Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 922: 171275, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428599

RESUMO

With mounting global concerns about jellyfish outbreaks, monitoring their occurrence remains challenging. Tapping into the wealth of digital data that internet users share online, which includes reports of jellyfish sightings, may provide an alternative or complement to more conventional expert-based or citizen science monitoring. Here, we explore digital footprints as a data source to monitor jellyfish outbreaks along the Israeli Mediterranean coast. We compiled jellyfish sighting data for the period 2011-2022 from multiple platforms, including leading social media platforms, searches in the Google search engine, and Wikipedia page views. Employing time series analysis, cross-correlation, and various evaluation metrics for presence/absence data, we compared weekly data from three sources: digital footprints, citizen science, and traditional expert-based field monitoring. Consistent seasonal patterns emerge across datasets, with notable correlations, particularly in jellyfish abundance. The cross-correlation between digital footprint and citizen science data exceeds >0.7, with Twitter and Instagram showing the highest correlation. Citizen science data often precedes digital footprints by up to one week. Correlation with traditional, expert-based field monitoring is limited as a result of limited data availability. Digital footprints demonstrate substantial agreement with the other data sources regarding jellyfish presence/absence and major outbreaks, especially for data from Wikipedia, Twitter, and Instagram. Overall, we highlight digital footprint data as a reliable, cost-effective tool for passive monitoring of jellyfish outbreaks, which can aid characterization in data-scarce coastal regions, including retrospective assessment. Transferring and scaling up the proposed approach should consider data accessibility as well as platform relative popularity and usage in the regions under investigation.


Assuntos
Cnidários , Cifozoários , Animais , Humanos , Israel , Estudos Retrospectivos , Surtos de Doenças
2.
Mar Environ Res ; 196: 106441, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484650

RESUMO

Scyphozoan jellyfish, known for their evolutionary position and ecological significance, are thought to exhibit relatively notable resilience to ocean acidification. However, knowledge regarding the molecular mechanisms underlying the scyphozoan jellyfish response to acidified seawater conditions is currently lacking. In this study, two independent experiments were conducted to determine the physiological and molecular responses of moon jellyfish (Aurelia coerulea) polyps to within- and trans-generational exposure to two reduced pH treatments (pH 7.8 and pH 7.6). The results revealed that the asexual reproduction of A. coerulea polyps significantly declined under acute exposure to pH 7.6 compared with that of polyps at ambient pH conditions. Transcriptomics revealed a notable upregulation of genes involved in immunity and cytoskeleton components. In contrast, genes associated with metabolism were downregulated in response to reduced pH treatments after 6 weeks of within-generational acidified conditions. However, reduced pH treatments had no significant influence on the asexual reproduction of A. coerulea polyps after exposure to acidified conditions over a total of five generations, suggesting that A. coerulea polyps may acclimate to low pH levels. Transcriptomics revealed distinct gene expression profiles between within- and trans-generational exposure groups to two reduced pH treatments. The offspring polyps of A. coerulea subjected to trans-generational acidified conditions exhibited both upregulated and downregulated expression of genes associated with metabolism. These physiological and transcriptomic characteristics of A. coerulea polyps in response to elevated CO2 levels suggest that polyps produced asexually under acidified conditions may be resilient to such conditions in the future.


Assuntos
Cnidários , Cifozoários , Animais , Água do Mar , Transcriptoma , Concentração de Íons de Hidrogênio , Cifozoários/fisiologia , Perfilação da Expressão Gênica
3.
BMC Ecol Evol ; 24(1): 37, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500049

RESUMO

BACKGROUND: The mass occurrence of scyphozoan jellyfish severely affects marine ecosystems and coastal economies, and the study of blooming jellyfish population dynamics has emerged in response. However, traditional ecological survey methods required for such research have difficulties in detecting cryptic life stages and surveying population dynamics owing to high spatiotemporal variations in their occurrence. The environmental DNA (eDNA) technique is an effective tool for overcoming these limitations. RESULTS: In this study, we investigated the biodiversity and spatial distribution characteristics of blooming jellyfish in the Bohai Sea of China using an eDNA metabarcoding approach, which covered the surface, middle, and bottom seawater layers, and sediments. Six jellyfish taxa were identified, of which Aurelia coerulea, Nemopilema nomurai, and Cyanea nozakii were the most dominant. These three blooming jellyfish presented a marked vertical distribution pattern in the offshore regions. A. coerulea was mainly distributed in the surface layer, whereas C. nozakii and N. nomurai showed a upper-middle and middle-bottom aggregation, respectively. Horizontally, A. coerulea and C. nozakii were more abundant in the inshore regions, whereas N. nomurai was mainly distributed offshore. Spearman's correlation analysis revealed a strong correlation between the eDNA of the three dominant blooming jellyfish species and temperature, salinity, and nutrients. CONCLUSIONS: Our study confirms the applicability of the eDNA approach to both biodiverstiy evaluation of blooming jellyfish and investigating their spatial distribution, and it can be used as a supplementary tool to traditional survey methods.


Assuntos
Cnidários , Venenos de Cnidários , DNA Ambiental , Cifozoários , Animais , Ecossistema , DNA Ambiental/genética , Cifozoários/genética , Biodiversidade
4.
PLoS One ; 18(12): e0295599, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38127990

RESUMO

In the pandemic of COVID-19 patients approach to the hospital for prescription, yet due to extreme line up the patient gets treatment after waiting for more than one hour. Generally, wearable devices directly measure the preliminary data of the patient stored in capturing mode. In order to store the data, the hospitals require large storage devices that make the progression of data more complex. To bridge this gap, a potent scheme is established for COVID-19 prediction based fog-cloud named Caviar Squirrel Jellyfish Search Optimization (CSJSO). Here, CSJSO is the amalgamation of CAViar Squirrel Search Algorithm (CSSA) and Jellyfish Search Optimization (JSO), where CSSA is blended by the Conditional Autoregressive Value-at-Risk (CAViar) and Squirrel Search Algorithm (SSA). This architecture comprises the healthcare IoT sensor layer, fog layer and cloud layer. In the healthcare IoT sensor layer, the routing process with the collection of patient health condition data is carried out. On the other hand, in the fog layer COVID-19 detection is performed by employing a Deep Neuro Fuzzy Network (DNFN) trained by the proposed Remora Namib Beetle JSO (RNBJSO). Here, RNBJSO is the combination of Namib Beetle Optimization (NBO), Remora Optimization Algorithm (ROA) and Jellyfish Search optimization (JSO). Finally, in the cloud layer, the detection of COVID-19 employing Deep Long Short Term Memory (Deep LSTM) trained utilizing proposed CSJSO is performed. The evaluation measures utilized for CSJSO_Deep LSTM in database-1, such as Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) observed 0.062 and 0.252 in confirmed cases. The measures employed in database-2 are accuracy, sensitivity and specificity achieved 0.925, 0.928 and 0.925 in K-set.


Assuntos
COVID-19 , Cnidários , Besouros , Cifozoários , Humanos , Animais , Computação em Nuvem , COVID-19/diagnóstico , Sciuridae
5.
Sci Rep ; 13(1): 14769, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679453

RESUMO

Drifting in large numbers, jellyfish often interfere in the operation of nearshore electrical plants, cause disturbances to marine recreational activity, encroach upon local fish populations, and impact food webs. Understanding the dynamic mechanisms behind jellyfish behavior is of importance in order to create migration models. In this work, we focus on the small-scale dynamics of jellyfish and offer a novel method to accurately track the trajectory of individual jellyfish with respect to the water current. The existing approaches for similar tasks usually involve a surface float tied to the jellyfish for location reference. This operation may induce drag on the jellyfish, thereby affecting its motion. Instead, we propose to attach an acoustic tag to the jellyfish's bell and then track its geographical location using acoustic beacons, which detect the tag's emissions, decode its ID and depth, and calculate the tag's position via time-difference-of-arrival acoustic localization. To observe the jellyfish's motion relative to the water current, we use a submerged floater that is deployed together with the released tagged jellyfish. Being Lagrangian on the horizontal plane while maintaining an on-demand depth, the floater drifts with the water current; thus, its trajectory serves as a reference for the current's velocity field. Using an acoustic modem and a hydrophone mounted to the floater, the operator from the deploying boat remotely changes the depth of the floater on-the-fly, to align it with that of the tagged jellyfish (as reported by the jellyfish's acoustic tag), thereby serving as a reference for the jellyfish's 3D motion with respect to the water current. We performed a proof-of-concept to demonstrate our approach over three jellyfish caught and tagged in Haifa Bay, and three corresponding floaters. The results present different dynamics for the three jellyfish, and show how they can move with, and even against, the water current.


Assuntos
Cnidários , Neoplasias de Células Escamosas , Cifozoários , Neoplasias Cutâneas , Animais , Tecnologia de Sensoriamento Remoto , Acústica , Eletricidade
6.
Proc Biol Sci ; 290(2007): 20230127, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37752841

RESUMO

The jellyfish Cassiopea largely cover their carbon demand via photosynthates produced by microalgal endosymbionts, but how holobiont morphology and tissue optical properties affect the light microclimate and symbiont photosynthesis in Cassiopea remain unexplored. Here, we use optical coherence tomography (OCT) to study the morphology of Cassiopea medusae at high spatial resolution. We include detailed 3D reconstructions of external micromorphology, and show the spatial distribution of endosymbionts and white granules in the bell tissue. Furthermore, we use OCT data to extract inherent optical properties from light-scattering white granules in Cassiopea, and show that granules enhance local light-availability for symbionts in close proximity. Individual granules had a scattering coefficient of µs = 200-300 cm-1, and scattering anisotropy factor of g = 0.7, while large tissue-regions filled with white granules had a lower µs = 40-100 cm-1, and g = 0.8-0.9. We combined OCT information with isotopic labelling experiments to investigate the effect of enhanced light-availability in whitish tissue regions. Endosymbionts located in whitish tissue exhibited significantly higher carbon fixation compared to symbionts in anastomosing tissue (i.e. tissue without light-scattering white granules). Our findings support previous suggestions that white granules in Cassiopea play an important role in the host modulation of the light-microenvironment.


Assuntos
Cnidários , Cifozoários , Animais , Tomografia de Coerência Óptica , Luz , Carbono
7.
Wilderness Environ Med ; 34(4): 462-472, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37550104

RESUMO

INTRODUCTION: The dermatological effects of box jellyfish envenomation among stinging victims in Thailand are not well reported, particularly concerning chronic effects. For first aid, different recommendations indicate the necessity for the removal of tentacles in life-threatening situations. This study aimed to describe the dermatological effects of box jellyfish envenomation and propose recommendations regarding first aid for victims in urgent care or life-threatening situations. METHODS: Surveillance systems and Toxic Jellyfish Networks were established to improve detection and investigation. The networks investigated all severe victims of jellyfish envenomation. A retrospective study was conducted, and victims of stinging by box jellyfish investigated from 1999 to 2021 were included. RESULTS: One hundred and twenty-four victims were recorded. The majority of victims were males (55%), tourists (69%), and Thai nationals (49%). Direct contact had more severe consequences than indirect contact. Dermatological effects included edema, erythematous caterpillar track-like rash, blistering, bullae, papular eruption, necrosis, digital gangrene, recurrent dermatitis, dermal hypersensitivity, numbness, lichenification, hyperpigmentation, keloids, and scarring. Suffering and healing continued from several weeks to many years. Victims with multiple-tentacle box jellyfish stings had papular eruptions and greater severity of skin issues. All fatally envenomed victims collapsed within a few minutes and received incorrect/no first aid. The proposed first aid for life-threatening box jellyfish stings is continuous irrigation of the wound with vinegar for at least 30 s and initiation of cardiopulmonary resuscitation if there is no respiration or heartbeat. Tentacles often detach spontaneously, and removal is not always necessary, thus saving time. CONCLUSIONS: The findings provide input for improving diagnosis and treatment guidelines.


Assuntos
Mordeduras e Picadas , Cnidários , Cubomedusas , Exantema , Cifozoários , Masculino , Animais , Humanos , Feminino , Tailândia/epidemiologia , Estudos Retrospectivos , Dor , Mordeduras e Picadas/terapia , Vesícula
8.
Sci Rep ; 13(1): 12989, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563193

RESUMO

The outbreak of jellyfish blooms poses a serious threat to human life and marine ecology. Therefore, jellyfish detection techniques have earned great interest. This paper investigates the jellyfish detection and classification algorithm based on optical images and deep learning theory. Firstly, we create a dataset comprising 11,926 images. A MSRCR underwater image enhancement algorithm with fusion is proposed. Finally, an improved YOLOv4-tiny algorithm is proposed by incorporating a CBMA module and optimizing the training method. The results demonstrate that the detection accuracy of the improved algorithm can reach 95.01%, the detection speed is 223FPS, both of which are better than the compared algorithms such as YOLOV4. In summary, our method can accurately and quickly detect jellyfish. The research in this paper lays the foundation for the development of an underwater jellyfish real-time monitoring system.


Assuntos
Cnidários , Cifozoários , Humanos , Animais , Algoritmos , Sistemas Computacionais , Aumento da Imagem
9.
PLoS One ; 18(7): e0288378, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37428796

RESUMO

We propose a model for the structure formation of jellyfish swimming based on active Brownian particles. We address the phenomena of counter-current swimming, avoidance of turbulent flow regions and foraging. We motivate corresponding mechanisms from observations of jellyfish swarming reported in the literature and incorporate them into the generic modelling framework. The model characteristics is tested in three paradigmatic flow environments.


Assuntos
Cnidários , Cifozoários , Animais , Fenômenos Biomecânicos , Física , Natação
10.
Mar Pollut Bull ; 193: 115115, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37300958

RESUMO

Nemopilema nomurai is a frequently bloomed species in the China seas. Their feeding organ has an ontogenetic change when they grow up, but whether their diet changes along with it is unclear. A 5-month study on N. nomurai was conducted in Liaodong Bay, China to clarify the dietary shift and feeding effect of N. nomurai. Fatty acid biomarkers revealed the proportion of carnivorous food in the diet of N. nomurai decreased when their bell diameter increased. The isotope data revealed a similar story with δ15N dropping which indicated a decreased trophic level. The diet composition was dominated (74 %) by zooplankton >200 µm in May and then decreased to <32 % in July. In contrast, the proportion of particulate organic matter increased from <35 % to 68 %. This study revealed a monthly shift in the diet of N. nomurai and contributed to knowledge of trophic interactions between plankton and N. nomurai.


Assuntos
Cnidários , Cifozoários , Animais , Baías , Oceanos e Mares , Dieta
11.
Elife ; 122023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37347531

RESUMO

Abrams et al. report that a simple dietary supplement is sufficient to induce appendage regeneration in jellyfish, fruit flies, and mice (Abrams et al., 2021). This conclusion is surprising because it was previously thought that flies and mice lack the capacity for regeneration after injury. We replicated the Drosophila experiments of Abrams et al. but did not observe any instances of leg regeneration. We also conclude that the "white blob" observed at the amputation site by Abrams et al. consists of bacteria and is not regenerated tissue.


Assuntos
Cnidários , Cifozoários , Animais , Camundongos , Drosophila , Amputação Cirúrgica , Suplementos Nutricionais
12.
PeerJ ; 11: e15254, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123002

RESUMO

Upside-down jellyfish are a group of benthic scyphozoans belonging to the genus Cassiopea, whose members are in symbiosis with dinoflagellates and inhabit tropical and subtropical waters. Although there are some studies of the genus in the Caribbean, these are limited. In Cuba, the group's studies are restricted to reports on taxonomic lists and, as far as we know, no one has performed any analyzes of the densities of these jellyfish in seagrass or mangrove ecosystems in Cuba. In this work, the populations of Cassiopea spp. in Jardines de la Reina National Park (JRNP) were characterized, for the first time for this Marine Protected Area and Cuba. One hundred 1m2 square frames were placed at 14 JRNP sites. For each site, the species, density, size of the individuals and abiotic factors were determined. Density and diameter comparisons were made between sites, zones and regions within the JRNP. The percentage of the benthic cover was determined and a correlation was made between density and diameter. A total of 10,803 individuals were recorded, of which 7,618 belong to Cassiopea xamachana and 3,185 belong to Cassiopea frondosa. Both species share a niche and no evident segregation was detected according to abiotic variables. Significant differences were detected in comparisons of density and size across sites and zones. Density and size in the JRNP were negatively correlated, and higher aggregations of the species were observed at lower sizes. Density mean values ranged from 2.18 to 14.52 ind. /m2 with maximum values of 79 ind. /m2. Cayo Alcatraz was the site found to have the highest density while Cachiboca was the site with the lowest density. The average bell diameter size of the individuals ranged from 9.34 to 15.31 cm for the sampled sites, with minimum and maximum values of 2.5 cm and 32.6 cm. The smallest size was recorded at Cayo Alcatraz while the largest size was reported for Boca de las Anclitas. The environmental factors evaluated showed no significant relationship with the density or diameter of Cassiopea, while the Thalassia testudinum cover was negatively correlated with Cassiopea density at all fourteen sites in the JRNP. The percentage of Cassiopea coverage was higher than those reported in the literature, with four sites exceeding 20% coverage. In general, the populations of Cassiopea spp. in the JRNP did not differ greatly, although a higher density was observed towards the eastern region of the park. It was shown for the first time for the species that density and size have a negative correlation. Future studies are required to quantify the impact of Cassiopea on coastal marine ecosystem processes, and to further determine how anthropogenic changes may be altering the function of these tropical ecosystems.


Assuntos
Cnidários , Cifozoários , Humanos , Animais , Ecossistema , Cuba , Parques Recreativos
13.
Mar Drugs ; 21(5)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37233466

RESUMO

Cassiopea andromeda (Forsskål, 1775), commonly found across the Indo-Pacific Ocean, the Red Sea, and now also in the warmest areas of the Mediterranean Sea, is a scyphozoan jellyfish that hosts autotrophic dinoflagellate symbionts (family Symbiodiniaceae). Besides supplying photosynthates to their host, these microalgae are known to produce bioactive compounds as long-chain unsaturated fatty acids, polyphenols, and pigments, including carotenoids, with antioxidant properties and other beneficial biological activities. By the present study, a fractionation method was applied on the hydroalcoholic extract from two main body parts (oral arms and umbrella) of the jellyfish holobiont to obtain an improved biochemical characterization of the obtained fractions from the two body parts. The composition of each fraction (i.e., proteins, phenols, fatty acids, and pigments) as well as the associated antioxidant activity were analyzed. The oral arms proved richer in zooxanthellae and pigments than the umbrella. The applied fractionation method was effective in separating pigments and fatty acids into a lipophilic fraction from proteins and pigment-protein complexes. Therefore, the C. andromeda-dinoflagellate holobiont might be considered as a promising natural source of multiple bioactive compounds produced through mixotrophic metabolism, which are of interest for a wide range of biotechnological applications.


Assuntos
Cnidários , Cifozoários , Animais , Cifozoários/química , Antioxidantes/farmacologia , Antioxidantes/química , Proteínas , Ácidos Graxos
14.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240317

RESUMO

Jellyfish stings pose a major threat to swimmers and fishermen worldwide. These creatures have explosive cells containing one large secretory organelle called a nematocyst in their tentacles, which contains venom used to immobilize prey. Nemopilema nomurai, a venomous jellyfish belonging to the phylum Cnidaria, produces venom (NnV) comprising various toxins known for their lethal effects on many organisms. Of these toxins, metalloproteinases (which belong to the toxic protease family) play a significant role in local symptoms such as dermatitis and anaphylaxis, as well as systemic reactions such as blood coagulation, disseminated intravascular coagulation, tissue injury, and hemorrhage. Hence, a potential metalloproteinase inhibitor (MPI) could be a promising candidate for reducing the effects of venom toxicity. For this study, we retrieved the Nemopilema nomurai venom metalloproteinase sequence (NnV-MPs) from transcriptome data and modeled its three-dimensional structure using AlphaFold2 in a Google Colab notebook. We employed a pharmacoinformatics approach to screen 39 flavonoids and identify the most potent inhibitor against NnV-MP. Previous studies have demonstrated the efficacy of flavonoids against other animal venoms. Based on our analysis, Silymarin emerged as the top inhibitor through ADMET, docking, and molecular dynamics analyses. In silico simulations provide detailed information on the toxin and ligand binding affinity. Our results demonstrate that Silymarin's strong inhibitory effect on NnV-MP is driven by hydrophobic affinity and optimal hydrogen bonding. These findings suggest that Silymarin could serve as an effective inhibitor of NnV-MP, potentially reducing the toxicity associated with jellyfish envenomation.


Assuntos
Cnidários , Venenos de Cnidários , Cifozoários , Silimarina , Toxinas Biológicas , Animais , Venenos de Cnidários/química , Cifozoários/química , Proteínas/análise , Metaloproteases/metabolismo
15.
Sci Rep ; 13(1): 5549, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37019902

RESUMO

Very little information is reported for parasites of cnidarians, therefore, the present work aimed to investigate parasitic infections in one of the most widespread jellyfish in the Mediterranean Sea, Rhizostoma pulmo. The goals were to determine prevalence and intensity of parasites in R. pulmo, identify the species involved through morphological and molecular analysis, test whether infection parameters differ in different body parts and in relation to jellyfish size. 58 individuals were collected, 100% of them infected with digenean metacercariae. Intensity varied between 18.7 ± 6.7 per individual in 0-2 cm diameter jellyfish up to 505 ± 50.6 in 14 cm ones. Morphological and molecular analyses suggest that the metacercariae belonged to the family Lepocreadiidae and could be possibly assigned to the genus Clavogalea. Prevalence values of 100% suggest that R. pulmo is an important intermediate host in the life cycle of lepocreadiids in the region. Our findings also support the hypothesis that R. pulmo is an important part in the diet of teleost fish, which are reported as definitive hosts of lepocreadiids, since trophic transmission is necessary for these parasites to complete their life cycles. Parasitological data may therefore be useful to investigate fish-jellyfish predation, integrating traditional methods such as gut contents analysis.


Assuntos
Cnidários , Doenças Parasitárias , Cifozoários , Trematódeos , Animais , Mar Mediterrâneo
16.
Toxins (Basel) ; 15(4)2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37104221

RESUMO

Jellyfish stings are the most common marine animal injuries worldwide, with approximately 150 million envenomation cases annually, and the victims may suffer from severe pain, itching, swelling, inflammation, arrhythmias, cardiac failure, or even death. Consequently, identification of effective first aid reagents for jellyfish envenoming is urgently needed. Here, we found that the polyphenol epigallocatechin-3-gallate (EGCG) markedly antagonized the hemolytic toxicity, proteolytic activity, and cardiomyocyte toxicity of the jellyfish Nemopilema nomurai venom in vitro and could prevent and treat systemic envenoming caused by N. nomurai venom in vivo. Moreover, EGCG is a natural plant active ingredient and widely used as a food additive without toxic side effects. Hence, we suppose that EGCG might be an effective antagonist against systemic envenoming induced by jellyfish venom.


Assuntos
Catequina , Venenos de Cnidários , Cifozoários , Animais , Catequina/farmacologia , Cnidários , Venenos de Cnidários/toxicidade
17.
Toxicon ; 229: 107126, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37054994

RESUMO

Jellyfish stings pose a significant threat to humans in coastal areas worldwide, with venomous jellyfish species stinging millions of individuals annually. Nemopilema nomurai is one of the largest jellyfish species, with numerous tentacles rich in nematocysts. N. nomurai venom (NnV) is a complex mixture of proteins, peptides, and small molecules that serve as both prey-capture and defense mechanisms. Yet, the molecular identity of its cardiorespiratory and neuronal toxic components of NnV has not been clearly identified yet. Here, we isolated a cardiotoxic fraction, NnTP (Nemopilema nomurai toxic peak), from NnV using chromatographic methods. In the zebrafish model, NnTP exhibited strong cardiorespiratory and moderate neurotoxic effects. LC-MS/MS analysis identified 23 toxin homologs, including toxic proteinases, ion channel toxins, and neurotoxins. The toxins demonstrated a synergistic effect on the zebrafish, leading to altered swimming behavior, hemorrhage in the cardiorespiratory region, and histopathological changes in organs such as the heart, gill, and brain. These findings provide valuable insights into the mechanisms underlying the cardiorespiratory and neurotoxic effects of NnV, which could be useful in developing therapeutic strategies for venomous jellyfish stings.


Assuntos
Cnidários , Venenos de Cnidários , Cifozoários , Toxinas Biológicas , Animais , Humanos , Venenos de Cnidários/toxicidade , Venenos de Cnidários/química , Peixe-Zebra , Cromatografia Líquida , Espectrometria de Massas em Tandem
18.
Proc Natl Acad Sci U S A ; 120(15): e2221493120, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37011192

RESUMO

Food intake is regulated by internal state. This function is mediated by hormones and neuropeptides, which are best characterized in popular model species. However, the evolutionary origins of such feeding-regulating neuropeptides are poorly understood. We used the jellyfish Cladonema to address this question. Our combined transcriptomic, behavioral, and anatomical approaches identified GLWamide as a feeding-suppressing peptide that selectively inhibits tentacle contraction in this jellyfish. In the fruit fly Drosophila, myoinhibitory peptide (MIP) is a related satiety peptide. Surprisingly, we found that GLWamide and MIP were fully interchangeable in these evolutionarily distant species for feeding suppression. Our results suggest that the satiety signaling systems of diverse animals share an ancient origin.


Assuntos
Cnidários , Neuropeptídeos , Cifozoários , Animais , Apetite , Neuropeptídeos/genética , Neuropeptídeos/química , Peptídeos , Drosophila/fisiologia
19.
Mar Drugs ; 21(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37103346

RESUMO

The wound-healing process is a significant area of interest in the medical field, and it is influenced by both external and patient-specific factors. The aim of this review paper is to highlight the proven wound-healing potential of the biocompounds found in jellyfish (such as polysaccharide compounds, collagen, collagen peptides and amino acids). There are aspects of the wound-healing process that can benefit from polysaccharides (JSPs) and collagen-based materials, as these materials have been shown to limit exposure to bacteria and promote tissue regeneration. A second demonstrated benefit of jellyfish-derived biocompounds is their immunostimulatory effects on growth factors such as (TNF-α), (IFN-γ) and (TGF), which are involved in wound healing. A third benefit of collagens and polysaccharides (JSP) is their antioxidant action. Aspects related to chronic wound care are specifically addressed, and within this general theme, molecular pathways related to tissue regeneration are explored in depth. Only distinct varieties of jellyfish that are specifically enriched in the biocompounds involved in these pathways and live in European marine habitats are presented. The advantages of jellyfish collagens over mammalian collagens are highlighted by the fact that jellyfish collagens are not considered transmitters of diseases (spongiform encephalopathy) or various allergic reactions. Jellyfish collagen extracts stimulate an immune response in vivo without inducing allergic complications. More studies are needed to explore more varieties of jellyfish that can be exploited for their biocomponents, which may be useful in wound healing.


Assuntos
Cnidários , Cifozoários , Animais , Humanos , Cnidários/metabolismo , Cicatrização , Cifozoários/química , Colágeno/química , Antioxidantes/farmacologia , Mamíferos/metabolismo
20.
Mar Pollut Bull ; 188: 114682, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36860023

RESUMO

Plastic pollution is one of the major global problems existing now-a-days and has become a cause of serious concern in coastal and marine ecosystems. Increased accumulation of plastics in the aquatic environment by anthropogenic sources results the alteration of the aquatic ecosystem and its functioning. Several variables have an impact on biodegradation, ranging from microbe species to polymer type, physicochemical qualities, and environmental circumstances. The present study was attempted to investigate polyethylene degradation ability of nematocyst protein extracted from the lyophilized nematocyst samples using three different mediums such as distilled water, Phosphate buffered saline (PBS), and seawater. The biodeteriorization potential of nematocyst protein and its interaction with the polyethylene was studied using ATR-IR, phase contrast bright-dark field microscope, and scanning electron microscopic studies. The results uncover the biodeteriorization of polyethylene by jellyfish nematocyst protein without any external physicochemical process and provide evidence for further research.


Assuntos
Cnidários , Cifozoários , Animais , Polietileno , Ecossistema , Nematocisto , Plásticos , Biodegradação Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA