Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38430558

RESUMO

To investigate effects of inorganic or complexed trace mineral source (zinc, copper, manganese, and cobalt) on receiving period performance and morbidity, crossbred beef heifer calves (n = 287) arriving on three delivery dates were used in a 42-d receiving trial. Heifers were processed after arrival, stratified by day -1 body weights (BW) and allocated randomly to eight pens (11 to 13 heifers/pen, 24 pens total). Within truckload, pens were assigned randomly to dietary treatment (n = 12 pens/treatment). Heifers were housed on 0.42-ha grass paddocks, provided ad libitum bermudagrass hay and provided dietary treatments in grain supplements fed daily. Treatments consisted of supplemental zinc (360 mg/d), copper (125 mg/d), manganese (200 mg/d), and cobalt (12 mg/d) from complexed (Zinpro Availa 4, Zinpro Corp. Eden Prairie, MN) or inorganic sources (sulfates). Heifers were observed daily for clinical bovine respiratory disease (BRD). If presenting BRD symptoms and rectal temperature ≥ 40 °C, heifers were deemed morbid and treated with antibiotics. Six heifers/pen were bled to determine serum haptoglobin concentrations on days 0, 14, and 28. Liver biopsies were taken on day 5 ±â€…2 and 43 ±â€…1 from three calves selected randomly from each pen for mineral status comparisons. Statistical analyses were performed using the MIXED, GLIMMIX, and repeated measures procedures of SAS 9.4 with truckload as a random effect and pen within truckload specified as subject. There tended to be a treatment by day interaction for BW (P = 0.07). Heifer BW did not differ on day 0 (P = 0.82) and day 14 (P = 0.36), but heifers fed complexed trace minerals had greater BW on day 28 (P = 0.04) and day 42 (P = 0.05). Overall average daily gains were greater for heifers fed complexed trace minerals (P = 0.05; 0.78 vs. 0.70 kg, SE = 0.03). Heifers supplemented with inorganic trace minerals had greater BRD incidence (P = 0.03; 58 vs. 46%, SE = 3.6). Haptoglobin concentrations decreased throughout the trial (P < 0.001), and heifers fed complexed trace minerals tended to have a decrease in haptoglobin concentrations (P = 0.07). The source of trace mineral supplementation had no effect (P ≥ 0.20) on liver mineral concentrations and there were no treatment × day interactions (P ≥ 0.35). In conclusion, supplementing diets for the first 42 d after arrival with complexed trace mineral sources improved heifer performance as compared to heifers supplemented with inorganic trace minerals.


Issues associated with health and management of newly received cattle continue to pose significant animal welfare and economic challenges for the beef industry. Diagnosis of bovine respiratory disease, accompanied with poor growth performance, can be addressed by nutritional intervention in receiving cattle. Trace mineral inclusion in receiving rations is vital to calf performance. There are numerous sources of trace mineral supplements that exist commercially for cattle and their effects on immune function, growth, and performance measures were evaluated. Organic trace mineral supplements are being used in replacement of inorganic salts due to potentially greater bioavailability and functionality. An organic source that is commonly used are amino acid complexes. Replacing inorganic sources with complexed sources of trace minerals (zinc, copper, manganese, and cobalt) improved growth performance and decreased sickness during the 42-d receiving study.


Assuntos
Oligoelementos , Bovinos , Animais , Feminino , Oligoelementos/farmacologia , Manganês/farmacologia , Cobre/farmacologia , Haptoglobinas/análise , Suplementos Nutricionais , Minerais/farmacologia , Zinco/farmacologia , Cobalto/farmacologia , Dieta/veterinária , Peso Corporal , Ração Animal/análise
2.
J Trace Elem Med Biol ; 83: 127372, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38176318

RESUMO

INRODUCTION: Cobalt (Co) is known to interfere with iron (Fe) metabolism that is essential for differentiating male germ cells. Our aim was to study the effect of developmental chronic cobalt exposure on mouse testis through changes in iron homeostasis in adulthood. METHODS: Pregnant ICR mice were exposed to 75 mg (low dose) or 125 mg (high dose)/kg b.w. cobalt chloride (CoCl2) with drinking water for 3 days before delivery and treatment continued until postnatal day 90 of the pups. Age-matched control animals obtained regular tap water. Testes of control and Co-treated mice were processed for immunohistochemistry and inductively coupled plasma mass spectrometry. Sperm count was performed. RESULTS: Chronic CoCl2 administration resulted in significant dose-dependent Co accumulation in sera and testes of the exposed mice. Fe content also showed a significant increase in sera and testes compared to the untreated controls. Surprisingly, testes of low dose-treated mice had ∼ 2.7-fold higher Fe content compared to those exposed to the high dose. A significant dose-dependent reduction in relative testis weight by 18.8% and by 37.7% was found after treatment with low and high dose CoCl2, respectively was found. Our study demonstrated that developmental chronic exposure to CoCl2 affected cellular composition of the testis manifested by germ cell loss and low sperm count, accompanied by altered androgen response in Sertoli cells (loss of stage-specific expression of androgen receptor). A possible mechanism involved is iron accumulation in the testis that was associated with altered ferroportin-hepcidin localization in seminiferous tubules depleted in germ cells. As a protective mechanism for germ cells in condition of iron excess, ferroportin was distributed in Sertoli cells around elongating spermatids. Similar changes in expression of transferrin receptor 1 (TfR1) and divalent metal transporter 1 (DMT1) implied that both factors of testicular Fe homeostasis are closely related. Outside the seminiferous tubules, Leydig cells localized ferroportin, hepcidin, DMT1 and TfR1 thus they could be considered as a main site for iron metabolism. CONCLUSION: Our data suggest that Co exerts its effects on the testis by indirect mechanism possibly through alteration in Fe homeostasis.


Assuntos
Hepcidinas , Testículo , Gravidez , Feminino , Masculino , Camundongos , Animais , Hepcidinas/metabolismo , Camundongos Endogâmicos ICR , Sêmen/metabolismo , Cobalto/farmacologia , Cobalto/metabolismo , Ferro/metabolismo
3.
J Mater Chem B ; 11(38): 9185-9200, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37724440

RESUMO

Phototherapy has garnered worldwide attention for its minimal invasiveness, controllability, and spatial selectivity in treating cancer. One promising approach involves the use of near-infrared dye IR780, which demonstrates both photodynamic therapy (PDT) and photothermal therapy (PTT) effects under 808 nm laser irradiation. However, this hydrophobic dye's toxicity and limited tumor targeting ability severely hamper its suitability for cancer applications. Herein, a biocompatible nanoplatform CoOOH-IR780@BSA (CoIRB) is developed to efficiently deliver IR780 and provide multi-mode treatments for colon tumors. Due to the nanocarrier coating, CoIRB nanoparticles demonstrated reliable dispersion and stability, and their biotoxicity was substantially reduced for safer blood circulation, which overcame the biological barrier of IR780. The nanoplatform has also shown considerable results in phototherapy in vivo and in vitro experiments, with successful inhibition of MC38 tumor growth through intravenous administration. Additionally, the introduction of cobalt ions could induce Fenton-like reactions to activate the production of toxic hydroxyl radicals (˙OH), exerting an assisted chemodynamic therapy (CDT) effect. Notably, these nanodrugs also exhibited potential as scavengers of reductive glutathione (GSH) and hydrogen sulfide (H2S), leading to amplifying oxidative damage of reactive oxygen species (ROS). Overall, the versatile therapeutic platform, CoIRB, has opened up considerable prospects as a biotherapeutic option for combining PDT/PTT/CDT against colon cancer.


Assuntos
Neoplasias do Colo , Nanosferas , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Iodetos , Fototerapia/métodos , Cobalto/farmacologia , Neoplasias do Colo/tratamento farmacológico , Hidróxidos
4.
Int J Nanomedicine ; 18: 2359-2370, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187997

RESUMO

Introduction: Large bone abnormalities are commonly treated using distraction osteogenesis (DO), but it is not suitable for a long-term application; therefore, there is an urgent need for adjuvant therapy that can accelerate bone repair. Methods: We have synthesized mesoporous silica-coated magnetic nanoparticles doped with cobalt ions (Co-MMSNs) and assessed their capacity to quicken bone regrowth in a mouse model of DO. Furthermore, local injection of the Co-MMSNs significantly accelerated bone healing in DO, as demonstrated by X-ray imaging, micro-CT, mechanical tests, histological evaluation, and immunochemical analysis. Results: In vitro, the Co-MMSNs exhibited good biocompatibility and induced angiogenic gene expression and osteogenic development in bone mesenchymal stem cells. And the Co-MMSNs can promote bone regeneration in a rat DO model. Discussion: This study demonstrated the significant potential of Co-MMSNs to shorten the DO treatment duration and effectively reduce the incidence of complications.


Assuntos
Nanopartículas de Magnetita , Osteogênese por Distração , Camundongos , Ratos , Animais , Osteogênese por Distração/métodos , Dióxido de Silício/farmacologia , Cobalto/farmacologia , Nanopartículas de Magnetita/uso terapêutico , Osteogênese , Regeneração Óssea , Diferenciação Celular
5.
Colloids Surf B Biointerfaces ; 222: 113077, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36577341

RESUMO

Magnetic hyperthermia (MH) has been studied for almost seventy-five years, but its efficacy in clinical applications is still fiercely contested. Despite this, few magnetic nanosystems are approved for clinical usage due to their strong affinity as drug carriers. The most important condition for hyperthermia applications for successful cancer therapy is magnetic nanoparticles with a controlled heating pattern (42-46 °C) for a prolonged timeframe. In the current study, cobalt-zinc nanoferrites (MNPs) having a Curie temperature of 46 â„ƒ with a tunable heating profile was loaded with Doxorubicin (DOX) through a surface conjugation technique (DOX-Cs-MNPs), and characterized by using multiple techniques. The magnetic hyterises (M-H) curves revealed the occurrence of superparamagnetism in the MNPs with extremely low coercivity; further, the DOX-loaded nanoparticles exhibited enhanced saturation magnetization. More importantly, the MNPs showed that they could maintain a therapeutic temperature for an indefinite amount of time. High drug loading affinity (86 %) was observed on MNPs with pH and temperature-controlled release. Under in vitro conditions, the biocompatible DOX-Cs-MNPs caused substantial apoptosis in MCF-7 cells (72 %) with overall cell death of < 95 %. The distinctive MNPs thus have the potential to be used in clinical applications.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Neoplasias , Humanos , Zinco , Doxorrubicina/farmacologia , Doxorrubicina/química , Cobalto/farmacologia , Cobalto/química , Nanopartículas de Magnetita/química , Neoplasias/tratamento farmacológico
6.
J Biomed Mater Res B Appl Biomater ; 111(1): 151-160, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35950464

RESUMO

The development of nanoscale biomaterials associated with polymers has been growing over the years, due to their important structural characteristics for applications in biological systems. The present study aimed to produce and test polymeric scaffolds composed of polylactic acid (PLA) fibers associated with a 58S bioglass doped with therapeutic ions for use in tissue engineering. Three 58S Bioglass was obtained by the sol-gel route, pure and doped with 5% strontium and cobalt ions. Solutions of 7% PLA was used as control and added the three different bioglass, 4% of 58S bioglass (PLA-BG), 4% bioglass-doped strontium (PLA-BGSr) and 4% bioglass-doped cobalt (PLA-BGCo). Scaffolds were produced through electrospinning process, and was characterized chemical and morphologically. The in vitro tests were performed using mesenchymal cells cultures from femurs of nine rats, grown in osteogenic supplemented total culture medium. After osteoblastic differentiation induction cell viability, alkaline phosphatase activity, total protein content quantification, and visualization of mineralization nodule tests were performed. Analysis of normal distribution used the Shapiro-Wilk test (nanofibers diameter and biological assay). Data were compared using the Kruskal-Wallis nonparametric test (p = 0.05). The bioglasses produced proved to be free of nitrate, chlorinated and nano-sized, with effective incorporation of therapeutic ions in their structure. All materials showed cell viability (>70%), total protein production, and alkaline phosphatase activity. It was possible to develop polylactic acid scaffolds associated with 58S bioglass doped with therapeutic ions without cytotoxicity. Scaffolds characteristics appear to sustain its application in bone tissue engineering.


Assuntos
Estrôncio , Engenharia Tecidual , Ratos , Animais , Estrôncio/farmacologia , Alicerces Teciduais/química , Fosfatase Alcalina/metabolismo , Cobalto/farmacologia , Poliésteres/química , Osteogênese , Íons
7.
Br J Nutr ; 127(9): 1313-1319, 2022 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-34155966

RESUMO

To investigate the influences of cobalt (Co) and folic acid (FA) on growth performance and rumen fermentation, Holstein male calves (n 40) were randomly assigned to four groups according to their body weights. Cobalt sulphate at 0 or 0·11 mg Co/kg DM and FA at 0 or 7·2 mg/kg DM were used in a 2 × 2 factorial design. Average daily gain was elevated with FA or Co supplementation, but the elevation was greater for supplementing Co in diets without FA than with FA. Supplementing FA or Co increased DM intake and total-tract nutrient digestibility. Rumen pH was unaltered with FA but reduced with Co supplementation. Concentration of rumen total volatile fatty acids was elevated with FA or Co inclusion. Acetate percentage and acetate to propionate ratio were elevated with FA inclusion. Supplementing Co decreased acetate percentage and increased propionate percentage. Activities of xylanase and α-amylase and populations of total bacteria, fungi, protozoa, Ruminococcus albus, Fibrobacter succinogenes and Prevotella ruminicola increased with FA or Co inclusion. Activities of carboxymethyl-cellulase and pectinase increased with FA inclusion and population of methanogens decreased with Co addition. Blood folates increased and homocysteine decreased with FA inclusion. Blood glucose and vitamin B12 increased with Co addition. The data suggested that supplementing 0·11 mg Co/kg DM in diets containing 0·09 mg Co/kg DM increased growth performance and nutrient digestibility but had no improvement on the effects of FA addition in calves.


Assuntos
Suplementos Nutricionais , Ácido Fólico , Bovinos , Animais , Masculino , Ácido Fólico/metabolismo , Rúmen/metabolismo , Fermentação , Propionatos/metabolismo , Ração Animal/análise , Digestão , Dieta/veterinária , Cobalto/metabolismo , Cobalto/farmacologia , Nutrientes/metabolismo
8.
Acta Biomater ; 121: 605-620, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33259958

RESUMO

How to enable protein degradation pathways including the autophagy-lysosome pathway (ALP) and the ubiquitin-proteasome system (UPS) to enhance the efficacy of anticancer treatments remains a substantial challenge. Cobalt oxide nanoparticles (Co3O4 NPs) have attracted interest in recent years for their potential use as a synergistic anticancer treatment, although their therapeutic mechanisms of action are still poorly understood. Here, we describe the synergistic use of Co3O4 NPs as an autophagy inhibitor, chemosensitizer and photosensitizer, which manipulate protein degradation pathways (ALP and UPS) and photothermal therapy for enhanced anticancer treatments both in vitro and in vivo. We show that Co3O4 NPs can induce autolysosome accumulation and lysosomal functions damage by inhibiting lysosomal proteolytic activity and reducing intracellular ATP levels. Notably, Co3O4 NPs can be combined with the proteasome inhibitor, Carfilzomib (Cfz), to promote the accumulation of autophagic substrates, protein ubiquitination, and endoplasmic reticulum stress, and in doing so, inhibit cancer progression. By taking advantage of their photothermal conversion efficiency, Co3O4 NPs can also serve as photothermal sensitizer, which synergistically enhances the anticancer efficacy of Cfz both in vitro and in vivo. In summary, we provide evidence of a nanomaterial-synergized, photothermal anticancer strategy that synergistically targets cancer cell survival pathways and may eventually serve to enhance the anticancer efficacy of established cancer therapeutics.


Assuntos
Nanopartículas , Fototerapia , Linhagem Celular Tumoral , Cobalto/farmacologia , Óxidos , Proteólise
9.
Assay Drug Dev Technol ; 19(1): 38-45, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33232611

RESUMO

Macrophages would engulf circulating oxidized (ox)- low-density lipoprotein and form lipid droplet-laden foam cells. Macrophage foam cells are considered an important therapeutic target of atherosclerosis. The aim of the study was to investigate a hypoxic foam cell model for anti-atherosclerotic drug screening using the chemical hypoxia-mimicking agent cobalt chloride (CoCl2). The oil red O stating results showed that treatment with CoCl2 could induce lipid accumulation and lead to cell transformation to spindle-shaped and lipid-rich foam cells in RAW 264.7 macrophages. Incubation with 150 µM CoCl2 for 24 h significantly increased the area of intracellular lipid droplets in macrophages, compared with the control group. Our findings indicate that CoCl2-triggered macrophage foam cells should be a potential in vitro hypoxia model for atherosclerosis drug discovery.


Assuntos
Anti-Inflamatórios/farmacologia , Aterosclerose/tratamento farmacológico , Hipóxia Celular/efeitos dos fármacos , Cobalto/farmacologia , Macrófagos/efeitos dos fármacos , Modelos Biológicos , Animais , Aterosclerose/patologia , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Células RAW 264.7
10.
Molecules ; 25(19)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992439

RESUMO

Magnetic nanoparticles such as cobalt ferrite are investigated under clinical hyperthermia conditions for the treatment of cancer. Cobalt ferrite nanoparticles (CFNPs) synthesized by the thermal decomposition method, using nonionic surfactant Triton-X100, possess hydrophilic polyethylene oxide chains acting as reducing agents for the cobalt and iron precursors. The monodispersed nanoparticles were of 10 nm size, as confirmed by high-resolution transmission electron microscopy (HR-TEM). The X-ray diffraction patterns of CFNPs prove the existence of cubic spinel cobalt ferrites. Cs-corrected scanning transmission electron microscopy-high-angle annular dark-field imaging (STEM-HAADF) of CFNPs confirmed their multi-twinned crystallinity due to the presence of atomic columns and defects in the nanostructure. Magnetic measurements proved that the CFNPs possess reduced remnant magnetization (MR/MS) (0.86), which justifies cubic anisotropy in the system. Microwave-based hyperthermia studies performed at 2.45 GHz under clinical conditions in physiological saline increased the temperature of the CFNP samples due to the transformation of radiation energy to heat. The specific absorption rate of CFNPs in physiological saline was 68.28 W/g. Furthermore, when triple-negative breast cancer cells (TNBC) in the presence of increasing CFNP concentration (5 mg/mL to 40 mg/mL) were exposed to microwaves, the cell cytotoxicity was enhanced compared to CFNPs alone.


Assuntos
Antineoplásicos , Cobalto , Compostos Férricos , Hipertermia Induzida , Campos Magnéticos , Nanopartículas , Neoplasias de Mama Triplo Negativas/terapia , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cobalto/química , Cobalto/farmacologia , Feminino , Compostos Férricos/síntese química , Compostos Férricos/química , Compostos Férricos/farmacologia , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico
11.
J Anim Sci ; 98(7)2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32632450

RESUMO

Gut health is critically important for growing neonatal calves, and nutritional technologies are needed to prevent disease and stress challenges. Previous work feeding monensin (MON) in combination with an oregano, prebiotic, and cobalt-lactate (EOC) blend had demonstrated improved calf gut health and growth performance. The objective of this study was to evaluate the growth performance of calves fed MON and EOC alone or in combination. Eighty (80) newborn Holstein (37) female and (43) male calves were randomly assigned to one of four treatments arranged in a 2 × 2 factorial (MON and EOC). Treatments were: 1) Control: without MON or EOC added to the calf starter (CS); 2) MON: 50.8 mg/kg CS (Elanco, Greenfield, IN); 3) EOC: 44.1 mg/kg CS (Rum-A-Fresh, Ralco Inc. Marshall, MN); 4) MON + EOC: MON and EOC added to CS. Calves were fed colostrum followed by whole milk through weaning at 42 d, while CS was fed ad libitum through the 70-d experimental period. The MON by EOC interaction was found to be nonsignificant (P > 0.41) for growth performance. Calves fed without or with MON demonstrated similar (P > 0.70) body weight (BW; 68.7 and 68.9 kg without and with MON, respectively), while calves fed EOC demonstrated greater (P < 0.01) BW (67.3 and 70.4 kg without and with EOC, respectively) compared with calves fed without EOC. Calves fed a CS containing MON were similar (P > 0.47) in average daily gain (ADG; 0.88 and 0.91 kg/d) compared with calves fed without MON; however, feeding calves a CS with EOC increased (P < 0.01) ADG (0.84 and 0.95 kg/d) by 13% through the 70-d experimental period compared with calves not fed EOC. Frame measurements indicated that the greater ADG was due to increased (P < 0.10) frame growth for calves fed essential oils (EO) compared with calves fed without EO. A MON by EOC interaction (P < 0.01) for serum propionate concentration demonstrated calves fed MON + EOC and EOC were greater (P < 0.05) compared with calves fed Control, while calves fed MON were intermediate and different (P < 0.05). Feeding calves a CS with EOC increased (P < 0.04) immunoglobulin A, immunoglobulin G, and immunoglobulin M concentrations compared with calves fed without EOC. A MON by EOC interaction was detected (P < 0.01) for total tract starch digestibility for calves fed EOC or MON + EOC demonstrating greater (P < 0.05) starch digestibilities than Control-fed calves. These data demonstrate that EOC and MON fed in combination was not beneficial for enhancing the growth performance, but that calf growth performance can be improved with EOC compared with MON.


Assuntos
Bovinos/fisiologia , Cobalto/farmacologia , Dieta/veterinária , Monensin/farmacologia , Origanum , Prebióticos , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Peso Corporal , Cobalto/administração & dosagem , Colostro , Feminino , Masculino , Leite , Monensin/administração & dosagem , Óleos Voláteis/administração & dosagem , Óleos Voláteis/farmacologia , Gravidez , Amido
12.
Cell Biol Int ; 44(8): 1616-1627, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32239594

RESUMO

As a potential antitumor herbal medicine, plantamajoside (PMS) benefits the treatment of many human malignances. However, the role of PMS in the progression of hepatocellular carcinoma (HCC) and the related molecular mechanisms is still unknown. Here, we proved that the cell viabilities of HepG2 cells were gradually decreased with the increasing concentrations of CoCl2 and/or PMS via cell counting kit-8 assay. Meanwhile, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and western blot assays were used to further confirm that PMS inhibited the CoCl2 -induced cell proliferation in HepG2 cells via suppressing the Ki67 and proliferating cell nuclear antigen expressions. We also performed wound-healing and transwell assays and demonstrated that PMS inhibited CoCl2 -induced migration and invasion in HepG2 cells via suppressing the epithelial-mesenchymal transition (EMT) process. In addition, the use of 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole further proved that PMS inhibited the malignant biological behaviors of HepG2 cells under hypoxic condition by suppressing the hypoxia-inducible factor-1α (HIF-1α) expression. Besides, we further confirmed that PMS suppressed the growth and metastasis of implanted tumors in vivo. Given that PMS suppressed the proliferation and EMT induced by CoCl2 in HCC cells via downregulating HIF-1α signaling pathway, we provided evidence that PMS might be a novel anti-cancer drug for HCC treatment.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Catecóis/uso terapêutico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Glucosídeos/uso terapêutico , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Neoplasias Hepáticas/tratamento farmacológico , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Hipóxia Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cobalto/farmacologia , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Transdução de Sinais/efeitos dos fármacos
13.
Mater Sci Eng C Mater Biol Appl ; 109: 110579, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32228948

RESUMO

3D multifunctional bone scaffolds have recently attracted more attention in bone tissue engineering because of addressing critical issues like bone cancer and inflammation beside bone regeneration. In this study, a 3D bone scaffold is fabricated from Mg2SiO4-CoFe2O4 nanocomposite which is synthesized via a two-step synthesis strategy and then the scaffold's surface is modified with poly-3-hydroxybutyrate (P3HB)-ordered mesoporous magnesium silicate (OMMS) composite to improve its physicochemical and biological properties. The Mg2SiO4-CoFe2O4 scaffold is fabricated through polymer sponge technique and the scaffold exhibits an interconnected porous structure in the range of 100-600 µm. The scaffold is then coated with OMMS/P3HB composite via dip coating and the physical, chemical, and biological-related properties of OMMS/P3HB composite-coated scaffold are assessed and compared to the non-coated and P3HB-coated scaffolds in vitro. It is found that, on the one hand, P3HB increases the cell attachment, proliferation, and compressive strength of the scaffold, but on the other hand, it weakens the bioactivity kinetic. Addition of OMMS to the coating composition is accompanied with significant increase in bioactivity kinetic. Besides, OMMS/P3HB composite-coated scaffold exhibits higher drug loading capacity and more controlled release manner up to 240 h than the other samples because of OMMS which has a high surface area and ordered mesoporous structure suitable for controlled release applications. The overall results indicate that OMMS/P3HB coating on Mg2SiO4-CoFe2O4 scaffold leads to a great improvement in bioactivity, drug delivery potential, compressive strength, cell viability, and proliferation. Moreover, OMMS/P3HB composite-coated scaffold has heat generation capability for hyperthermia-based bone cancer therapy and so it is suggested as a multifunctional scaffold with great potentials for bone cancer therapy and regeneration.


Assuntos
Neoplasias Ósseas/terapia , Regeneração Óssea , Materiais Revestidos Biocompatíveis , Hipertermia Induzida , Nanocompostos , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacocinética , Materiais Revestidos Biocompatíveis/farmacologia , Cobalto/química , Cobalto/farmacocinética , Cobalto/farmacologia , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Compostos Férricos/química , Compostos Férricos/farmacocinética , Compostos Férricos/farmacologia , Humanos , Hidroxibutiratos , Silicatos de Magnésio/química , Silicatos de Magnésio/farmacocinética , Silicatos de Magnésio/farmacologia , Nanocompostos/química , Nanocompostos/uso terapêutico , Poliésteres , Porosidade
14.
Biochem Biophys Res Commun ; 525(3): 626-632, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32122653

RESUMO

BACKGROUND: When proliferating tumor cells expand to areas distant from vascular sites, poor diffusion of oxygen and nutrients occur, generating a restrictive hypoxic gradient in which susceptible tumor cells die. The heterogeneous population surviving hypoxia and metabolic starvation include de-differentiated cancer stem cells (CSC), capable of self-renewing tumor-initiating cells (TICs), or those that divide asymmetrically to produce non-tumor-initiating differentiated (NTI-D) cell progeny. Under such restrictive conditions, both populations slowly proliferate, entering quiescence or senescence, when exiting from cell cycle progression. This may drive chemoresistance and tumor recurrence, since most anti-cancer treatments target rapidly proliferating cells. PURPOSE: Since persistent or additional stress may increase NTI-D cells conversion to TICs, we investigated whether nutrient depletion or hypoxia influence expression of tyrosinase, a crucial enzyme for melanin synthesis, and B16 melanoma survival, when exposed to iron-dependent cell death oxidative stress produced by the Fenton reaction, resembling ferroptosis. RESULTS: -a) proliferating B16 melanoma with 10% serum-supplementation (10%S) normoxically express hypoxia inducible factor 1α (HIF1α) but lose tyrosinase, in contrast to those transiently exposed to (SF) serum-free medium, in which both HIF1α and tyrosinase are co-expressed; b) in contrast to the resistance to SNP toxicity in (SF) cells with higher tyrosinase expression, those in (10%S) are killed by iron from nitroprusside/ferricyanide (SNP) irrespective of exogenous H2O2, in a reaction antagonized by the anti-oxidant and MEK inhibitor UO126; c) Moreover, under transient serum depletion, SNP cooperates with hypoxia (1.5% oxygen), prolonging B16 melanoma (SF) survival; d) the hypoxia mimetic CoCl2 inhibits proliferation-associated cyclin A, irrespective of SNP, in (10%S) cells or in transiently serum-depleted (SF) cells. However, only in the latter cells, CoCl2 but not SNP, induce loss of HIF1α and apoptosis-associated PARP cleavage; e) longer term adaptation to survive serum depletion, generates (SS) cells resistant to SNP toxicity, which aerobically co-express HIF1α and tyrosinase. In SS B16 melanoma, exogenous non-toxic 100 µM H2O2 super-induces the ratio of tyrosinase to HIF1α. However, co-treatment of SS-B16 cells with SNP plus exogenous H2O2, partly increases PARP cleavage by reciprocally decreasing tyrosinase expression. SIGNIFICANCE: - These results suggest that a phenotypic plasticity in response to depletion of nutrients and/or oxygen, helps decide whether melanoma cells undergo either death by ferroptosis, or resistance to it, when challenged by the same exogenous oxidative stress (iron ± H2O2).


Assuntos
Ferroptose/efeitos dos fármacos , Melanoma Experimental/patologia , Nitroprussiato/farmacologia , Soro/metabolismo , Animais , Butadienos/farmacologia , Hipóxia Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cobalto/farmacologia , Meios de Cultura Livres de Soro , Ciclina A/metabolismo , Peróxido de Hidrogênio/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Monofenol Mono-Oxigenase/metabolismo , Nitrilas/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Transferrina/deficiência , Transferrina/metabolismo
15.
Nanomedicine ; 25: 102171, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32084594

RESUMO

Magnetic hyperthermia (MHT) is a promising approach for cancer therapy. However, a systematic MHT characterization as function of temperature on the therapeutic efficiency is barely analyzed. Here, we first perform comparative temperature-dependent analysis of the cobalt ferrite nanoparticles-mediated MHT effectiveness in two murine tumors models - breast (4T1) and colon (CT26) cancer in vitro and in vivo. The overall MHT killing capacity in vitro increased with the temperature and CT26 cells were more sensitive than 4T1 when heated to 43 °C. Well in line with the in vitro data, such heating cured non-metastatic CT26 tumors in vivo, while only inhibiting metastatic 4T1 tumor growth without improving the overall survival. High-temperature MHT (>47 °C) resulted in complete 4T1 primary tumor clearance, 25-40% long-term survival rates, and, importantly, more effective prevention of metastasis comparing to surgical extraction. Thus, the specific MHT temperature must be defined for each tumor individually to ensure a successful antitumor therapy.


Assuntos
Neoplasias da Mama/terapia , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/terapia , Magnetoterapia , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cobalto/química , Cobalto/farmacologia , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Feminino , Compostos Férricos/química , Compostos Férricos/farmacologia , Humanos , Hipertermia Induzida/métodos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Camundongos , Metástase Neoplásica , Temperatura
16.
ACS Appl Mater Interfaces ; 12(8): 9017-9031, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31999088

RESUMO

The use of magnetic nanoparticles as theranostic agents for the detection and treatment of cancer diseases has been extensively analyzed in the last few years. In this work, cubic-shaped cobalt and zinc-doped iron oxide nanoparticles with edge lengths in the range from 28 to 94 nm are proposed as negative contrast agents for magnetic resonance imaging and to generate localized heat by magnetic hyperthermia, obtaining high values of transverse relaxation coefficients and specific adsorption rates. The applied magnetic fields presented suitable characteristics for the potential validation of the results into the clinical practice in all cases. Pure iron oxide and cobalt- and zinc-substituted ferrites have been structurally and magnetically characterized, observing magnetite as the predominant phase and weak ferrimagnetic behavior at room temperature, with saturation values even larger than those of bulk magnetite. The coercive force increased due to the incorporation of cobalt ions, while zinc substitution promotes a significant increase in saturation magnetization. After their transfer to aqueous solution, those particles showing the best properties were chosen for evaluation in in vitro cell models, exhibiting high critical cytotoxic concentrations and high internalization degrees in several cell lines. The magnetic behavior of the nanocubes after their successful cell internalization was analyzed, detecting negligible variations on their magnetic hysteresis loops and a significant decrease in the specific adsorption rate values.


Assuntos
Cobalto , Compostos Férricos , Hipertermia Induzida , Campos Magnéticos , Nanopartículas , Neoplasias/terapia , Zinco , Animais , Anisotropia , Cobalto/química , Cobalto/farmacologia , Compostos Férricos/química , Compostos Férricos/farmacologia , Células HeLa , Humanos , Camundongos , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/metabolismo , Neoplasias/patologia , Células RAW 264.7 , Zinco/química , Zinco/farmacologia
17.
ACS Nano ; 14(1): 1033-1044, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31935064

RESUMO

Cancer immunotherapy shows promising potential in future cancer treatment but unfortunately is clinically unsatisfactory due to the low therapeutic efficacy and the possible severe immunotoxicity. Here we show a combined magnetic hyperthermia therapy (MHT) and checkpoint blockade immunotherapy for both primary tumor ablation and mimetic metastatic tumor inhibition. Monodispersed, high-performance superparamagnetic CoFe2O4@MnFe2O4 nanoparticles were synthesized and used for effective MHT-induced thermal ablation of primary tumors. Simultaneously, numerous tumor-associated antigens were produced to promote the maturation and activation of dendritic cells (DCs) and cytotoxic T cells for effective immunotherapy of distant mimetic metastatic tumors in a tumor-bearing mice model. The combined MHT and checkpoint blockade immunotherapy demonstrate the great potentials in the fight against both primary and metastatic tumors.


Assuntos
Neoplasias da Mama/terapia , Cobalto/farmacologia , Compostos Férricos/farmacologia , Hipertermia Induzida , Imunoterapia , Compostos de Manganês/farmacologia , Animais , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cobalto/química , Feminino , Compostos Férricos/química , Humanos , Fenômenos Magnéticos , Compostos de Manganês/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Tamanho da Partícula , Propriedades de Superfície
18.
J Anim Sci ; 97(4): 1478-1490, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30649409

RESUMO

The objective of this experiment was to evaluate the impact of complexed trace mineral supplementation on ovum pick-up (OPU) and in vitro embryo production in lactating beef cows. Thirty days prior to fixed-time artificial insemination (FTAI; day -30), 68 postpartum cows were stratified by BW, BCS, and parity before being randomly assigned to 10 pens of either a treatment (TRT; n = 5) or a control (CNT; n = 5) group. Each group received a weekly mineral supplement allotment of 1.16 kg × week-1 × cow-calf pair-1 for 14 wk. Cows assigned to the TRT group received a mineral supplement that contained amino acid complexes of zinc, copper, and manganese, as well as cobalt glucoheptonate (Availa Plus; Zinpro Corp., Eden Prairie, MN, USA), while cows assigned to the CNT group received a mineral supplement that was formulated to contain similar concentrations of these trace minerals from inorganic sources. All cows were submitted to a 7 d CO-Synch + CIDR protocol on day -10 and bred using FTAI on day 0. Pregnancy diagnosis was performed on day 28 and nonpregnant cows were removed. All pregnant cows were subjected to ovum pick-up (OPU) on day 52 and 67 of gestation. Cumulus-oocyte complexes (COCs) were evaluated and graded prior to in vitro fertilization (IVF). Analysis of variance was conducted to determine effects of treatment on response variables, and pen was considered the experimental unit. Supplement consumption did not differ (P = 0.48) between treatments (1.16 ± 0.12 vs. 1.07 ± 0.15 kg of DM × week-1 × cow-calf pair-1 for TRT and CNT, respectively). Total COC recovery was greater (P = 0.03) from TRT when compared with CNT cows (22.4 ± 2.0 vs. 16.4 ± 1.4 COCs × pen-1, respectively) and the number of COCs meeting maturation criteria was increased in TRT cows (P = 0.05) when compared with CNT cows (15.9 ± 1.6 vs. 11.8 ± 1.0 COCs × pen-1, respectively). Production of transferable embryos tended to be greater (P = 0.06) for TRT than CNT cows (4.7 ± 0.6 vs. 2.7 ± 0.7 embryos × pen-1, respectively). Furthermore, when expressed as a ratio, the number of recovered COCs meeting maturation criteria that were required to produce a transferable embryo tended to be lower for TRT than CNT cows (3.10 ± 0.93 vs. 7.02 ± 1.60; P = 0.06). In summary, complete replacement with complexed trace mineral improved COC recovery and in vitro embryo production when compared with inorganic forms of these trace minerals in beef cows.


Assuntos
Bovinos/fisiologia , Suplementos Nutricionais , Minerais/farmacologia , Reprodução/efeitos dos fármacos , Oligoelementos/farmacologia , Animais , Cobalto/farmacologia , Cobre/farmacologia , Transferência Embrionária/veterinária , Embrião de Mamíferos/efeitos dos fármacos , Feminino , Fertilização in vitro/veterinária , Inseminação Artificial/veterinária , Lactação , Manganês/farmacologia , Recuperação de Oócitos/veterinária , Paridade , Período Pós-Parto/efeitos dos fármacos , Gravidez , Distribuição Aleatória , Zinco/farmacologia
19.
Biol Trace Elem Res ; 187(2): 403-410, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29948915

RESUMO

The aim of this study was to determine the effect of the supplementation of a slow-release bolus of zinc (Zn), selenium (Se), and cobalt (Co) at late gestation (6 week prepartum) on performance and some blood metabolites of Mehraban ewes and their lambs until weaning. Seventy pregnant ewes, 6 weeks prior to expected lambing, were randomly divided into two groups (35 heads each) including (1) control group and (2) slow-release bolus group. Blood samples of ewes were obtained on day 10 prepartum and 45 and 90 days postpartum, and milk samples were collected on day 45. Blood samples of lambs were collected on days 10, 45, and 90. Body weight at birth and weaning and average daily gain were higher and percentage of mortality and white muscle disease rate were lower in lambs whose mothers were given a bolus (P < 0.05). Slow-release bolus administration increased serum alkaline phosphatase and whole blood glutathione peroxidase activity, plasma concentrations of Zn, Se, and vitamin B12 in ewes and their lambs (P < 0.05). In addition, serum creatine phosphokinase activity of lambs whose mothers were given bolus was lower (P < 0.05). Serum concentration of T3 in bolus given ewes and their lambs was higher (P < 0.05) and serum T4 concentration was lower (P < 0.05). Zinc, Se, and vitamin B12 concentrations in milk were significantly higher in treated ewes (P < 0.05). Obtained results showed that maternal supplementation of zinc, selenium, and cobalt as slow-release ruminal bolus in late pregnancy improved some mineral status of ewes and their lambs until weaning and led to higher body weights of lambs at weaning.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Cobalto/farmacologia , Fenômenos Fisiológicos da Nutrição Materna/efeitos dos fármacos , Selênio/farmacologia , Zinco/farmacologia , Fosfatase Alcalina/sangue , Fosfatase Alcalina/metabolismo , Animais , Cobalto/sangue , Cobalto/farmacocinética , Suplementos Nutricionais , Liberação Controlada de Fármacos , Feminino , Glutationa Peroxidase/sangue , Glutationa Peroxidase/metabolismo , Gravidez , Selênio/sangue , Selênio/farmacocinética , Ovinos , Fatores de Tempo , Desmame , Zinco/sangue , Zinco/farmacocinética
20.
Drug Test Anal ; 11(2): 200-207, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30110719

RESUMO

Cobaltous ions (Co2+ ) stabilize HIFα, increase endogenous erythropoietin (EPO) production, and may, therefore, be used as a performance-enhancing substance. To date, the dosage necessary to stimulate erythropoiesis is unknown. The aim of this study was, therefore, to determine the minimum dosage necessary to increase erythropoietic processes. In a first double-blind placebo-controlled study (n = 5), single oral Co2+ dosages of 5 mg (n = 6) and 10 mg (n = 7) were administered to healthy young men. Cubital venous blood and urine samples were collected before and up to 24 hours after Co2+ administration. In a second study, the same daily Co2+ dosages were administered for five days (placebo: n = 5, 5 mg: n = 9, 10 mg: n = 7). Blood and urine samples were taken the day before administration and at day 3 and day 5. Plasma [EPO] was elevated by 20.5 ± 16.9% at 5 hours after the single 5-mg administration (p < 0.05) and by 52.8 ± 23.5% up to 7 hours following the 10-mg Co2+ administration (p < 0.001). Urine [Co2+ ] transiently increased, with maximum values 3-5 hours after Co2+ ingestion (5 mg: from 0.8 ± 1.1 to 153.6 ± 109.4 ng/mL, 10 mg: from 1.3 ± 1.7 to 338.0 ± 231,5 ng/mL). During the five days of Co2+ application, 5 mg showed a strong tendency to increase [EPO], while the 10-mg application significantly increased [EPO] at day 5 by 27.2 ± 26.4% (p < 0.05) and the immature reticulocyte fraction by 49.9 ± 21.7% (p < 0.01). [Ferritin] was decreased by 12.4 ± 10.4 ng/mL (p < 0.05). An oral Co2+ dosage of 10 mg/day exerts clear erythropoietic effects, and 5 mg/day tended to increase plasma EPO concentration.


Assuntos
Cobalto/administração & dosagem , Cobalto/farmacologia , Eritropoese/efeitos dos fármacos , Adulto , Contagem de Células Sanguíneas/estatística & dados numéricos , Cobalto/farmacocinética , Cobalto/urina , Método Duplo-Cego , Eritropoetina/sangue , Ferritinas/sangue , Humanos , Masculino , Oligoelementos/farmacocinética , Oligoelementos/farmacologia , Oligoelementos/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA