Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 284
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Gene Ther ; 30(5): 683-693, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36575317

RESUMO

Glioma is a primary brain tumor with limited treatment approaches and glioblastoma stem cells (GSCs) are manifested with the self-renewal capability and high tumorigenic capacity. This study was performed to investigate the regulatory effect of the SUMO-specific protease 1 (SENP1)/methyltransferase-like 3 (METTL3)/MYC axis on the self-renewal of GSCs mediated by transcription factor Yin Yang 1 (YY1). Following bioinformatics analysis and clinical and cellular experiments, we found that YY1 was highly expressed in GBM tissues and cells, while silencing its expression reduced the self-renewal ability of GSCs. Functionally, YY1 promoted the transcriptional expression of SENP1 by binding to the promoter region of SENP1, while the deSUMOase SENP1 facilitated the methylase activity of m6A through deSUMOylation of the methylase METTL3, thereby promoting the m6A modification of MYC mRNA via METL3 and promoting the expression of MYC. A nude mouse xenograft model of GBM was also constructed to examine the tumorigenicity of GSCs. The obtained findings demonstrated that YY1 promoted tumorigenicity of GSCs by promoting the expression of MYC in vivo. Conclusively, YY1 can transcriptionally upregulate the SUMOylase SENP1 and enhance the methylase activity of METTL3, resulting in the increased m6A modification level of MYC mRNA, thereby promoting the self-renewal of GSCs.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Humanos , Glioblastoma/patologia , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo , Peptídeo Hidrolases/metabolismo , Células-Tronco Neoplásicas/patologia , RNA Mensageiro/metabolismo , Neoplasias Encefálicas/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Metiltransferases/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo
2.
Gene Ther ; 30(1-2): 51-63, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34545207

RESUMO

Genetic association between E3 ubiquitin ligase SMURF2 and colorectal cancer (CRC) has been identified, while the mechanism remains undefined. Tumor-promoting gene YY1 represents a downstream factor of SMURF2. The study was designed to evaluate the effect of SMURF2 on the malignant phenotypes of CRC cells and the underlying mechanism. The expression pattern of SMURF2 and YY1 in CRC clinical tissues and cells was characterized by immunohistochemistry (IHC) and Western blot. Gain- and loss-of-function experiments were conducted to assess the effect of SMURF2 and YY1 on the behaviors of CRC cells. After bioinformatics analysis, the relationship between YY1 and SENP1 as well as between SENP1 and c-myc was determined by luciferase reporter and ChIP assays. Rescue experiments were performed to show their involvement during CRC progression. Finally, in vivo models of tumor growth were established for validation. SMURF2 was lowly expressed and YY1 was highly expressed in CRC tissues and cells. YY1 overexpression resulted in promotion of CRC cell proliferation, migration, and invasion, which could be reversed by SMURF2. Furthermore, SMURF2 could induce ubiquitination-mediated degradation of YY1, which bound to the SENP1 promoter and upregulated SENP1 expression, leading to enhancement of c-myc expression. The in vivo data revealed the suppressive role of SMURF2 gain-of-function in tumor growth through downregulation of YY1, SENP1, or c-myc. Altogether, our data demonstrate the antitumor activity of SMURF2 in CRC and the anti-tumor mechanism associated with degradation of YY1 and downregulation of SENP1/c-myc.


Assuntos
Neoplasias Colorretais , Ubiquitina-Proteína Ligases , Humanos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Proliferação de Células/genética , Regulação para Baixo , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
3.
Anal Methods ; 14(36): 3552-3561, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36039658

RESUMO

The actinidin proteinase family has a striking sequence diversity; isoelectric points range from 3.9 to 9.3. The biological drive for this variation is thought to be actinidin's role as a defense-related protein. In this study we map mutations in the primary sequence onto the 3D structure of the protein and show that the region with the highest diversity is close to the substrate binding groove. Non-conservative substitutions in the active site determine substrate preference and therefore create problems for quantification of actinidin activity. Here we use a peptide substrate library to compare two actinidin isoforms, one from the kiwiberry cultivar 'Hortgem Tahi' (Actinidia arguta), and the other from the familiar kiwifruit cultivar 'Hayward' (Actinidia chinensis var. deliciosa). Among 360 octamer substrates we find one substrate (RVAAGSPI) with the useful property of being readily cleaved by all the functionally active actinidins in a set of A. arguta and A. chinensis var. deliciosa isoforms. In addition, we find that two substrates (LPPKSQPP & ILRDKDNT) have the ability to differentiate different isoforms from a single fruit. We compare actinidins from 'Hayward' and A. arguta for their ability to digest the allergenic gluten peptide (PFPQPQLPY) but find the peptide to be indigestible by all sources of actinidin. The ability to inactivate salivary amylase is shown to be a common trait in Actinidia cultivars due to proteolysis by actinidin and is particularly strong in 'Hortgem Tahi'. A mixture of 10% 'Hortgem Tahi' extract with 90% saliva inactivates 100% of amylase activity within 5 minutes. Conceivably, 'Hortgem Tahi' might lower the glycaemic response in a meal rich in cooked starch.


Assuntos
Actinidia , Actinidia/química , Actinidia/metabolismo , Amilases , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Glutens , Extratos Vegetais , Isoformas de Proteínas/genética , Amido
4.
Zhongguo Zhong Yao Za Zhi ; 47(12): 3312-3319, 2022 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-35851125

RESUMO

The effect of paeoniflorin on apoptosis and cell cycle in human B-cell acute lymphoblastic leukemia(B-ALL) and its underlying mechanism were investigated in this study. Nalm-6 and SUP-B15 cells were cultured in vitro and divided into control group(0 µg·mL~(-1)) and experimental groups(200, 400, and 800 µg·mL~(-1) paeoniflorin). Cell counting kit-8(CCK-8) was used to measure the viability of Nalm-6 and SUP-B15 cells, and cell apoptosis and cell cycle distribution were analyzed by flow cytometry. Western blot was used to detect the protein levels of cleaved caspase-3, cleaved poly(ADP-ribose) polymerase(cleaved PARP), c-Myc, and small ubiquitin-like modifier-specific protease 1(SENP1). The mRNA levels of c-Myc and SENP1 in acute lymphoblastic leukemia(ALL) patients were analyzed based on the Oncomine database. AutoDock was used for molecular docking to analyze the interaction of paeoniflorin with c-Myc and SENP1 proteins. RESULTS:: showed that paeoniflorin inhibited the viability of Nalm-6 and SUP-B15 cells in concentration and time-dependent manners. Compared with the control group, paeoniflorin significantly up-regulated the expression of apoptosis-related proteins cleaved caspase-3 and cleaved PARP to induce apoptosis, evidently increased the proportion of G_2/M phase cells and induced G_2/M phase arrest, and obviously down-regulated the expression of c-Myc and SENP1 proteins in Nalm-6 and SUP-B15 cells. The mRNA levels of c-Myc and SENP1 in ALL patients were higher than those in the normal cell. Molecular docking demonstrated that paeoniflorin had good binding to c-Myc and SENP1 proteins. In summary, paeoniflorin inhibits the proliferation of Nalm-6 and SUP-B15 cells by inducing apoptosis and G_2/M phase arrest, which may be related to the down-regulation of c-Myc and SENP1 proteins.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Transdução de Sinais , Apoptose , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/farmacologia , Cisteína Endopeptidases/uso terapêutico , Glucosídeos , Humanos , Simulação de Acoplamento Molecular , Monoterpenos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , RNA Mensageiro
5.
Molecules ; 26(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34770920

RESUMO

Malaria is a huge global health burden with resistance to currently available medicines resulting in the search for newer antimalarial compounds from traditional medicinal plants in malaria-endemic regions. Previous studies on two chalcones, homobutein and 5-prenylbutein, present in E. abyssinica, have shown moderate antiplasmodial activity. Here, we describe results from experimental and computational investigations of four structurally related chalcones, butein, 2',4'-dihydroxy-3,4-dimethoxychalcone (DHDM), homobutein and 5-prenylbutein to elucidate possible molecular mechanisms by which these compounds clear malaria parasites. The crystal structures of butein and DHDM show that butein engages in more hydrogen bonding and consequently, more intermolecular interactions than DHDM. Rotating ring-disk electrode (RRDE) voltammetry results show that butein has a higher antioxidant activity towards the superoxide radical anion compared to DHDM. Computational docking experiments were conducted to examine the inhibitory potential of all four compounds on falcipain-2, a cysteine protease that is involved in the degradation of hemoglobin in plasmodium-infected red blood cells of the host. Overall, this work suggests butein as a better antimalarial compound due to its structural features which allow it to have greater intermolecular interactions, higher antioxidant activity and to create a covalent complex at the active site of falcipain-2.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Chalconas/química , Chalconas/farmacologia , Sítios de Ligação , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Relação Dose-Resposta a Droga , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
6.
Carbohydr Polym ; 269: 118334, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34294344

RESUMO

To explore the disease resistance mechanism of chitosan conjugates, chitosan-gentamicin conjugate (CS-GT) was synthesized and systematically characterized, the immune mechanism of CS-GT on Litopenaeus vannamei infected with Vibrio parahaemolyticus was further explored. The results showed that imine groups in CS-GT were effectively reduced. Dietary supplementation of CS-GT can significantly increase the survival rate, total hemocyte counts, the antioxidant and immune related enzyme activity levels of shrimps (P < 0.05), which are all dose-dependent under the experimental conditions. In addition, CS-GT can protect the hepatopancreas from invading bacteria and alleviate inflammation. Particularly, CS-GT promotes the expressions of legumain (LGMN), lysosomal acid lipase (LIPA) and Niemann-Pick type C2 (NPC2) up-regulated. It is speculated that CS-GT may stimulate the lysosome to phagocytose pathogens more effectively. In conclusions, shrimps fed with CS-GT can produce immune response via lysosome and greatly improve the disease resistance to Vibrio parahaemolyticus.


Assuntos
Quitosana/análogos & derivados , Quitosana/uso terapêutico , Gentamicinas/uso terapêutico , Imunidade Inata/efeitos dos fármacos , Fatores Imunológicos/uso terapêutico , Penaeidae/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Quitosana/síntese química , Cisteína Endopeptidases/metabolismo , Suplementos Nutricionais , Gentamicinas/síntese química , Hemócitos/metabolismo , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/microbiologia , Hepatopâncreas/patologia , Fatores Imunológicos/síntese química , Penaeidae/imunologia , Penaeidae/metabolismo , Penaeidae/microbiologia , Fagócitos/metabolismo , Esterol Esterase/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Vibrio parahaemolyticus/patogenicidade
7.
Biotechnol Lett ; 43(9): 1905-1911, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34228234

RESUMO

OBJECTIVES: To develop a simple pectin-degrading microorganism screening method. RESULTS: We developed a method utilizing the phenomenon whereby cooling an alkaline agar medium containing pectin causes the agar to become cloudy. This highly simplified method involves culturing the microorganisms on pectin-containing agar medium until colony formation is observed, and subsequent overnight cooling of the agar medium to 4 °C. Using this simple procedure, we successfully identified pectin-degrading microorganisms by observing colonies with halos on the clouded agar medium. We used alkaline pectinase and Bacillus halodurans, which is known to secrete alkaline pectinase, to establish the screening method. We demonstrated the screening of pectin-degrading microorganisms using the developed method and successfully isolated pectin-degrading microorganisms (Paenibacillus sp., Bacillus clausii, and Bacillus halodurans) from a soil sample. CONCLUSIONS: The developed method is useful for identifying pectin-degrading microorganisms.


Assuntos
Ágar/química , Bactérias/isolamento & purificação , Cisteína Endopeptidases/metabolismo , Pectinas/química , Bacillus/enzimologia , Bacillus/crescimento & desenvolvimento , Bacillus/isolamento & purificação , Bacillus clausii/enzimologia , Bacillus clausii/crescimento & desenvolvimento , Bacillus clausii/isolamento & purificação , Bactérias/enzimologia , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Técnicas Bacteriológicas , Temperatura Baixa , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Paenibacillus/enzimologia , Paenibacillus/crescimento & desenvolvimento , Paenibacillus/isolamento & purificação , Proteólise , Microbiologia do Solo
8.
J Gen Virol ; 102(6)2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34161221

RESUMO

In recent years, several recombinant strains of potato virus Y, notably PVYNTN and PVYN:O have displaced the ordinary strain, PVYO, and emerged as the predominant strains affecting the USA potato crop. Previously we reported that recombinant strains were transmitted more efficiently than PVYO when they were acquired sequentially, regardless of acquisition order. In another recent study, we showed that PVYNTN binds preferentially to the aphid stylet over PVYO when aphids feed on a mixture of PVYO and PVYNTN. To understand the mechanism of this transmission bias as well as preferential virus binding, we separated virus and active helper component proteins (HC), mixed them in homologous and heterologous combinations, and then fed them to aphids using Parafilm sachets. Mixtures of PVYO HC with either PVYN:O or PVYNTN resulted in efficient transmission. PVYN:O HC also facilitated the transmission of PVYO and PVYNTN, albeit with reduced efficiency. PVYNTN HC failed to facilitate transmission of either PVYO or PVYN:O. When PVYO HC or PVYN:O HC was mixed with equal amounts of the two viruses, both viruses in all combinations were transmitted at high efficiencies. In contrast, no transmission occurred when combinations of viruses were mixed with PVYNTN HC. Further study evaluated transmission using serial dilutions of purified virus mixed with HCs. While PVYNTN HC only facilitated the transmission of the homologous virus, the HCs of PVYO and PVYN:O facilitated the transmission of all strains tested. This phenomenon has likely contributed to the increase in the recombinant strains affecting the USA potato crop.


Assuntos
Afídeos/virologia , Cisteína Endopeptidases/metabolismo , Doenças das Plantas/virologia , Potyvirus/genética , Potyvirus/fisiologia , Solanum tuberosum/virologia , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Animais , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Recombinação Genética , Nicotiana/virologia , Proteínas Virais/química , Proteínas Virais/genética
9.
J Pharmacol Sci ; 146(4): 249-258, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34049792

RESUMO

Momordin Ic (MI) is a natural pentacyclic triterpenoid enriched in various Chinese natural medicines such as the fruit of Kochia scoparia (L.) Schrad. Studies have shown that MI presents antitumor properties in liver and prostate cancers. However, the activity and potential mechanisms of MI against colorectal cancer remain elusive. Here, we showed that MI inhibited cell proliferation with G0/1 phase cell cycle arrest in colon cancer cells. Moreover, it was observed that MI increased apoptosis compared to untreated cells. Further investigation showed that the SUMOylation of c-Myc was enhanced by MI and led to the down-regulated protein level of c-Myc, which is involved in regulating cell proliferation and apoptosis. SENP1 has been demonstrated to be critical for the SUMOylation of c-Myc. Meanwhile, knockdown of SENP1 by siRNA abolished the effects of MI on c-Myc level and cell viability in colon cancer cells. Together, these results revealed that MI exerted an anti-tumor activity in colon cancer cells via SENP1/c-Myc signaling pathway. These finding provide an insight into the potential of MI for colon cancer therapy.


Assuntos
Apoptose/efeitos dos fármacos , Apoptose/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Cisteína Endopeptidases/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Ácido Oleanólico/análogos & derivados , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Antineoplásicos Fitogênicos , Bassia scoparia/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Neoplasias do Colo/tratamento farmacológico , Humanos , Ácido Oleanólico/isolamento & purificação , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Fitoterapia
10.
Cell Commun Signal ; 19(1): 24, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627137

RESUMO

BACKGROUND: The oncogenic transcript factor c-Maf is stabilized by the deubiquitinase Otub1 and promotes myeloma cell proliferation and confers to chemoresistance. Inhibition of the Otub1/c-Maf axis is a promising therapeutic target, but there are no inhibitors reported on this specific axis. METHODS: A luciferase assay was applied to screen potential inhibitors of Otub1/c-Maf. Annexin V staining/flow cytometry was applied to evaluate cell apoptosis. Immunoprecipitation was applied to examine protein ubiquitination and interaction. Xenograft models in nude mice were used to evaluate anti-myeloma activity of AVT. RESULTS: Acevaltrate (AVT), isolated from Valeriana glechomifolia, was identified based on a bioactive screen against the Otub1/c-Maf/luciferase system. AVT disrupts the interaction of Otub1/c-Maf thus inhibiting Otub1 activity and leading to c-Maf polyubiquitination and subsequent degradation in proteasomes. Consistently, AVT inhibits c-Maf transcriptional activity and downregulates the expression of its target genes key for myeloma growth and survival. Moreover, AVT displays potent anti-myeloma activity by triggering myeloma cell apoptosis in vitro and impairing myeloma xenograft growth in vivo but presents no marked toxicity. CONCLUSIONS: The natural product AVT inhibits the Otub1/c-Maf axis and displays potent anti-myeloma activity. Given its great safety and efficacy, AVT could be further developed for MM treatment. Video Abstract.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/uso terapêutico , Iridoides/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Proteínas Proto-Oncogênicas c-maf/antagonistas & inibidores , Animais , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cisteína Endopeptidases/genética , Inibidores de Cisteína Proteinase/farmacologia , Feminino , Humanos , Iridoides/farmacologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Proteínas Proto-Oncogênicas c-maf/genética , Proteínas Proto-Oncogênicas c-maf/metabolismo
11.
Food Chem ; 341(Pt 1): 128239, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33035854

RESUMO

This study investigated the effect of actinidin, a cysteine protease in kiwifruit, on the hydrolysis of gluten proteins and digestion-resistant gluten peptides (synthetic 33-mer peptide and pentapeptide epitopes) under static simulated gastrointestinal conditions. Actinidin efficacy in hydrolysing gliadin was compared with that of other gluten-degrading enzymes. Actinidin hydrolysed usually resistant peptide bonds adjacent to proline residues in the 33-mer peptide. The gastric degree of hydrolysis of gluten proteins was influenced by an interaction between pH and actinidin concentration (P < 0.05), whereas the pentapeptide epitopes hydrolysis was influenced only by the actinidin concentration (P < 0.05). The rate of gastric degree of hydrolysis of gliadin was greater (P < 0.05) by actinidin (0.8%/min) when compared to papain, bromelain, and one commercial enzyme (on average 0.4%/min), while all exogenous enzymes were able to hydrolyse the pentapeptide epitopes effectively. Actinidin is able to hydrolyse gluten proteins under simulated gastric conditions.


Assuntos
Actinidia/enzimologia , Biomimética , Cisteína Endopeptidases/metabolismo , Digestão , Trato Gastrointestinal/fisiologia , Glutens/metabolismo , Hidrólise
12.
Sci Rep ; 10(1): 19570, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177555

RESUMO

The Ananas comosus stem extract is a complex mixture containing various cysteine ​​proteases of the C1A subfamily, such as bromelain and ananain. This mixture used for centuries in Chinese medicine, has several potential therapeutic applications as anti-cancer, anti-inflammatory and ecchymosis degradation agent. In the present work we determined the structures of bromelain and ananain, both in their free forms and in complex with the inhibitors E64 and TLCK. These structures combined with protease-substrate complexes modeling clearly identified the Glu68 as responsible for the high discrimination of bromelain in favor of substrates with positively charged residues at P2, and unveil the reasons for its weak inhibition by cystatins and E64. Our results with purified and fully active bromelain, ananain and papain show a strong reduction of cell proliferation with MDA-MB231 and A2058 cancer cell lines at a concentration of about 1 µM, control experiments clearly emphasizing the need for proteolytic activity. In contrast, while bromelain and ananain had a strong effect on the proliferation of the OCI-LY19 and HL-60 non-adherent cell lines, papain, the archetypal member of the C1A subfamily, had none. This indicates that, in this case, sequence/structure identity beyond the active site of bromelain and ananain is more important than substrate specificity.


Assuntos
Ananas/química , Bromelaínas/química , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Bromelaínas/antagonistas & inibidores , Bromelaínas/metabolismo , Bromelaínas/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Cisteína/química , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/farmacologia , Inibidores de Cisteína Proteinase/metabolismo , Dissulfetos/química , Humanos , Leucina/análogos & derivados , Leucina/química , Leucina/metabolismo , Modelos Moleculares , Caules de Planta/química , Conformação Proteica , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato , Tosilina Clorometil Cetona/química , Tosilina Clorometil Cetona/metabolismo
13.
Sci Rep ; 10(1): 19125, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154404

RESUMO

The current outbreak of Covid-19 infection due to SARS-CoV-2, a virus from the coronavirus family, has become a major threat to human healthcare. The virus has already infected more than 44 M people and the number of deaths reported has reached more than 1.1 M which may be attributed to lack of medicine. The traditional drug discovery approach involves many years of rigorous research and development and demands for a huge investment which cannot be adopted for the ongoing pandemic infection. Rather we need a swift and cost-effective approach to inhibit and control the viral infection. With the help of computational screening approaches and by choosing appropriate chemical space, it is possible to identify lead drug-like compounds for Covid-19. In this study, we have used the Drugbank database to screen compounds against the most important viral targets namely 3C-like protease (3CLpro), papain-like protease (PLpro), RNA-dependent RNA polymerase (RdRp) and the spike (S) protein. These targets play a major role in the replication/transcription and host cell recognition, therefore, are vital for the viral reproduction and spread of infection. As the structure based computational screening approaches are more reliable, we used the crystal structures for 3C-like main protease and spike protein. For the remaining targets, we used the structures based on homology modeling. Further, we employed two scoring methods based on binding free energies implemented in AutoDock Vina and molecular mechanics-generalized Born surface area approach. Based on these results, we propose drug cocktails active against the three viral targets namely 3CLpro, PLpro and RdRp. Interestingly, one of the identified compounds in this study i.e. Baloxavir marboxil has been under clinical trial for the treatment of Covid-19 infection. In addition, we have identified a few compounds such as Phthalocyanine, Tadalafil, Lonafarnib, Nilotinib, Dihydroergotamine, R-428 which can bind to all three targets simultaneously and can serve as multi-targeting drugs. Our study also included calculation of binding energies for various compounds currently under drug trials. Among these compounds, it is found that Remdesivir binds to targets, 3CLpro and RdRp with high binding affinity. Moreover, Baricitinib and Umifenovir were found to have superior target-specific binding while Darunavir is found to be a potential multi-targeting drug. As far as we know this is the first study where the compounds from the Drugbank database are screened against four vital targets of SARS-CoV-2 and illustrates that the computational screening using a double scoring approach can yield potential drug-like compounds against Covid-19 infection.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Bases de Dados de Produtos Farmacêuticos , Avaliação Pré-Clínica de Medicamentos/métodos , Terapia de Alvo Molecular , Pneumonia Viral/tratamento farmacológico , COVID-19 , Proteases 3C de Coronavírus , Análise Custo-Benefício , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Avaliação Pré-Clínica de Medicamentos/economia , Humanos , Simulação de Acoplamento Molecular , Pandemias , Conformação Proteica , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
14.
Phys Chem Chem Phys ; 22(43): 25335-25343, 2020 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-33140777

RESUMO

Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic with very limited specific treatments. To fight COVID-19, various traditional antiviral medicines have been prescribed in China to infected patients with mild to moderate symptoms and received unexpected success in controlling the disease. However, the molecular mechanisms of how these herbal medicines interact with the SARS-CoV-2 virus that causes COVID-19 have remained elusive. It is well known that the main protease (Mpro) of SARS-CoV-2 plays an important role in maturation of many viral proteins such as the RNA-dependent RNA polymerase. Here, we explore the underlying molecular mechanisms of the computationally determined top candidate, namely, rutin which is a key component in many traditional antiviral medicines such as Lianhuaqinwen and Shuanghuanlian, for inhibiting the viral target-Mpro. Using in silico methods (docking and molecular dynamics simulations), we revealed the dynamics and energetics of rutin when interacting with the Mpro of SARS-CoV-2, suggesting that the highly hydrophilic rutin molecule can be bound inside the Mpro's pocket (active site) and possibly inhibit its biological functions. In addition, we optimized the structure of rutin and designed two more hydrophobic analogs, M1 and M2, which satisfy the rule of five for western medicines and demonstrated that they (M2 in particular) possess much stronger binding affinities to the SARS-COV-2s Mpro than rutin, due to the enhanced hydrophobic interaction as well as more hydrogen bonds. Therefore, our results provide invaluable insights into the mechanism of a ligand's binding inside the Mpro and shed light on future structure-based designs of high-potent inhibitors for SARS-CoV-2 Mpro.


Assuntos
Betacoronavirus/enzimologia , Cisteína Endopeptidases/metabolismo , Inibidores de Proteases/química , Rutina/química , Proteínas não Estruturais Virais/metabolismo , Betacoronavirus/isolamento & purificação , Sítios de Ligação , COVID-19 , Proteases 3C de Coronavírus , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/química , Medicina Herbária , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Pandemias , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Inibidores de Proteases/metabolismo , Domínios Proteicos , Rutina/metabolismo , SARS-CoV-2 , Termodinâmica , Proteínas não Estruturais Virais/química
15.
Biochem Biophys Res Commun ; 533(3): 467-473, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32977949

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by 2019 novel coronavirus (2019-nCoV) has been a crisis of global health, whereas the effective vaccines against 2019-nCoV are still under development. Alternatively, utilization of old drugs or available medicine that can suppress the viral activity or replication may provide an urgent solution to suppress the rapid spread of 2019-nCoV. Andrographolide is a highly abundant natural product of the medicinal plant, Andrographis paniculata, which has been clinically used for inflammatory diseases and anti-viral therapy. We herein demonstrate that both andrographolide and its fluorescent derivative, the nitrobenzoxadiazole-conjugated andrographolide (Andro- NBD), suppressed the main protease (Mpro) activities of 2019-nCoV and severe acute respiratory syndrome coronavirus (SARS-CoV). Moreover, Andro-NBD was shown to covalently link its fluorescence to these proteases. Further mass spectrometry (MS) analysis suggests that andrographolide formed a covalent bond with the active site Cys145 of either 2019-nCoV Mpro or SARS-CoV Mpro. Consistently, molecular modeling analysis supported the docking of andrographolide within the catalytic pockets of both viral Mpros. Considering that andrographolide is used in clinical practice with acceptable safety and its diverse pharmacological activities that could be beneficial for attenuating COVID-19 symptoms, extensive investigation of andrographolide on the suppression of 2019-nCoV as well as its application in COVID-19 therapy is suggested.


Assuntos
Cisteína Endopeptidases/metabolismo , Diterpenos/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Betacoronavirus/enzimologia , Domínio Catalítico , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Diterpenos/química , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Simulação de Acoplamento Molecular , Conformação Proteica , Multimerização Proteica , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , SARS-CoV-2 , Proteínas não Estruturais Virais/química
16.
Anticancer Agents Med Chem ; 20(17): 2082-2088, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32753025

RESUMO

BACKGROUND: Glioma is the most common tumor of the central nervous system. Hericium erinaceus, which has been reported to have a variety of pharmacological activities, is a widely used Traditional Chinese Medicine (TCM), and also a kind of delicious food accepted by the public. METHODS AND RESULTS: In this study, two new natural products, compounds 1 and 2, were isolated and identified from Hericium erinaceus. They were named erinacerin O and erinacerin P, respectively, after the structural identification, and their effects on human glioma cell line U87 were evaluated. Erinacerin P (2) exhibited obvious cytotoxicity on human glioma cell line U87. The IC50 value of 2 was 19.32µg/mL. The results showed that the apoptosis of U87 cells treated with 2 increased and the morphology of U87 cells altered significantly. Flow cytometry experiment showed that 2 could significantly increase the apoptosis rate of U87 cells and reduce DNA replication. Western blot results suggested the Bax/capase-3 pathway was involved in the U87 cell apoptosis induced by 2. CONCLUSION: Erinacerin O and Erinacerin P are novel compounds obtained from Hericium erinaceus and Erinacerin P could be a potential novel glioma inhibitor.


Assuntos
Antineoplásicos/farmacologia , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Glioma/tratamento farmacológico , Hericium/química , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Caspase 2/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Sistema Nervoso Central/metabolismo , Neoplasias do Sistema Nervoso Central/patologia , Cisteína Endopeptidases/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glioma/metabolismo , Glioma/patologia , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Proteína X Associada a bcl-2/antagonistas & inibidores , Proteína X Associada a bcl-2/metabolismo
17.
J Mol Graph Model ; 101: 107717, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32861974

RESUMO

The widespread problem of a 2019-novel coronavirus (SARS-CoV-2) strain outbreak in Wuhan, China has prompted a search for new drugs to protect against and treat this disease. It is necessary to immediately investigate this due to the mutation of the viral genome and there being no current protective vaccines or therapeutic drugs. Molecular modelling and molecular docking based on in silico screening strategies were employed to determine the potential activities of seven HIV protease (HIV-PR) inhibitors, two flu drugs, and eight natural compounds. The computational approach was carried out to discover the structural modes with a high binding affinity for these drugs on the homology structure of the Wuhan coronavirus protease (SARS-CoV-2 PR). From the theoretical calculations, all the drugs and natural compounds demonstrated various favorable binding affinities. An interesting finding was that the natural compounds tested had a higher potential binding activity with the pocket sites of SARS-CoV-2 PR compared to the groups of HIV-PR inhibitors. The binding modes of each complex illustrated between the drugs and compounds interacted with the functional group of amino acids in the binding pocket via hydrophilic, hydrophobic, and hydrogen bond interactions using the molecular dynamics simulation technique. This result supports the idea that existing protease inhibitors and natural compounds could be used to treat the new coronavirus. This report sought to provide fundamental knowledge as preliminary experimental data to propose an existing nutraceutical material against viral infection. Collectively, it is suggested that molecular modelling and molecular docking are suitable tools to search and screen for new drugs and natural compounds that can be used as future treatments for viral diseases.


Assuntos
Antivirais/farmacologia , Cisteína Endopeptidases/química , Suplementos Nutricionais , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Antivirais/química , Sítios de Ligação , Proteases 3C de Coronavírus , Cisteína Endopeptidases/metabolismo , Dioxóis/química , Dioxóis/farmacologia , Diterpenos/química , Diterpenos/farmacologia , Ligação de Hidrogênio , Lignanas/química , Lignanas/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Conformação Proteica , Proteínas não Estruturais Virais/metabolismo
18.
Sci Adv ; 6(28): eabb8097, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32691011

RESUMO

The prevalence of respiratory illness caused by the novel SARS-CoV-2 virus associated with multiple organ failures is spreading rapidly because of its contagious human-to-human transmission and inadequate globalhealth care systems. Pharmaceutical repurposing, an effective drug development technique using existing drugs, could shorten development time and reduce costs compared to those of de novo drug discovery. We carried out virtual screening of antiviral compounds targeting the spike glycoprotein (S), main protease (Mpro), and the SARS-CoV-2 receptor binding domain (RBD)-angiotensin-converting enzyme 2 (ACE2) complex of SARS-CoV-2. PC786, an antiviral polymerase inhibitor, showed enhanced binding affinity to all the targets. Furthermore, the postfusion conformation of the trimeric S protein RBD with ACE2 revealed conformational changes associated with PC786 drug binding. Exploiting immunoinformatics to identify T cell and B cell epitopes could guide future experimental studies with a higher probability of discovering appropriate vaccine candidates with fewer experiments and higher reliability.


Assuntos
Antivirais/farmacologia , Betacoronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Cisteína Endopeptidases/química , Desenho de Fármacos , Pandemias/prevenção & controle , Peptidil Dipeptidase A/química , Pneumonia Viral/prevenção & controle , Glicoproteína da Espícula de Coronavírus/química , Proteínas não Estruturais Virais/química , Enzima de Conversão de Angiotensina 2 , Benzamidas , Benzazepinas , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/metabolismo , Sítios de Ligação , COVID-19 , Proteases 3C de Coronavírus , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/imunologia , Cisteína Endopeptidases/metabolismo , Avaliação Pré-Clínica de Medicamentos , Epitopos de Linfócito B/efeitos dos fármacos , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/efeitos dos fármacos , Epitopos de Linfócito T/imunologia , Humanos , Simulação de Acoplamento Molecular , Peptidil Dipeptidase A/imunologia , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Compostos de Espiro/farmacologia , Proteínas não Estruturais Virais/imunologia , Proteínas não Estruturais Virais/metabolismo
19.
Bioorg Med Chem Lett ; 30(18): 127439, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32717373

RESUMO

Cysteine protease B (CPB) can be targeted by reversible covalent inhibitors that could serve as antileishmanial compounds. Here, sixteen dipeptidyl nitrile derivatives were synthesized, tested against CPB, and analyzed using matched molecular pairs to determine the effects of stereochemistry and p-phenyl substitution on enzyme inhibition. The compound (S)-2-(((S)-1-(4-bromophenyl)-2,2,2-trifluoroethyl)amino)-N-(1-cyanocyclopropyl)-3-phenylpropanamide (5) was the most potent CPB inhibitor (pKi = 6.82), which was also selective for human cathepsin B (pKi < 5). The inversion of the stereochemistry from S to R was more detrimental to potency when placed at the P2 position than at P3. The p-Br derivatives were more potent than the p-CH3 and p-OCH3 derivatives, probably due to intermolecular interactions with the S3 subsite.


Assuntos
Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/metabolismo , Cisteína/química , Nitrilas/síntese química , Sítios de Ligação , Catepsina B/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Modelos Moleculares , Ligação Proteica , Estereoisomerismo , Relação Estrutura-Atividade
20.
Eur J Med Chem ; 204: 112553, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32717481

RESUMO

The SUMO (small ubiquitin-related modifier)-specific proteases (SENPs) are responsible for the cleavage of SUMO from its target proteins, thus play important roles in the dynamic SUMOylation and deSUMOylation processes. SENPs are related to a variety of human diseases including cancer and represent a new class of potential therapeutic targets with mechanism of action that is likely to be different from that of current clinically used drugs. However, potent inhibitors that are selective within the SENPs family members still remain a challenge due to their high homology. In order to demonstrate the feasibility of developing selective inhibitors within the SENPs family, we chose SENP1/2/5 as representatives, aiming to identify inhibitors with selectivity among the members. Starting from a hit compound ZCL951 from virtual screening, a series of benzothiophene-2-carboxamide inhibitors were designed based on the protein structures of SENP1, 2, and 5. First, an unoccupied hydrophobic pocket was first identified which led to IC50 as low as 0.56 µM. Furthermore, the ethylacetate 77 gave both submicromolar inhibitory activity and 33-fold selectivity for SENP2 versus SENP5. They are the most potent and selective nonpeptidic inhibitor reported so far for the SENPs family, as far as we are aware. Their structure-activity relationship was also discussed.


Assuntos
Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Tiofenos/química , Tiofenos/farmacologia , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Relação Estrutura-Atividade , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA