Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS One ; 17(11): e0276598, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36327217

RESUMO

Growing evidence has indicated that the characteristics of gut microbiota are associated with acute ischemic stroke (AIS). Phlegm-heat syndrome (PHS), a specific pathological state of the AIS, is one of the common traditional Chinese syndromes of stroke. The long duration of PHS in patients with AIS could lead to poor clinical outcomes. Gut microbiota characteristics in patients with both AIS and PHS, and their relationship remains unknown. This study was designed to investigate the alterations in gut microbiota in patients with AIS and PHS through a cross-sectional study. Fecal samples were collected from 10 patients with AIS and non-PHS (ntAIS), 7 patients with AIS and PHS (tAIS), and 10 healthy controls (HC). Samples were profiled via Illumina sequencing of the 16S rRNA V3-V4. Stroke severity was assessed at admission by the National Institutes of Health Stroke Scale (NIHSS) and modified Rankin scale (mRS); their correlation with gut microbiota was investigated. The alpha-diversity of the bacterial communities was significantly higher in the fecal samples of patients with tAIS than in patients with ntAIS (Shannon index, P = 0.037). In addition, the combined tAIS and ntAIS group (tntAIS) exhibited higher microbiotic diversity when compared with HC (chao1, P = 0.019). The structure of intestinal microbiota was effectively distinguished between the tAIS and ntAIS group (ANOSIM, r = 0.337, P = 0.007). Additionally, the gut microbiota structure was significantly different between the tntAIS and HC groups (ANOSIM, r = 0.217, P = 0.005). The genera, Ruminococcaceae_ UCG_002 and Christensenellaceae_R-7_group, were implicated in the discrimination of PHS from non-PHS. The order Lactobacillales and family Lachnospiraceae were significantly negatively correlated with NIHSS and mRS at admission (P < 0.05). By contrast, the order Desulfovibrionales, families Christensenellaceae and Desulfovibrionaceae, and genera Ruminococcaceae UCG-014 and Ruminococcaceae UCG-002 were significantly positively correlated with NIHSS and mRS at admission (P < 0.05). This study is the first to profile the characteristics of gut microbiota in patients with AIS and PHS, compared with those with non-PHS. The genera, Ruminococcaceae_ UCG_002 and Christensenellaceae_R-7_group, may be objective indicators of this traditional Chinese medicine (TCM) syndrome in AIS. Furthermore, it provides a microbe-inspired biological basis for TCM syndrome differentiation.


Assuntos
Microbioma Gastrointestinal , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Temperatura Alta , Estudos Transversais , Síndrome , Clostridiales/genética
2.
Nutrients ; 14(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35631304

RESUMO

Diet is known to affect the composition and metabolite production of the human gut microbial community, which in turn is linked with the health and immune status of the host. Whole seaweeds (WH) and their extracts contain prebiotic components such as polysaccharides (PS) and polyphenols (PP). In this study, the Australian seaweeds, Phyllospora comosa, Ecklonia radiata, Ulva ohnoi, and their PS and PP extracts were assessed for potential prebiotic activities using an in vitro gut model that included fresh human faecal inoculum. 16S rRNA sequencing post gut simulation treatment revealed that the abundance of several taxa of commensal bacteria within the phylum Firmicutes linked with short chain fatty acid (SCFA) production, and gut and immune function, including the lactic acid producing order Lactobacillales and the chief butyrate-producing genera Faecalibacteria, Roseburia, Blautia, and Butyricicoccus were significantly enhanced by the inclusion of WH, PS and PP extracts. After 24 h fermentation, the abundance of total Firmicutes ranged from 57.35−81.55% in the WH, PS and PP samples, which was significantly greater (p ≤ 0.01) than the inulin (INU) polysaccharide control (32.50%) and the epigallocatechingallate (EGCG) polyphenol control (67.13%); with the exception of P. comosa PP (57.35%), which was significantly greater than INU only. However, all WH, PS and PP samples also increased the abundance of the phylum Proteobacteria; while the abundance of the phylum Actinobacteria was decreased by WH and PS samples. After 24 h incubation, the total and individual SCFAs present, including butyric, acetic and propionic acids produced by bacteria fermented with E. radiata and U. ohnoi, were significantly greater than the SCFAs identified in the INU and EGCG controls. Most notably, total SCFAs in the E. radiata PS and U. ohnoi WH samples were 227.53 and 208.68 µmol/mL, respectively, compared to only 71.05 µmol/mL in INU and 7.76 µmol/mL in the EGCG samples. This study demonstrates that whole seaweeds and their extracts have potential as functional food ingredients to support normal gut and immune function.


Assuntos
Microbioma Gastrointestinal , Alga Marinha , Austrália , Bactérias , Clostridiales/genética , Carboidratos da Dieta/metabolismo , Ácidos Graxos Voláteis/metabolismo , Humanos , Inulina/farmacologia , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Prebióticos , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
3.
Chemosphere ; 262: 128213, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33182078

RESUMO

Although phosphine is ubiquitously present in anaerobic environments, little is known regarding the microbial community dynamics and metabolic pathways associated with phosphine formation in an anaerobic digestion system. This study investigated the production of phosphine in anaerobic digestion, with results indicating that phosphine production mainly occurred during logarithmic microbial growth. Dehydrogenase and hydrogen promoted the production of phosphine, with a maximum phosphine concentration of 300 mg/m3. The abundance of Ruminococcaceae and Escherichia was observed to promote phosphine generation. The analysis of metabolic pathways based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the MetaCyc pathway database revealed the highest relative abundance of replication and repair in genetic information processing; further, the cofactor, prosthetic group, electron carrier, and vitamin biosynthesis were observed to be closely related to phosphine formation. A phylogenetic tree was reconstructed based on the neighbor-joining method. The results indicated the clear evolutionary position of the isolated Pseudescherichia sp. SFM4 strain, adjacent to Escherichia, with a stable phosphate-reducing ability for a maximum phosphine concentration of 26 mg/m3. The response surface experiment indicated that the initial optimal conditions for phosphine production by SFM4 could be achieved with nitrogen, carbon, and phosphorus loads of 6.17, 300, and 10 mg/L, respectively, at pH 7.47. These results provide comprehensive insights into the dynamic changes in the microbial structure, isolated single bacterial strain, and metabolic pathways associated with phosphine formation. They also provide information on the molecular biology associated with phosphorus recycling.


Assuntos
Reatores Biológicos/microbiologia , Clostridiales/metabolismo , Escherichia/metabolismo , Redes e Vias Metabólicas , Microbiota , Fosfinas/análise , Anaerobiose , Clostridiales/genética , Escherichia/genética , Hidrogênio/metabolismo , Redes e Vias Metabólicas/genética , Nitrogênio/metabolismo , Fosfatos/metabolismo , Fosfinas/metabolismo , Fósforo/metabolismo , Filogenia , Esgotos/microbiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-31334136

RESUMO

Oral supplemented nutraceuticals derived from food sources are surmised to improve the human health through interaction with the gastrointestinal bacteria. However, the lack of fundamental quality control and authoritative consensus (e.g., formulation, route of administration, dose, and dosage regimen) of these non-medical yet bioactive compounds are one of the main practical issues resulting in inconsistent individual responsiveness and confounded clinical outcomes of consuming nutraceuticals. Herein, we studied the dose effects of widely used food supplement, microalgae spirulina (Arthrospira platensis), on the colonic microbiota and physiological responses in healthy male Balb/c mice. Based on the analysis of 16s rDNA sequencing, compared to the saline-treated group, oral administration of spirulina once daily for 24 consecutive days altered the diversity, structure, and composition of colonic microbial community at the genus level. More importantly, the abundance of microbial taxa was markedly differentiated at the low (1.5 g/kg) and high (3.0 g/kg) dose of spirulina, among which the relative abundance of Clostridium XIVa, Desulfovibrio, Eubacterium, Barnesiella, Bacteroides, and Flavonifractor were modulated at various degrees. Evaluation of serum biomarkers in mice at the end of spirulina intervention showed reduced the oxidative stress and the blood lipid levels and increased the level of appetite controlling hormone leptin in a dose-response manner, which exhibited the significant correlation with differentially abundant microbiota taxa in the cecum. These findings provide direct evidences of dose-related modulation of gut microbiota and physiological states by spirulina, engendering its future mechanistic investigation of spirulina as potential sources of prebiotics for beneficial health effects via the interaction with gut microbiota.


Assuntos
Ceco/efeitos dos fármacos , Colo/efeitos dos fármacos , Suplementos Nutricionais/análise , Microbioma Gastrointestinal/efeitos dos fármacos , Spirulina/química , Animais , Bacteroides/classificação , Bacteroides/genética , Bacteroides/isolamento & purificação , Bacteroidetes/classificação , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Ceco/microbiologia , Clostridiales/classificação , Clostridiales/genética , Clostridiales/isolamento & purificação , Clostridium/classificação , Clostridium/genética , Clostridium/isolamento & purificação , Colo/microbiologia , Misturas Complexas/administração & dosagem , Desulfovibrio/classificação , Desulfovibrio/genética , Desulfovibrio/isolamento & purificação , Relação Dose-Resposta a Droga , Eubacterium/classificação , Eubacterium/genética , Eubacterium/isolamento & purificação , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Leptina/sangue , Lipídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos BALB C , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Biomed Res Int ; 2018: 1879168, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29682522

RESUMO

Antibiotic growth promoters have been used for decades in poultry farming as a tool to maintain bird health and improve growth performance. Global concern about the recurrent emergence and spreading of antimicrobial resistance is challenging the livestock producers to search for alternatives to feed added antibiotics. The use of phytogenic compounds appears as a feasible option due to their ability to emulate the bioactive properties of antibiotics. However, detailed description about the effects of in-feed antibiotics and alternative natural products on chicken intestinal microbiota is lacking. High-throughput sequencing of 16S rRNA gene was used to study composition of cecal microbiota in broiler chickens supplemented with either bacitracin or a blend of chestnut and quebracho tannins over a 30-day grow-out period. Both tannins and bacitracin had a significant impact on diversity of cecal microbiota. Bacitracin consistently decreased Bifidobacterium while other bacterial groups were affected only at certain times. Tannins-fed chickens showed a drastic decrease in genus Bacteroides while certain members of order Clostridiales mainly belonging to the families Ruminococcaceae and Lachnospiraceae were increased. Different members of these groups have been associated with an improvement of intestinal health and feed efficiency in poultry, suggesting that these bacteria could be associated with productive performance of birds.


Assuntos
Bacitracina/farmacologia , Galinhas/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Taninos/farmacologia , Ração Animal , Animais , Antibacterianos/farmacologia , Bacteroides/efeitos dos fármacos , Bacteroides/genética , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/genética , Clostridiales/efeitos dos fármacos , Clostridiales/genética , Intestinos/microbiologia , Microbiota/genética , RNA Ribossômico 16S/genética
6.
Int J Syst Evol Microbiol ; 67(12): 4992-4998, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29039307

RESUMO

A novel anaerobic pectinolytic bacterium (strain 14T) was isolated from human faeces. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain 14T belonged to the family Ruminococcaceae, but was located separately from known clostridial clusters within the taxon. The closest cultured relative of strain 14T was Acetivibrio cellulolyticus (89.7 % sequence similarity). Strain 14T shared ~99 % sequence similarity with cloned 16S rRNA gene sequences from uncultured bacteria derived from the human gut. Cells were Gram-stain-positive, non-motile cocci approximately 0.6 µm in diameter. Strain 14T fermented pectins from citrus peel, apple, and kiwifruit as well as carbohydrates that are constituents of pectins and hemicellulose, such as galacturonic acid, xylose, and arabinose. TEM images of strain 14T, cultured in association with plant tissues, suggested extracellular fibrolytic activity associated with the bacterial cells, forming zones of degradation in the pectin-rich regions of middle lamella. Phylogenetic and phenotypic analysis supported the differentiation of strain 14T as a novel genus in the family Ruminococcaceae. The name Monoglobus pectinilyticus gen. nov., sp. nov. is proposed; the type strain is 14T (JCM 31914T=DSM 104782T).


Assuntos
Clostridiales/classificação , Fezes/microbiologia , Pectinas/metabolismo , Filogenia , Adulto , Técnicas de Tipagem Bacteriana , Composição de Bases , Clostridiales/genética , Clostridiales/isolamento & purificação , DNA Bacteriano/genética , Feminino , Humanos , Nova Zelândia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Sci Rep ; 6: 36137, 2016 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-27796317

RESUMO

Gnotobiotic mouse model is generally used to evaluate the efficacy of gut microbiota. Sex differences of gut microbiota are acknowledged, yet the effect of recipient's gender on the bacterial colonization remains unclear. Here we inoculated male and female germ-free C57BL/6J mice with fecal bacteria from a man with short-term vegetarian and inulin-supplemented diet. We sequenced bacterial 16S rRNA genes V3-V4 region from donor's feces and recipient's colonic content. Shannon diversity index showed female recipients have higher bacteria diversity than males. Weighted UniFrac principal coordinates analysis revealed the overall structures of male recipient's gut microbiota were significantly separated from those of females, and closer to the donor. Redundancy analysis identified 46 operational taxonomic units (OTUs) differed between the sexes. The relative abundance of 13 OTUs were higher in males, such as Parabacteroides distasonis and Blautia faecis, while 33 OTUs were overrepresented in females, including Clostridium groups and Escherichia fergusonii/Shigella sonnei. Moreover, the interactions of these differential OTUs were sexually distinct. These findings demonstrated that the intestine of male and female mice preferred to accommodate microbiota differently. Therefore, it is necessary to designate the gender of gnotobiotic mice for complete evaluation of modulatory effects of gut microbiota from human feces upon diseases.


Assuntos
Dieta Vegetariana , Microbioma Gastrointestinal/efeitos dos fármacos , Inulina/farmacologia , Animais , Bactérias/genética , Bactérias/patogenicidade , Bacteroides/genética , Bacteroides/isolamento & purificação , Clostridiales/genética , Clostridiales/isolamento & purificação , Clostridium/genética , Clostridium/isolamento & purificação , Suplementos Nutricionais , Fezes/microbiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Componente Principal , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA
8.
Environ Microbiol ; 17(12): 4954-64, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26235304

RESUMO

Gut microbiota richness and stability are important parameters in host-microbe symbiosis. Diet modification, notably using dietary fibres, might be a way to restore a high richness and stability in the gut microbiota. In this work, during a 6-week nutritional trial, 19 healthy adults consumed a basal diet supplemented with 10 or 40 g dietary fibre per day for 5 days, followed by 15-day washout periods. Fecal samples were analysed by a combination of 16S rRNA gene pyrosequencing, intestinal cell genotoxicity assay, metatranscriptomics sequencing approach and short-chain fatty analysis. This short-term change in the dietary fibre level did not have the same impact for all individuals but remained significant within each individual gut microbiota at genus level. Higher microbiota richness was associated with higher microbiota stability upon increased dietary fibre intake. Increasing fibre modulated the expression of numerous microbiota metabolic pathways such as glycan metabolism, with genes encoding carbohydrate-active enzymes active on fibre or host glycans. High microbial richness was also associated with high proportions of Prevotella and Coprococcus species and high levels of caproate and valerate. This study provides new insights on the role of gut microbial richness in healthy adults upon dietary changes and host microbes' interaction.


Assuntos
Dieta/métodos , Fibras na Dieta/administração & dosagem , Ácidos Graxos/análise , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Adulto , Clostridiales/genética , Clostridiales/isolamento & purificação , Suplementos Nutricionais , Feminino , Humanos , Masculino , Prevotella/genética , Prevotella/isolamento & purificação , RNA Ribossômico 16S/genética , Simbiose , Adulto Jovem
9.
Int J Syst Evol Microbiol ; 65(10): 3522-3526, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26297478

RESUMO

A Gram-staining-positive, spore-forming, strictly anaerobic bacterium, designated strain LAM0A37T, was isolated from enrichment samples collected from a petroleum reservoir in Shengli oilfield. Cells of strain LAM0A37T were rod-shaped and motile by peritrichous flagella. The optimal temperature and pH for growth were 40 °C and 7.0­7.5, respectively. The strain did not require NaCl for growth but tolerated up to 3 % (w/v) NaCl. Strain LAM0A37T was able to utilize glucose, fructose, maltose, xylose, sorbitol, cellobiose, melibiose and melezitose as sole carbon sources. Sulfite was used as an electron acceptor. The main products of glucose fermentation were acetate and CO2. The predominant fatty acid was C16 : 0 (23.6 %). The main polar lipid profile comprised of five glycolipids, six phospholipids and two lipids. No menaquinone was detected. The genomic DNA G+C content was 27.1 ± 0.2 mol% as determined by the T m method. Analysis of the 16S rRNA gene sequence indicated that the isolate was a member of the genus Terrisporobacter, and was most closely related to Terrisporobacter glycolicus JCM 1401T and Terrisporobacter mayombei DSM 6539T with 98.3 % 16S rRNA gene sequence similarity to both. DNA­DNA hybridization values between strain LAM0A37T and type strains of Terrisporobacter glycolicus and Terrisporobacter mayombei were 45.6 ± 0.3 % and 38.3 ± 0.4 %, respectively. Based on phenotypic, phylogenetic and chemotaxonomic characteristics, strain LAM0A37T is suggested to represent a novel species of the genus Terrisporobacter, for which the name Terrisporobacter petrolearius sp. nov. is proposed. The type strain is LAM0A37T ( = ACCC 00740T = JCM 19845T).


Assuntos
Clostridiales/classificação , Campos de Petróleo e Gás/microbiologia , Petróleo/microbiologia , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , China , Clostridiales/genética , Clostridiales/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/química
10.
Sci Rep ; 5: 9253, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25787310

RESUMO

Plant extracts, or phytonutrients, are used in traditional medicine practices as supplements to enhance the immune system and gain resistance to various infectious diseases and are used in animal production as health promoting feed additives. To date, there are no studies that have assessed their mechanism of action and ability to alter mucosal immune responses in the intestine. We characterized the immunomodulatory function of six phytonutrients: anethol, carvacrol, cinnamaldehyde, eugenol, capsicum oleoresin and garlic extract. Mice were treated with each phytonutrient to assess changes to colonic gene expression and mucus production. All six phytonutrients showed variable changes in expression of innate immune genes in the colon. However only eugenol stimulated production of the inner mucus layer, a key mucosal barrier to microbes. The mechanism by which eugenol causes mucus layer thickening likely involves microbial stimulation as analysis of the intestinal microbiota composition showed eugenol treatment led to an increase in abundance of specific families within the Clostridiales order. Further, eugenol treatment confers colonization resistance to the enteric pathogen Citrobacter rodentium. These results suggest that eugenol acts to strengthen the mucosal barrier by increasing the thickness of the inner mucus layer, which protects against invading pathogens and disease.


Assuntos
Citrobacter rodentium/efeitos dos fármacos , Infecções por Enterobacteriaceae/prevenção & controle , Mucosa Intestinal/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Animais , Citrobacter rodentium/patogenicidade , Clostridiales/genética , Clostridiales/crescimento & desenvolvimento , Clostridiales/isolamento & purificação , Colo/microbiologia , Suplementos Nutricionais , Eugenol/administração & dosagem , Eugenol/química , Eugenol/farmacologia , Imunidade nas Mucosas/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Medicina Tradicional , Camundongos , Microbiota , Peptostreptococcus/genética , Peptostreptococcus/crescimento & desenvolvimento , Peptostreptococcus/isolamento & purificação , Compostos Fitoquímicos/administração & dosagem , Compostos Fitoquímicos/química , RNA Ribossômico 16S/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA