RESUMO
Selenium (Se) is considered a beneficial element to higher plants based on its regulation of antioxidative system under abiotic or biotic stresses. However, the limit of beneficial and toxic physiological effects of Se is very narrow. In the present study, the antioxidant performance, nutritional composition, long-distance transport of Se, photosynthetic pigments, and growth of Coffea arabica genotypes in response to Se concentration in solution were evaluated. Five Coffea arabica genotypes (Obatã, IPR99, IAC125, IPR100 and Catucaí) were used, which were grown in the absence and presence of Se (0 and 1.0 mmol L-1) in nutrient solution. The application of 1 mmol L-1 Se promoted root browning in all genotypes. There were no visual symptoms of leaf toxicity, but there was a reduction in the concentration of phosphorus and sulfur in the shoots of plants exposed to high Se concentration. Except for genotype Obatã, the coffee seedlings presented strategies for regulating Se uptake by reducing long-distance transport of Se from roots to shoots. The concentrations of total chlorophyll, total pheophytin, and carotenoids were negatively affected in genotypes Obatã, IPR99, and IAC125 upon exposure to Se at 1 mmol L-1. H2O2 production was reduced in genotypes IPR99, IPR100, and IAC125 upon exposure to Se, resulting in lower activity of superoxide dismutase (SOD), and catalase (CAT). These results suggest that antioxidant metabolism was effective in regulating oxidative stress in plants treated with Se. The increase in sucrose, and decrease in SOD, CAT and ascorbate peroxidase (APX) activities, as well as Se compartmentalization in the roots, were the main biochemical and physiological modulatory effects of coffee seedlings under stress conditions due to excess of Se.
Assuntos
Antioxidantes/metabolismo , Coffea/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Selênio/farmacologia , Coffea/genética , Coffea/metabolismo , Coffea/fisiologia , Genótipo , Oxirredução , Fotossíntese/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo , Plântula/fisiologia , Selênio/análise , Selênio/metabolismo , Especificidade da EspécieRESUMO
The expansion of agriculture to new areas in order to increase the competitiveness of coffee producing countries has resulted in cultivation expanding into regions with lower natural fertility. This scenario has created the need to differentiate genotypes of Conilon coffee based on their tolerance to low levels of nutrients in the soil, especially phosphorus, which imposes high limitations on crop yield in tropical regions. In this context, the objective of this study was to identify differential tolerance among genotypes of Conilon coffee cultivated in environments with different levels of phosphorus availability in the soil. The experiment was conducted in a controlled environment, following a completely randomized design, with three replications in a factorial scheme 13 x 3, the factors were as follows: 13 genotypes of Conilon coffee from groups of different ripening cycles and three environments with different levels of phosphorus availability in the soil (fertilization without phosphorus supply, and phosphorus supply at 50 and 100% of recommendations). Discrimination of tolerance was based on 14 variables, including vegetative growth, accumulation of dry matter, nutrient content, and nutritional efficiencies. Estimates of genetic parameters indicated high genotypic variability for genotypes cultivated in environments with low phosphorus availability in the soil. It was possible to classify genotypes 22, 23, 24, 67, 76, 77, and 83 as tolerant of a low availability of phosphorus in the soil during early development. There was no clear relationship between ripening cycles and the tolerance of the genotypes to low phosphorus availability in the soil.
Assuntos
Adaptação Fisiológica/genética , Coffea/efeitos dos fármacos , Genótipo , Fósforo/deficiência , Solo/química , Agricultura , Transporte Biológico , Coffea/crescimento & desenvolvimento , Coffea/metabolismo , Análise Fatorial , Fertilizantes/análise , Variação Genética , Humanos , Fósforo/farmacologiaRESUMO
The effects of ribavirin, an inhibitor of inosine-5'-monophosphate (IMP) dehydrogenase, on [8-(14)C]inosine metabolism in tea leaves, coffee leaves and coffee fruits were investigated. Incorporation of radioactivity from [8-(14)C]inosine into purine alkaloids, such as theobromine and caffeine, guanine residues of RNA, and CO(2) was reduced by ribavirin, while incorporation into nucleotides, including IMP and adenine residues of RNA, was increased. The results indicate that inhibition of IMP dehydrogenase by ribavirin inhibits both caffeine and guanine nucleotide biosynthesis in caffeine-forming plants. The use of IMP dehydrogenase-deficient plants as a potential source of good quality caffeine-deficient tea and coffee plants is discussed.