop a simple pectin-degrading microorganism screening method. RESULTS: We developed a method utilizing the phenomenon whereby cooling an alkaline agar medium containing pectin causes the agar to become cloudy. This highly simplified method involves culturing the microorganisms on pectin-containing agar medium until colony formation is observed, and subsequent overnight cooling of the agar medium to 4 °C. Using this simple procedure, we successfully identified pectin-degrading microorganisms by observing colonies with halos on the clouded agar medium. We used alkaline pectinase and Bacillus halodurans, which is known to secrete alkaline pectinase, to establish the screening method. We demonstrated the screening of pectin-degrading microorganisms using the developed method and successfully isolated pectin-degrading microorganisms (Paenibacillus sp., Bacillus clausii, and Bacillus halodurans) from a soil sample. CONCLUSIONS: The developed method is useful for identifying pectin-degrading microorganisms.


Assuntos
Ágar/química , Bactérias/isolamento & purificação , Cisteína Endopeptidases/metabolismo , Pectinas/química , Bacillus/enzimologia , Bacillus/crescimento & desenvolvimento , Bacillus/isolamento & purificação , Bacillus clausii/enzimologia , Bacillus clausii/crescimento & desenvolvimento , Bacillus clausii/isolamento & purificação , Bactérias/enzimologia , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Técnicas Bacteriológicas , Temperatura Baixa , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Paenibacillus/enzimologia , Paenibacillus/crescimento & desenvolvimento , Paenibacillus/isolamento & purificação , Proteólise , Microbiologia do Solo
20.
Carbohydr Polym ; 269: 118334, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34294344

RESUMO

To explore the disease resistance mechanism of chitosan conjugates, chitosan-gentamicin conjugate (CS-GT) was synthesized and systematically characterized, the immune mechanism of CS-GT on Litopenaeus vannamei infected with Vibrio parahaemolyticus was further explored. The results showed that imine groups in CS-GT were effectively reduced. Dietary supplementation of CS-GT can significantly increase the survival rate, total hemocyte counts, the antioxidant and immune related enzyme activity levels of shrimps (P < 0.05), which are all dose-dependent under the experimental conditions. In addition, CS-GT can protect the hepatopancreas from invading bacteria and alleviate inflammation. Particularly, CS-GT promotes the expressions of legumain (LGMN), lysosomal acid lipase (LIPA) and Niemann-Pick type C2 (NPC2) up-regulated. It is speculated that CS-GT may stimulate the lysosome to phagocytose pathogens more effectively. In conclusions, shrimps fed with CS-GT can produce immune response via lysosome and greatly improve the disease resistance to Vibrio parahaemolyticus.


Assuntos
Quitosana/análogos & derivados , Quitosana/uso terapêutico , Gentamicinas/uso terapêutico , Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/uso terapêutico , Penaeidae/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Quitosana/síntese química , Cisteína Endopeptidases/metabolismo , Suplementos Nutricionais , Gentamicinas/síntese química , Hemócitos/metabolismo , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/microbiologia , Hepatopâncreas/patologia , Fatores Imunológicos/síntese química , Penaeidae/imunologia , Penaeidae/metabolismo , Penaeidae/microbiologia , Fagócitos/metabolismo , Esterol Esterase/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Vibrio parahaemolyticus/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA