Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003320

RESUMO

Hypericum perforatum (St. John's Wort) is a medicinal plant from the Hypericaceae family. Here, we sequenced the whole chloroplast genome of H. perforatum and compared the genome variation among five Hypericum species to discover dynamic changes and elucidate the mechanisms that lead to genome rearrangements in the Hypericum chloroplast genomes. The H. perforatum chloroplast genome is 139,725 bp, exhibiting a circular quadripartite structure with two copies of inverted repeats (IRs) separating a large single-copy region and a small single-copy region. The H. perforatum chloroplast genome encodes 106 unique genes, including 73 protein-coding genes, 29 tRNAs, and 4 rRNAs. Hypericum chloroplast genomes exhibit genome rearrangement and significant variations among species. The genome size variation among the five Hypericum species was remarkably associated with the expansion or contraction of IR regions and gene losses. Three genes-trnK-UUU, infA, and rps16-were lost, and three genes-rps7, rpl23, and rpl32-were pseudogenized in Hypericum. All the Hypericum chloroplast genomes lost the two introns in clpP, the intron in rps12, and the second intron in ycf3. Hypericum chloroplast genomes contain many long repeat sequences, suggesting a role in facilitating rearrangements. Most genes, according to molecular evolution assessments, are under purifying selection.


Assuntos
Clusiaceae , Genoma de Cloroplastos , Hypericum , Hypericum/genética , Clusiaceae/genética , Sequência de Bases , Sequências Repetitivas de Ácido Nucleico , Filogenia , Evolução Molecular
2.
BMC Plant Biol ; 22(1): 135, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35321651

RESUMO

BACKGROUND: Comparative genomic analysis exhibits dynamic evolution of plastid genome (plastome) in the clusioid clade of Malpighiales, which comprise five families, including multiple inversions and gene losses. Little is known about the plastome evolution in Hypericaceae, a large family in the clade. Only the plastome of one species, Cratoxylum cochinchinense, has been published. RESULTS: We generated a complete plastome sequence for Hypericum ascyron, providing the first complete plastome from the tribe Hypericeae (Hypericaceae). The H. ascyron plastome exhibits dynamic changes in gene and intron content, structure, and sequence divergence compared to the C. cochinchinense plastome from the tribe Cratoxyleae (Hypericaceae). Transcriptome data determined the evolutionary fate of the missing plastid genes infA, rps7, rps16, rpl23, and rpl32 in H. ascyron. Putative functional transfers of infA, rps7, and rpl32 were detected to the nucleus, whereas rps16 and rpl23 were substituted by nuclear-encoded homologs. The plastid rpl32 was integrated into the nuclear-encoded SODcp gene. Our findings suggested that the transferred rpl32 had undergone subfunctionalization by duplication rather than alternative splicing. The H. ascyron plastome rearrangements involved seven inversions, at least three inverted repeat (IR) boundary shifts, which generated gene relocations and duplications. Accelerated substitution rates of plastid genes were observed in the H. ascyron plastome compared with that of C. cochinchinense plastid genes. The higher substitution rates in the accD and clpP were correlated with structural change, including a large insertion of amino acids and losses of two introns, respectively. In addition, we found evidence of positive selection of the clpP, matK, and rps3 genes in the three branches related to H. ascyron. In particular, the matK gene was repeatedly under selection within the family Hypericaceae. Selective pressure in the H. ascyron matK gene was associated with the loss of trnK-UUU and relocation into the IR region. CONCLUSIONS: The Hypericum ascyron plastome sequence provides valuable information for improving the understanding of plastome evolution among the clusioid of the Malpighiales. Evidence for intracellular gene transfer from the plastid to the nucleus was detected in the nuclear transcriptome, providing insight into the evolutionary fate of plastid genes in Hypericaceae.


Assuntos
Clusiaceae , Genomas de Plastídeos , Hypericum , Clusiaceae/genética , Evolução Molecular , Humanos , Hypericum/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA