Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 436
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5148, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429351

RESUMO

Colistin remains one of the last-resort therapies for combating infections caused by multidrug-resistant (MDR) Enterobacterales, despite its adverse nephro- and neuro-toxic effects. This study elucidates the mechanism of action of a non-antibiotic 4-anilinoquinazoline-based compound that synergistically enhances the effectiveness of colistin against Salmonella enterica. The quinazoline sensitizes Salmonella by deactivating intrinsic, mutational, and transferable resistance mechanisms that enable Salmonella to counteract the antibiotic impact colistin, together with an induced disruption to the electrochemical balance of the bacterial membrane. The attenuation of colistin resistance via the combined treatment approach also proves efficacious against E. coli, Klebsiella, and Acinetobacter strains. The dual therapy reduces the mortality of Galleria mellonella larvae undergoing a systemic Salmonella infection when compared to individual drug treatments. Overall, our findings unveil the potential of the quinazoline-colistin combined therapy as an innovative strategy against MDR bacteria.


Assuntos
Mariposas , Infecções por Salmonella , Animais , Colistina/farmacologia , Colistina/uso terapêutico , Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla , Infecções por Salmonella/tratamento farmacológico , Testes de Sensibilidade Microbiana
2.
BMC Infect Dis ; 24(1): 161, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317132

RESUMO

BACKGROUND: Bloodstream infection of Klebsiella pneumoniae (BSI-KP) were associated with increased mortality. Klebsiella pneumoniae was tested to susceptible to colistin by E-test and broth microdilution method in clinical laboratory. This study aimed to assess the efficacy of colistin versus tigecycline, carbapenem monotherapy and combination in the treatment of BSI-KP. METHODS: Electronic databases such as PubMed, Web of Science and Embase were searched. The last search was in November 24th, 2022, addressing the colistin, carbapenems and tigecycline monotherapy and combination treatments in patients with BSI-KP. The primary outcomes were 30-day or 28-day mortality. OR where available with 95% CI were pooled in random-effects meta-analysis. RESULTS: Following the outlined search strategy, a total of 658 articles were identified from the initial database searching. Six studies, 17 comparisons were included. However, they all were observational design, lacking high-quality randomized controlled trials (RCTs). Moderate or low-quality evidences suggested that colistin monotherapy was associated with an OR = 1.35 (95% CI = 0.62-2.97, P = 0.45, Tau2 = 0.00, I2 = 0%) compared with tigecycline monotherapy, OR = 0.81 (95% CI = 0.27-2.45, P = 0.71, Tau2 = 0.00, I2 = 0%) compared with carbapenem monotherapy. Compared with combination with tigecycline or carbapenem, Colistin monotherapy resulted in OR of 3.07 (95% CI = 1.34-7.04, P = 0.008, Tau2 = 0.00, I2 = 0%) and 0.98 (95%CI = 0.29-3.31, P = 0.98, Tau2 = 0.00, I2 = 0% ), respectively. CONCLUSIONS: Colistin, carbapenem and tigecycline monotherapy showed similar treatment effects in patients who suffered from BSI-KP. Compared with colistin monotherapy, colistin combined tigecycline therapy might play the synergism effects. TRIAL REGISTRATION: retrospectively registered.


Assuntos
Antibacterianos , Colistina , Quimioterapia Combinada , Infecções por Klebsiella , Klebsiella pneumoniae , Tigeciclina , Colistina/uso terapêutico , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Antibacterianos/uso terapêutico , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/mortalidade , Infecções por Klebsiella/microbiologia , Tigeciclina/uso terapêutico , Carbapenêmicos/uso terapêutico , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Testes de Sensibilidade Microbiana , Resultado do Tratamento
3.
Curr Opin Infect Dis ; 37(2): 137-143, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38179988

RESUMO

PURPOSE OF REVIEW: The purpose of this review is to briefly summarize the challenges associated with the treatment of pneumonia caused by carbapenem-resistant Acinetobacter baumannii (CRAB), discuss its carbapenem-resistance, and review the literature supporting the current treatment paradigm and therapeutic options. RECENT FINDINGS: In a multicenter, randomized, and controlled trial the novel ß-lactam-ß-lactamase inhibitor sulbactam-durlobactam was compared to colistin, both in addition to imipenem-cilastatin. The drug met the prespecified criteria for noninferiority for 28-day all-cause mortality while demonstrating higher clinical cure rates in the treatment of CRAB pneumonia. In an international, randomized, double-blind, placebo controlled trial colistin monotherapy was compared to colistin combined with meropenem. In this trial, combination therapy was not superior to monotherapy in the treatment of drug-resistant gram-negative organisms including CRAB pneumonia. SUMMARY: CRAB pneumonia is a preeminent public health threat without an agreed upon first line treatment strategy. Historically, there have been drawbacks to available treatment modalities without a clear consensus on the first-line treatment regimen. CRAB pneumonia is a top priority for the continued development of antimicrobials, adjuvant therapies and refinement of current treatment strategies.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Pneumonia , Humanos , Antibacterianos , Colistina/uso terapêutico , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Infecções por Acinetobacter/tratamento farmacológico , Inibidores de beta-Lactamases/uso terapêutico , Pneumonia/tratamento farmacológico , Testes de Sensibilidade Microbiana , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
4.
Chem Biol Drug Des ; 103(1): e14381, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37875387

RESUMO

Carbapenem-resistant Klebsiella pneumoniae (CRKP) infections continue to impose high morbidity threats to hospitalized patients worldwide, limiting therapeutic options to last-resort antibiotics like colistin. However, the dynamic genomic landscape of colistin-resistant K. pneumoniae (COLR-Kp) invoked ardent exploration of underlying molecular signatures for therapeutic propositions/designs. We unveiled the structural impact of the widespread and emerging PmrB mutations involved in colistin resistance (COLR) in K. pneumoniae. In the present study, clinical isolates of K. pneumoniae expressed variable susceptibilities to colistin (>0.5 µg/mL for resistant and ≤0.25 µg/mL for susceptible) despite mutations such as T157P, G207D and T246A. The protein sequences extracted from in-house sequenced genomes were used to model mutant PmrB proteins and analyze the underlying structural alterations. The mutations were contrasted based on molecular dynamics simulation trajectories, free-energy landscapes and structural flexibility profiles. The altered backbone flexibilities can be an essential factor for mutant selection by COLR K. pneumoniae and can provide clues to deal with emerging mutants. Furthermore, PmrB having high druggability confidence (>0.99), was explored as a potential target for 1396 virtually screened FDA-approved drug candidates. Among the top-10 compounds (scores >70), amphotericin B was found to be potential candidate with high affinity (Binding energy <-8 kcal/mol) and stable interactions (RMSF <0.7 Å) against PmrB druggable pockets, despite the mutations, which encourages future adjunct therapeutic research against COLR-Kp.


Assuntos
Colistina , Infecções por Klebsiella , Humanos , Colistina/farmacologia , Klebsiella pneumoniae/genética , Infecções por Klebsiella/tratamento farmacológico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Mutação , Proteínas Mutantes/genética , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana/genética
5.
Int J Antimicrob Agents ; 63(1): 107017, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37884228

RESUMO

OBJECTIVES: This study investigated the effect of tigecycline exposure on susceptibility of colistin-resistant Klebsiella pneumoniae isolates to colistin and explored the possibility of antibiotic combination at low concentrations to treat colistin-resistant K. pneumoniae isolates. METHODS: Twelve tigecycline-resistant (TIR) mutants were induced in vitro from wild-type, colistin-resistant, and tigecycline-susceptible K. pneumoniae isolates. Antibiotic susceptibility was determined using the broth microdilution method. The deduced amino acid alterations were identified for genes associated with colistin resistance, lipid A biosynthesis, and tigecycline resistance. Expression levels of genes were compared between wild-type stains and TIR mutants using quantitative real-time polymerase chain reaction (PCR). Lipid A modification was explored using MALDI-TOF mass spectrometry. Time-killing assay was performed to assess the efficiency of combination therapy using low concentrations of colistin and tigecycline. RESULTS: All TIR mutants except one were converted to be susceptible to colistin. These TIR mutants had mutations in the ramR gene and increased expression levels of ramA. Three genes associated with lipid A biosynthesis, lpxC, lpxL, and lpxO, were also overexpressed in TIR mutants, although no mutation was observed. Additional polysaccharides found in colistin-resistant, wild-type strains were modified in TIR mutants. Colistin-resistant K. pneumoniae strains were eliminated in vitro by combining tigecycline and colistin at 2 mg/L. In this study, we found that tigecycline exposure resulted in reduced resistance of colistin-resistant K. pneumoniae to colistin. Such an effect was mediated by regulation of lipid A modification involving ramA and lpx genes. CONCLUSION: Because of such reduced resistance, a combination of colistin and tigecycline in low concentrations could effectively eradicate colistin-resistant K. pneumoniae strains.


Assuntos
Colistina , Infecções por Klebsiella , Humanos , Tigeciclina/farmacologia , Colistina/farmacologia , Klebsiella pneumoniae , Minociclina/farmacologia , Lipídeo A , Infecções por Klebsiella/tratamento farmacológico , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética
6.
Int J Antimicrob Agents ; 63(1): 107011, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37863340

RESUMO

OBJECTIVES: Alternation of the colistin resistance-regulating two-component regulatory system (crrAB) is a colistin-resistance mechanism in Klebsiella pneumoniae (K. pneumoniae), but its role in bacteria is not fully understood. METHODS: Twelve colistin-susceptible K. pneumoniae clinical isolates were included in this study: six crrAB-positive and six crrAB-negative. We deleted the crrAB genes from two crrAB-positive isolates and complemented them. We measured the growth yields by determining growth curves in lysogeny broth and minimal media with or without Fe2+. In vitro selection rates for colistin resistance were determined by exposure to colistin, and survival rates against high concentrations of colistin (20 mg/L) at the early stage of growth (20 min) were investigated. Virulence was determined using a serum bactericidal assay and Galleria mellonella larval infection. RESULTS: The presence of crrAB was not associated with colistin resistance and did not increase the in vitro selection rate of colistin resistance after exposure. The growth yield of crrAB-positive isolates was higher in lysogeny broth media and increased when Fe2+ was added to minimal media. The crrAB-positive isolates showed higher survival rates in the early stages of exposure to high colistin concentrations. Decreased serum resistance was identified in the crrAB-deleted mutants. More G. mellonella larvae survived when infected by crrAB-deleted mutants, and higher survival rates of bacteria were identified within the larvae infected with wild-type than crrAB-deletant isolates. CONCLUSION: Through rapid response to external signals, crrAB would provide advantages for K. pneumoniae survival by increasing the final growth yield and initial survival against colistin treatment. This may partly contribute to the bacterial virulence.


Assuntos
Colistina , Infecções por Klebsiella , Animais , Colistina/farmacologia , Colistina/uso terapêutico , Klebsiella pneumoniae , Virulência , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Larva , Testes de Sensibilidade Microbiana , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia
7.
Poult Sci ; 103(2): 103314, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096669

RESUMO

The present study aimed to investigate the impact of various concentrations of ginger and cinnamon oils as antibiotic substitutes on some blood biochemical parameters, antioxidant capacity, and histopathological profile of the liver and gut of growing Japanese. A total of 900 Japanese quails were randomly allotted into 6 treatment groups. Each group had 5 replicates (30 chicks each). The first group received a basal diet and served as the control, while the second received a basal diet plus 0.5 g of colistin antibiotic/kg diet. The third and fourth groups were supplemented with 0.5 mL and 1.0 mL of ginger oil (GO)/kg diet, respectively. While the fifth and sixth groups received basal diet with 0.5 and 1.0 mL of cinnamon oil (CO)/kg diet, respectively. Results showed that adding herbal oils significantly (P < 0.05) decreased the aspartate aminotransferase (AST) and urea levels compared to control and colistin groups. Various levels of GO and CO significantly (P < 0.05) reduced cholesterol levels compared to control birds. Compared to the control and antibiotic groups, Japanese quails supplemented with various levels of herbal oils (GO and CO) had more extraordinarily significant (P < 0.05) values for total antioxidant capacity (TAC), superoxide dismutase (SOD), glutathione peroxidase (GPX), and glutathione reductase (GSR). Regarding histopathologic examination, the jejunum displayed a nearly empty lumen, a few fusions, and mild goblet cell metaplasia. On the other hand, the duodenum looked tall and had a few fusions of villi and remnants of removal in its lumina. It could be concluded that cinnamon and GO improved birds' blood biochemical parameters, electorate oxidative stress, and enhanced intestinal and hepatic histology of the treated quails. Also, the levels of 0.5 mL CO and 0.5 mL GO may be an acceptable substitute for antibiotics (colistin) in the diets of growing Japanese quail.


Assuntos
Óleos Voláteis , Zingiber officinale , Animais , Coturnix , Antioxidantes/metabolismo , Cinnamomum zeylanicum , Colistina , Ração Animal/análise , Galinhas/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Codorniz/metabolismo , Óleos Voláteis/farmacologia , Estresse Oxidativo , Antibacterianos/farmacologia
8.
Rev Esp Quimioter ; 36 Suppl 1: 54-58, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37997873

RESUMO

Pseudomonas aeruginosa is a pathogen that has a high propensity to develop antibiotic resistance, and the emergence of multidrug-resistant strains is a major concern for global health. The mortality rate associated with infections caused by this microorganism is significant, especially those caused by multidrug-resistant strains. The antibiotics used to treat these infections include quinolones, aminoglycosides, colistin, and ß-lactams. However, novel combinations of ß-lactams-ß-lactamase inhibitors and cefiderocol offer advantages over other members of their family due to their better activity against certain resistance mechanisms. Selecting the appropriate empiric antibiotic treatment requires consideration of the patient's clinical entity, comorbidities, and risk factors for multidrug-resistant pathogen infections, and local epidemiological data. Optimizing antibiotic pharmacokinetics, controlling the source of infection, and appropriate collection of samples are crucial for successful treatment. In the future, the development of alternative treatments and strategies, such as antimicrobial peptides, new antibiotics, phage therapy, vaccines, and colonization control, holds great promise for the management of P. aeruginosa infections.


Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Humanos , Antibacterianos/farmacologia , Colistina/farmacologia , beta-Lactamas/farmacologia , Inibidores de beta-Lactamases/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla , Testes de Sensibilidade Microbiana
9.
Eur J Clin Microbiol Infect Dis ; 42(11): 1365-1372, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37814067

RESUMO

INTRODUCTION: This study examines the role of mesenchymal stem cells (MSCs) in an experimental sepsis model developed with colistin-resistant Acinetobacter baumannii (CRAB). MATERIALS AND METHODS: BALB-c mice were divided into treatment groups (MSC, MSC + colistin (C)-fosfomycin (F), and C-F and control groups (positive and negative)). CRAB was administered to mice through intraperitoneal injection. Three hours later, C, F, and MSC were given intraperitoneally to the treatment groups. Colistin administration was repeated every 12 h, F administration was done every 4 h, and the second dose of MSC was administered after 48 h. Mice were sacrificed at 24 and 72 h. The bacterial load was determined as colony-forming units per gram (cfu/g). Histopathological examination was conducted on the left lung, liver, and both kidneys. IL-6 and C-reactive protein (CRP) levels in mouse sera were determined by enzyme-linked immunosorbent assay. RESULTS: Among the treatment groups, the C-F group had the lowest colony count in the lung (1.24 ± 1.66 cfu/g) and liver (1.03 ± 1.08 cfu/g). The highest bacterial clearance was observed at 72 h compared to 24 h in the MSC-treated groups (p = 0.008). The MSC + C-F group showed the lowest histopathological score in the liver and kidney (p = 0.009). In the negative control group, the IL-6 level at the 24th hour was the lowest (p < 0.001). Among the treatment groups, the CRP level was the lowest in the MSC + C-F group at 24 and 72 h. CONCLUSION: In a CRAB sepsis model, adding MSCs to a colistin-fosfomycin treatment may be beneficial in terms of reducing bacterial loads and preventing histopathological damage.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Fosfomicina , Células-Tronco Mesenquimais , Sepse , Animais , Camundongos , Colistina/farmacologia , Colistina/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Fosfomicina/uso terapêutico , Carbapenêmicos/uso terapêutico , Interleucina-6 , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Sepse/tratamento farmacológico , Sepse/microbiologia , Testes de Sensibilidade Microbiana
10.
J Basic Microbiol ; 63(12): 1397-1411, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37821405

RESUMO

The progressive increase in infections caused by multidrug-resistant (MDR) Gram-negative bacteria and the emergence of resistance to last-resort antimicrobial drugs in recent years necessitate the development of new therapeutic strategies. This study was conducted to obtain nanostructured antimicrobials by conjugating colistin (COL) and meropenem (MEM) antibiotics with biosynthesized silver nanoparticles (bio-AgNPs) via the green synthesis method using Rosa damascena extract, and to investigate the antibacterial and antibiofilm activity of these nanostructures against Escherichia coli and Klebsiella pneumoniae strains. Ultraviolet-visible spectrophotometry, high-resolution-transmission electron microscopy, atomic force microscopy, X-ray diffraction, and Fourier transform-infrared spectroscopy analyses were performed to determine the physical and chemical properties of synthesized bio-AgNPs, COL@bio-AgNPs, MEM@bio-AgNPs, and COL&MEM@bio-AgNPs. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration of nanoparticles were determined on standard and MDR clinical strains. The antibiofilm efficacy and cytotoxic effect of nanoparticles were evaluated by the crystal violet dye method and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide dye method, respectively. The characterization analyses demonstrated that the synthesized nanoparticles had crystal structure and spherical morphology (5.6-30.2 nm in size). Antibiotic conjugated nanoparticles exhibited better antimicrobial activity and lower MIC values (0.125-4 µg/mL) on the tested strains compared to free antibiotics, and MIC values were decreased up to 1024-fold (p < 0.05). Antibiotic conjugated nanoparticles were found to be more effective in biofilm eradication than free antibiotics and bio-AgNPs and had a less inhibitory effect on peripheral blood mononuclear cell viability. The findings revealed that antibiotic-conjugated nanoparticles have the potential to be used as an effective antimicrobial drug against MDR E. coli and K. pneumoniae strains.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Meropeném/farmacologia , Colistina/farmacologia , Escherichia coli , Klebsiella pneumoniae , Prata/farmacologia , Prata/química , Nanopartículas Metálicas/química , Leucócitos Mononucleares , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Biofilmes , Testes de Sensibilidade Microbiana , Espectroscopia de Infravermelho com Transformada de Fourier , Extratos Vegetais/química
11.
Microbiol Spectr ; 11(6): e0145923, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37800902

RESUMO

IMPORTANCE: Infections caused by multidrug-resistant Escherichia coli (MDR E. coli) have become a major global healthcare problem due to the lack of effective antibiotics today. The emergence of colistin-resistant E. coli strains makes the situation even worse. Therefore, new antimicrobial strategies are urgently needed to combat colistin-resistant E. coli. Combining traditional antibiotics with non-antibacterial drugs has proved to be an effective approach of combating MDR bacteria. This study investigated the combination of colistin and shikonin, a Chinese herbal medicine, against colistin-resistant E. coli. This combination showed good synergistic antibacterial both in vivo and in vitro experiments. Under the background of daily increasing colistin resistance in E. coli, this research points to an effective antimicrobial strategy of using colistin and shikonin in combination against colistin-resistant E. coli.


Assuntos
Medicamentos de Ervas Chinesas , Infecções por Escherichia coli , Proteínas de Escherichia coli , Humanos , Colistina/farmacologia , Escherichia coli , Medicamentos de Ervas Chinesas/farmacologia , Proteínas de Escherichia coli/farmacologia , Antibacterianos/farmacologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Testes de Sensibilidade Microbiana
12.
mSphere ; 8(5): e0023423, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37747188

RESUMO

The emergence and rapid spread of multi-drug-resistant (MDR) bacteria pose a serious threat to global healthcare. Although the synergistic effect of rafoxanide and colistin was reported, little is known regarding the potential mechanism of this synergy, particularly against chromosomal-mediated colistin-resistant Klebsiella pneumoniae. In the present study, we elucidated the synergistic effect of rafoxanide and colistin against chromosomal-mediated colistin-resistant Klebsiella pneumoniae isolates from human (KP-9) and swine (KP-1) infections. Treatment with 1 mg/L rafoxanide overtly reversed the MIC max to 512-fold. Time-kill assays indicated that rafoxanide acted synergistically with colistin against the growth of KP-1 and KP-9. Mechanistically, we unexpectedly found that the combination destroys the inner-membrane integrity, and ATP synthesis was also quenched, albeit, not via F1F0-ATPase; thereby also inhibiting the activity of efflux pumps. Excessive production of reactive oxygen species (ROS) was also an underlying factor contributing to the bacterial-killing effect of the combination. Transcriptomic analysis unraveled overt heterogeneous expression as treated with both administrations compared with monotherapy. Functional analysis of these differentially expressed genes (DEGs) targeted to the plasma membrane and ATP-binding corroborated phenotypic screening results. These novel findings highlight the synergistic mechanism of rafoxanide in combination with colistin which effectively eradicates chromosomal-mediated colistin-resistant Klebsiella pneumoniae. IMPORTANCE The antimicrobial resistance of Klebsiella pneumoniae caused by the abuse of colistin has increased the difficulty of clinical treatment. A promising combination (i.e., rafoxanide+ colistin) has successfully rescued the antibacterial effect of colistin. However, we still failed to know the potential effect of this combination on chromosome-mediated Klebsiella pneumoniae. Through a series of in vitro experiments, as well as transcriptomic profiling, we confirmed that the MIC of colistin was reduced by rafoxanide by destroying the inner-membrane integrity, quenching ATP synthesis, inhibiting the activity of the efflux pump, and increasing the production of reactive oxygen species. In turn, the expression of relevant colistin resistance genes was down-regulated. Collectively, our study revealed rafoxanide as a promising colistin adjuvant against chromosome-mediated Klebsiella pneumoniae.


Assuntos
Colistina , Rafoxanida , Humanos , Animais , Suínos , Colistina/farmacologia , Rafoxanida/farmacologia , Klebsiella pneumoniae , Espécies Reativas de Oxigênio , Cromossomos , Trifosfato de Adenosina
13.
Adv Sci (Weinh) ; 10(29): e2302182, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37552809

RESUMO

The emergence and prevalence of mobile colistin resistance gene mcr have dramatically compromised the clinical efficacy of colistin, a cyclopeptide antibiotic considered to be the last option for treating different-to-treat infections. The combination strategy provides a productive and cost-effective strategy to expand the lifespan of existing antibiotics. Structural-activity relationship analysis of polymyxins indicates that the fatty acyl chain plays an indispensable role in their antibacterial activity. Herein, it is revealed that three saturated fatty acids (SFAs), especially sodium caprate (SC), substantially potentiate the antibacterial activity of colistin against mcr-positive bacteria. The combination of SFAs and colistin effectively inhibits biofilm formation and eliminates matured biofilms, and is capable of preventing the emergence and spread of mobile colistin resistance. Mechanistically, the addition of SFAs reduces lipopolysaccharide (LPS) modification by simultaneously promoting LPS biosynthesis and inhibiting the activity of MCR enzyme, enhance bacterial membrane damage, and impair the proton motive force-dependent efflux pump, thereby boosting the action of colistin. In three animal models of infection by mcr-positive pathogens, SC combined with colistin exhibit an excellent therapeutic effect. These findings indicate the therapeutic potential of SFAs as novel antibiotic adjuvants for the treatment of infections caused by multidrug-resistant bacteria in combination with colistin.


Assuntos
Colistina , Lipopolissacarídeos , Animais , Colistina/farmacologia , Lipopolissacarídeos/farmacologia , Ácidos Graxos , Farmacorresistência Bacteriana , Antibacterianos/farmacologia
14.
Microbiol Spectr ; 11(4): e0138623, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37428073

RESUMO

Concerns about colistin-resistant bacteria in animal food-environmental-human ecosystems prompted the poultry sector to implement colistin restrictions and explore alternative trace metals/copper feed supplementation. The impact of these strategies on the selection and persistence of colistin-resistant Klebsiella pneumoniae in the whole poultry production chain needs clarification. We assessed colistin-resistant and copper-tolerant K. pneumoniae occurrence in chickens raised with inorganic and organic copper formulas from 1-day-old chicks to meat (7 farms from 2019 to 2020), after long-term colistin withdrawal (>2 years). Clonal diversity and K. pneumoniae adaptive features were characterized by cultural, molecular, and whole-genome-sequencing (WGS) approaches. Most chicken flocks (75%) carried K. pneumoniae at early and preslaughter stages, with a significant decrease (P < 0.05) in meat batches (17%) and sporadic water/feed contamination. High rates (>50%) of colistin-resistant/mcr-negative K. pneumoniae were observed among fecal samples, independently of feed. Most samples carried multidrug-resistant (90%) and copper-tolerant (81%; silA and pcoD positive and with a MICCuSO4 of ≥16 mM) isolates. WGS revealed accumulation of colistin resistance-associated mutations and F type multireplicon plasmids carrying antibiotic resistance and metal/copper tolerance genes. The K. pneumoniae population was polyclonal, with various lineages dispersed throughout poultry production. ST15-KL19, ST15-KL146, and ST392-KL27 and IncF plasmids were similar to those from global human clinical isolates, suggesting chicken production as a reservoir/source of clinically relevant K. pneumoniae lineages and genes with potential risk to humans through food and/or environmental exposure. Despite the limited mcr spread due to the long-term colistin ban, this action was ineffective in controlling colistin-resistant/mcr-negative K. pneumoniae, regardless of feed. This study provides crucial insights into the persistence of clinically relevant K. pneumoniae in the poultry production chain and highlights the need for continued surveillance and proactive food safety actions within a One Health perspective. IMPORTANCE The spread of bacteria resistant to last-resort antibiotics such as colistin throughout the food chain is a serious concern for public health. The poultry sector has responded by restricting colistin use and exploring alternative trace metals/copper feed supplements. However, it is unclear how and to which extent these changes impact the selection and persistence of clinically relevant Klebsiella pneumoniae throughout the poultry chain. We found a high occurrence of copper-tolerant and colistin-resistant/mcr-negative K. pneumoniae in chicken flocks, regardless of inorganic and organic copper formulas use and a long-term colistin ban. Despite the high K. pneumoniae isolate diversity, the occurrence of identical lineages and plasmids across samples and/or clinical isolates suggests poultry as a potential source of human K. pneumoniae exposure. This study highlights the need for continued surveillance and proactive farm-to-fork actions to mitigate the risks to public health, relevant for stakeholders involved in the food industry and policymakers tasked with regulating food safety.


Assuntos
Colistina , Aves Domésticas , Animais , Humanos , Colistina/farmacologia , Klebsiella pneumoniae , Fazendas , Cobre/farmacologia , Galinhas/microbiologia , Ecossistema , Antibacterianos/farmacologia , Plasmídeos , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética
15.
Sci Rep ; 13(1): 12198, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500690

RESUMO

Bacteriophages (BP) are viruses that can infect bacteria. The present study evaluated the effect of BP on Salmonella infected broilers. A number of 150 day-old broilers were used in a completely randomized design with five treatments that included: (1) basal diet from day 0 to 28; (2) basal diet + 0.3 g/kg of colistin from day 0 to 28; (3) basal diet from day 1 to 13, and basal diet + 0.4 g/kg of colistin from day 14 to 28; (4) basal diet + 1 g/kg of BP from day 0 to 28; (5) basal diet + 1.5 g/kg of BP from day 0 to 28. On day 13, 15 chickens from each treatment were challenged by Salmonella Enteritidis (SE), while fifteen from each treatment were not; instead, they were kept in the same cage with the challenged chickens (exposed chickens). At 7 and 14 days post-challenge, the number of SE and coliform bacteria in the cecum and liver of colistin and BP-fed birds was lower than the control treatment. In exposed and challenged chickens, the height and surface area of villus were greater in the BP and colistin-supplemented groups. Serum concentrations of aspartate aminotransferase and alanine transaminase were greater, while serum albumin and triglycerides concentrations were lower in the control treatment. The liver of the challenged chickens had more pathological lesions than exposed birds. BP significantly decreased PPARγ gene expression in exposed chickens. In the challenged and exposed chickens, TLR4 gene expression was lower in BP and colistin-treated birds as compared to the control. In conclusion, adding BP to the diet from the day of age prevents the spread of Salmonella.


Assuntos
Bacteriófagos , Doenças das Aves Domésticas , Salmonelose Animal , Animais , Salmonella enteritidis , Galinhas/microbiologia , Colistina/farmacologia , Salmonelose Animal/microbiologia , Suplementos Nutricionais , Dieta/veterinária , Doenças das Aves Domésticas/microbiologia , Ração Animal/análise
16.
J Biomed Sci ; 30(1): 37, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287044

RESUMO

BACKGROUND: We investigated the presence of heteroresistance against both tigecycline and colistin in Acinetobacter baumannii and then evaluated the effectiveness of combined antibiotic treatment given the existence of discrete tigecycline- and colistin-resistant subpopulations. METHODS: We performed population analysis profiling (PAP) to evaluate the degree of composite heteroresistance in A. baumannii isolates, with the extent of this resistance quantified using subsequent antibiotic susceptibility testing. We then evaluated the amino acid sequence of PmrBAC and the relative mRNA expression levels of pmrB. Finally, we investigated the combined antibiotic efficacy of tigecycline and colistin in multiple-heteroresistant isolates using dual PAP and in vitro time-killing assays. RESULTS: All tigecycline-heteroresistant A. baumannii isolates, with the exception of one colistin-resistant isolate, were also heteroresistant to colistin. Evaluations of the colistin-resistant subpopulations revealed amino acid alterations in PmrA and PmrB and increased expression of pmrB. All tigecycline-resistant subpopulations were susceptible to colistin, and all colistin-resistant subpopulations were susceptible to tigecycline. Dual PAP analysis using tigecycline and colistin showed no heteroresistance, and in vitro time-killing assays revealed that a combination of these two antibiotics effectively eliminated the bacterial cells. CONCLUSION: Our results suggest that multiple heteroresistance to tigecycline and colistin is highly prevalent among A. baumannii clinical isolates and that these resistant subpopulations exist independently in single multiple heteroresistant isolates. Therefore, our findings may explain the success of combined antibiotic therapies in these infections.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Colistina/farmacologia , Colistina/uso terapêutico , Tigeciclina/farmacologia , Tigeciclina/uso terapêutico , Acinetobacter baumannii/genética , Farmacorresistência Bacteriana Múltipla/genética , Testes de Sensibilidade Microbiana , Infecções por Acinetobacter/tratamento farmacológico
17.
Microbiol Spectr ; 11(4): e0053023, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37358428

RESUMO

With the increasing and inappropriate use of colistin, the emerging colistin-resistant isolates have been frequently reported during the last few decades. Therefore, new potential targets and adjuvants to reverse colistin resistance are urgently needed. Our previous study has confirmed a marked increase of colistin susceptibility (16-fold compared to the wild-type Salmonella strain) of cpxR overexpression strain JSΔacrBΔcpxR::kan/pcpxR (simplified as JSΔΔ/pR). To searching for potential new drug targets, the transcriptome and metabolome analysis were carried out in this study. We found that the more susceptible strain JSΔΔ/pR displayed striking perturbations at both the transcriptomics and metabolomics levels. The virulence-related genes and colistin resistance-related genes (CRRGs) were significantly downregulated in JSΔΔ/pR. There were significant accumulation of citrate, α-ketoglutaric acid, and agmatine sulfate in JSΔΔ/pR, and exogenous supplement of them could synergistically enhance the bactericidal effect of colistin, indicating that these metabolites may serve as potential adjuvants for colistin therapy. Additionally, we also demonstrated that AcrB and CpxR could target the ATP and reactive oxygen species (ROS) generation, but not proton motive force (PMF) production pathway to potentiate antibacterial activity of colistin. Collectively, these findings have revealed several previously unknown mechanisms contributing to increased colistin susceptibility and identified potential targets and adjuvants for potentiating colistin treatment of Salmonella infections. IMPORTANCE Emergence of multidrug-resistant (MDR) Gram-negative (G-) bacteria have led to the reconsideration of colistin as the last-resort therapeutic option for health care-associated infections. Finding new drug targets and strategies against the spread of MDR G- bacteria are global challenges for the life sciences community and public health. In this paper, we demonstrated the more susceptibility strain JSΔΔ/pR displayed striking perturbations at both the transcriptomics and metabolomics levels and revealed several previously unknown regulatory mechanisms of AcrB and CpxR on the colistin susceptibility. Importantly, we found that exogenous supplement of citrate, α-ketoglutaric acid, and agmatine sulfate could synergistically enhance the bactericidal effect of colistin, indicating that these metabolites may serve as potential adjuvants for colistin therapy. These results provide a theoretical basis for finding potential new drug targets and adjuvants.


Assuntos
Agmatina , Colistina , Colistina/farmacologia , Salmonella typhimurium/genética , Transcriptoma , Agmatina/farmacologia , Ácidos Cetoglutáricos/farmacologia , Antibacterianos/farmacologia , Metaboloma , Testes de Sensibilidade Microbiana
18.
Future Microbiol ; 18: 547-552, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37314362

RESUMO

The management of severe neurologic infections due to multidrug-resistant (MDR) Klebsiella pneumoniae infection remains a challenge. Limited antibiotic treatment regimens make treatment of severe MDR K. pneumoniae infection more difficult. We describe a patient who developed severe meningitis and ventriculitis after craniotomy caused by MDR K. pneumoniae and was effectively treated with the administration of multichannel applications (intravenous, intrathecal and aerosol inhalation) of colistin sulfate. This case provides clinical evidence that the intrathecal, intravenous and aerosol inhalation of colistin sulfate by multichannel application can be a last resort in refractory intracranial infection by MDR K. pneumoniae.


Assuntos
Colistina , Infecções por Klebsiella , Humanos , Colistina/uso terapêutico , Colistina/farmacologia , Klebsiella pneumoniae , Infecções por Klebsiella/tratamento farmacológico , Farmacorresistência Bacteriana Múltipla , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
19.
Sci Adv ; 9(23): eadg4205, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37294761

RESUMO

In the face of the alarming rise in global antimicrobial resistance, only a handful of novel antibiotics have been developed in recent decades, necessitating innovations in therapeutic strategies to fill the void of antibiotic discovery. Here, we established a screening platform mimicking the host milieu to select antibiotic adjuvants and found three catechol-type flavonoids-7,8-dihydroxyflavone, myricetin, and luteolin-prominently potentiating the efficacy of colistin. Further mechanistic analysis demonstrated that these flavonoids are able to disrupt bacterial iron homeostasis through converting ferric iron to ferrous form. The excessive intracellular ferrous iron modulated the membrane charge of bacteria via interfering the two-component system pmrA/pmrB, thereby promoting the colistin binding and subsequent membrane damage. The potentiation of these flavonoids was further confirmed in an in vivo infection model. Collectively, the current study provided three flavonoids as colistin adjuvant to replenish our arsenals for combating bacterial infections and shed the light on the bacterial iron signaling as a promising target for antibacterial therapies.


Assuntos
Proteínas de Bactérias , Colistina , Colistina/farmacologia , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Bactérias/metabolismo , Ferro , Homeostase
20.
Microbiol Spectr ; 11(4): e0033423, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37272820

RESUMO

Klebsiella pneumoniae, a pathogen of critical clinical concern, urgently demands effective therapeutic options owing to its drug resistance. Polymyxins are increasingly regarded as a last-line therapeutic option for the treatment of multidrug-resistant (MDR) Gram-negative bacterial infections. However, polymyxin resistance in K. pneumoniae is an emerging issue. Here, we report that gallium nitrate (GaNt), an antimicrobial candidate, exhibits a potentiating effect on colistin against MDR K. pneumoniae clinical isolates. To further confirm this, we investigated the efficacy of combined GaNt and colistin in vitro using spot dilution and rapid time-kill assays and growth curve inhibition tests and in vivo using a murine lung infection model. The results showed that GaNt significantly increased the antimicrobial activity of colistin, especially in the iron-limiting media. Mechanistic studies demonstrated that bacterial antioxidant activity was repressed by GaNt, as revealed by RNA sequencing (RNA-seq), leading to intracellular accumulation of reactive oxygen species (ROS) in K. pneumoniae, which was enhanced in the presence of colistin. Therefore, oxidative stress induced by GaNt and colistin augments the colistin-mediated killing of wild-type cells, which can be abolished by dimethyl sulfoxide (DMSO), an effective ROS scavenger. Collectively, our study indicates that GaNt has a notable impact on the antimicrobial activity of colistin against K. pneumoniae, revealing the potential of GaNt as a novel colistin adjuvant to improve the treatment outcomes of bacterial infections. IMPORTANCE This study aimed to determine the antimicrobial activity of GaNt combined with colistin against Klebsiella pneumoniae in vitro and in vivo. Our results suggest that by combining GaNt with colistin, antioxidant activity was suppressed and reactive oxygen species accumulation was induced in bacterial cells, enhancing antimicrobial activity against K. pneumoniae. We found that GaNt functioned as an antibiotic adjuvant when combined with colistin by inhibiting the growth of multidrug-resistant K. pneumoniae. Our study provides insight into the use of an adjuvant to boost the antibiotic potential of colistin for treating infections caused by multidrug-resistant K. pneumoniae.


Assuntos
Anti-Infecciosos , Infecções por Klebsiella , Camundongos , Animais , Colistina/farmacologia , Klebsiella pneumoniae/genética , Espécies Reativas de Oxigênio , Antioxidantes/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Polimixinas/farmacologia , Polimixinas/uso terapêutico , Testes de Sensibilidade Microbiana , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Farmacorresistência Bacteriana Múltipla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA