Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 102, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481214

RESUMO

BACKGROUND: Effective therapy for many infections is becoming difficult due to the evolutionary development of drug resistance, and hence, the development of alternative treatment options mainly from herbs is crucial. The objective of this study was to investigate the antibacterial effects of ethanol extracts of stem bark, leaves and roots of Combretum molle against Streptococcus equi isolated from clinical cases of strangles using in vitro tests. METHODS: Plant extraction was performed using a maceration technique with 80% ethanol. The mean zone of inhibition was determined using the agar well diffusion method. Six serial dilutions with different concentrations (10%, 5%, 2.5%, 1.25%, 0.625% and 0.3125%) of each plant extract were prepared using dimethyl sulfoxide (DMSO). A modified agar microdilution method was used to determine the minimum inhibitory concentration (MICs) of the extracts. RESULTS: The results revealed that all plant extracts showed significant antibacterial activity. The root extract showed the best antibacterial effect compared to the others at all concentrations, with MZI values of 27.5, 23.225, 20.5, 17.9, 15.65 and 12.25 for the respective concentrations mentioned above and an MIC of 250 µg/ml. It was followed by the stem bark extract, which had MZI values of 24.67, 22.35, 18.225, 16.175, 11.125 and 8.2 millimeters and an MIC of 375 µg/ml. The leaf extract also had significant activity, with MZI values of 20.175, 18.25, 15.7, 13.125, 9.4 and 6.75 in millimeters and an MIC of 500 µg/ml. There was a direct relationship between the concentrations of the plant extracts and the level of inhibition. CONCLUSION: The test plant extracts were compared with the conventional antibiotic penicillin G, and the results indicated that the parts of the test plant have significant antibacterial activity, which may support traditional claims and could be candidates for alternative drug discoveries.


Assuntos
Combretum , Streptococcus equi , Cavalos , Animais , Equidae , Casca de Planta , Ágar , Extratos Vegetais/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana/veterinária , Etanol
2.
J Ethnopharmacol ; 328: 118070, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38521430

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In Senegal, upper and lower respiratory tract infections constitute a real health problem. To manage these disorders, most people rely on the use of local medicinal plants. This is particularly the case for species belonging to the botanical families, Combretaceae, Fabaceae, Myrtaceae and Rubiaceae, which are widely used to treat various respiratory problems such as colds, flu, rhinitis, sinusitis, otitis, angina, bronchitis, bronchiolitis and also pneumonia. AIM OF THE STUDY: The aim of this study was to identify medicinal plants traditionally used for the management of infectious diseases, in particular those of the respiratory tract. On the basis of these ethnopharmacological uses, this study made it possible to highlight the antibacterial, antiviral and cytotoxic activities of selected plant species. MATERIALS AND METHODS: An ethnobotanical survey was conducted in Senegal among informants, including herbalists, traditional healers, and households, using medicinal plants in the management of infectious diseases, with a focus on respiratory tract infections. The most cited plant species were evaluated in vitro on a panel of 18 human pathogenic bacteria may be involved in respiratory infections and against the human coronavirus HCoV-229E in Huh-7 cells. The antiviral activity of the most active extracts against HCoV-229E was also evaluated on COVID-19 causing agent, SARS-CoV-2 in Vero-81 cells. In parallel, cytotoxic activities were evaluated on Huh-7 cells. RESULTS: A total of 127 informants, including 100 men (78.74%) and 27 women (21.26%) participated in this study. The ethnobotanical survey led to the inventory of 41 plant species belonging to 19 botanical families used by herbalists and/or traditional healers and some households to treat infectious diseases, with a specific focus on upper respiratory tract disorders. Among the 41 plant species, the most frequently mentioned in the survey were Guiera senegalensis J.F. Gmel. (95.2%), Combretum glutinosum Perr. Ex DC. (93.9%) and Eucalyptus spp. (82.8%). Combretaceae (30.2%) represented the most cited botanical family with six species, followed by Fabaceae (29.3%, 12 species). A total of 33 crude methanolic extracts of the 24 plant species selected for their number of citations were evaluated in vitro for their antimicrobial and cytotoxic activities. Guiera senegalensis, Combretum glutinosum, Vachellia nilotica subsp. tomentosa (Benth.) Kyal. & Boatwr, Eucalyptus camaldulensis Dehnh., and Terminalia avicennioides Guill. & Perr., showed antibacterial activities. The most active plants against HCoV-229E were: Ficus sycomorus L., Mitragyna inermis (Willd.) Kuntze, Pterocarpus erinaceus Poir., and Spermacoce verticillata L. One of these plants, Mitragyna inermis, was also active against SARS-CoV-2. CONCLUSION: This work confirmed the anti-infective properties of plant species traditionally used in Senegal. Overall, the most frequently cited plant species showed the best antibacterial activities. Moreover, some of the selected plant species could be considered as a potential source for the management of coronavirus infections. This new scientific data justified the use of these plants in the management of some infectious pathologies, especially those of the respiratory tract.


Assuntos
Anti-Infecciosos , COVID-19 , Combretaceae , Combretum , Doenças Transmissíveis , Coronavirus Humano 229E , Plantas Medicinais , Masculino , Humanos , Feminino , Fitoterapia , Medicinas Tradicionais Africanas , Etnobotânica , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Doenças Transmissíveis/tratamento farmacológico
3.
Parasit Vectors ; 17(1): 99, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429804

RESUMO

BACKGROUND: Soil-transmitted helminths (STH) infect more than a quarter of the world's human population. In the absence of vaccines for most animal and human gastrointestinal nematodes (GIN), treatment of infections primarily relies on anthelmintic drugs, while resistance is a growing threat. Therefore, there is a need to find alternatives to current anthelmintic drugs, especially those with novel modes of action. The present work aimed to study the composition and anthelmintic activity of Combretum mucronatum leaf extract (CMLE) by phytochemical analysis and larval migration inhibition assays, respectively. METHODS: Combretum mucronatum leaves were defatted with petroleum ether and the residue was extracted by ethanol/water (1/1) followed by freeze-drying. The proanthocyanidins and flavonoids were characterized by thin layer chromatography (TLC) and ultra-high performance liquid chromatography (UPLC). To evaluate the inhibitory activity of this extract, larval migration assays with STH and GIN were performed. For this purpose, infective larvae of the helminths were, if necessary, exsheathed (Ancylostoma caninum, GIN) and incubated with different concentrations of CMLE. RESULTS: CMLE was found to be rich in flavonoids and proanthocyanidins; catechin and epicatechin were therefore quantified for standardization of the extract. Data indicate that CMLE had a significant effect on larval migration. The effect was dose-dependent and higher concentrations (1000 µg/mL) exerted significantly higher larvicidal effect (P < 0.001) compared with the negative control (1% dimethyl sulfoxide, DMSO) and lower concentrations (≤ 100 µg/ml). Infective larvae of Ascaris suum [half-maximal inhibitory concentration (IC50) = 5.5 µg/mL], Trichuris suis (IC50 = 7.4 µg/mL), and A. caninum (IC50 = 18.9 µg/mL) were more sensitive to CMLE than that of Toxocara canis (IC50 = 310.0 µg/mL), while infective larvae of Toxocara cati were largely unaffected (IC50 > 1000 µg/mL). Likewise, CMLE was active against most infective larvae of soil-transmitted ruminant GIN, except for Cooperia punctata. Trichostrongylus colubriformis was most sensitive to CMLE (IC50 = 2.1 µg/mL) followed by Cooperia oncophora (IC50 = 27.6 µg/mL), Ostertagia ostertagi (IC50 = 48.5 µg/mL), Trichostrongylus axei (IC50 = 54.7 µg/mL), Haemonchus contortus (IC50 = 145.6 µg/mL), and Cooperia curticei (IC50 = 156.6 µg/mL). CONCLUSIONS: These results indicate that CMLE exhibits promising anthelmintic properties against infective larvae of a large variety of soil-transmitted nematodes.


Assuntos
Anti-Helmínticos , Combretum , Helmintos , Nematoides , Proantocianidinas , Trichostrongyloidea , Animais , Humanos , Combretum/química , Proantocianidinas/farmacologia , Proantocianidinas/química , Larva , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Anti-Helmínticos/farmacologia , Ruminantes , Flavonoides/farmacologia , Compostos Fitoquímicos/farmacologia
4.
Pest Manag Sci ; 79(12): 4868-4878, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37506299

RESUMO

BACKGROUND: The fall armyworm Spodoptera frugiperda (J.E. Smith), is an important pest of agronomical crops. It is interesting to discover secondary metabolites in plants that are environmentally safer than synthetic pesticides. For this purpose, Combretum trifoliatum crude extract and its isolated compounds were investigated for their insecticidal activities against S. frugiperda. RESULTS: The median lethal dose (LD50 ) was evaluated in the second-instar larvae using the topical application method. The isolated compounds, apigenin and camphor, demonstrated a highly toxic effect on larvae at a lower LD50 dose than crude extract. Moreover, when the larvae were exposed to crude extract concentrations, the development to pupa and adult stages was reduced by more than 50%. The ovicidal toxicity was examined using a hand sprayer. The extract concentration 5, 10, and 20 µg/egg significantly decreased the egg hatchability. In addition, crude extract showed a significant difference in inhibiting acetylcholinesterase (AChE) activity while crude extract and camphor showed significant inhibitory effects on carboxylesterase (CE) and glutathione-S-transferase (GST) activities. CONCLUSION: The crude ethanol extract of Combretum trifoliatum was toxic to S. frugiperda in terms of larval mortality, negatively affecting biological parameters, and decreasing egg hatchability. Additionally, the activities of cholinergic and detoxifying enzymes were affected by crude extract and its isolated compounds. These results highlight that Combretum trifoliatum might be efficient as a bioinsecticide to control S. frugiperda. © 2023 Society of Chemical Industry.


Assuntos
Combretaceae , Combretum , Inseticidas , Myrtales , Animais , Inseticidas/farmacologia , Spodoptera , Combretum/metabolismo , Combretaceae/metabolismo , Myrtales/metabolismo , Cânfora/toxicidade , Acetilcolinesterase/metabolismo , Larva , Extratos Vegetais/farmacologia , Zea mays/metabolismo
5.
Anticancer Agents Med Chem ; 23(13): 1545-1566, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37073157

RESUMO

BACKGROUND: Medicinal plants are known to contain numerous phytometabolites with suggested pharmacological value. Literature suggests that the medicinal use of phytometabolites in its natural state has limited success due to poor absorption rates. Currently, the focus lies on synthesizing phytometabolites extracted from medicinal plants and silver ions to generate nano-scale carriers with specialized properties. Thus, the nano-synthesis of phytometabolites with silver (Ag+) ions is proposed. The use of silver is promoted due to its known antibacterial and antioxidant effectiveness, among many. Nanotechnology allows for the green generation of nano-scaled particles that are able to penetrate target areas due to its size and unique structure. Therefore, this study aimed to generate a novel protocol for the synthesis of AgNP's using the leaf and stembark extracts of C. erythrophyllum. In addition, the biological activity of the generated nanoparticles was evaluated. OBJECTIVES: To synthesis silver nanoparticles (AgNP's) using the leaf and stembark extracts of Combretum erythrophyllum. The relative shape, size, distribution, and zeta potential of the synthesised particles were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Energy-dispersive X-ray (EDX), Nanoparticle tracking analysis (NTA), and UV Spectrophotometry (UV -vis). To screen the synthesised particles for its potential antibacterial, apoptotic and cytotoxic properties. METHODS: A novel protocol for the synthesis of silver nanoparticles (AgNP's) using the leaf and stembark extracts of Combretum erythrophyllum was established. The generated AgNP's were characterised using transmission electron microscopy (TEM), scanning electron microscopy (SEM), Energy-dispersive X-ray (EDX), Nanoparticle tracking analysis (NTA), and UV Spectrophotometry (UV -vis). Furthermore, the AgNP's were evaluated for their antibacterial, cytotoxic and apoptotic activity against a range of bacterial strains and cancer cells. Characterisation was based upon particle size, shape and elemental silver composition. RESULTS: Within the stembark extract, synthesised nanoparticles were large, spherical in shape and dense in elemental silver composition. While synthesised nanoparticles of the leaf extract were small to medium in size, varied in shape established and contained minimal quantities of silver (substantiated by the TEM and NTA results). Furthermore, it was established that the synthesized nanoparticles exhibited high antibacterial properties due to the conducted antibacterial assay. The FTIR analysis revealed the presence of numerous functional groups within active compounds found in the synthesised extracts. Functional groups found varied between the leaf and stembark extracts, each with proposed pharmacological activity. CONCLUSION: Presently, antibiotic-resistant bacteria are continuously evolving thus, posing as a threat to conventional drug delivery systems. Nanotechnology provides a platform that enables the formulation of a low-toxicity and hypersensitive drug delivery system. Further studies evaluating the biological activity of extracts of C. erythrophyllum synthesized with silver nanoparticles could enhance its proposed pharmaceutical value.


Assuntos
Antineoplásicos , Combretum , Nanopartículas Metálicas , Plantas Medicinais , Humanos , Nanopartículas Metálicas/química , Prata/farmacologia , Prata/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Antineoplásicos/farmacologia , Antibacterianos/química , Difração de Raios X
6.
Curr Microbiol ; 80(5): 176, 2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37029832

RESUMO

Antimicrobial resistance is a natural phenomenon and is becoming a huge global public health problem, since some microorganisms not respond to the treatment of several classes of antibiotics. The objective of the present study was to evaluate the antibacterial, antibiofilm, and synergistic effect of triterpene 3ß,6ß,16ß-trihydroxyilup-20(29)-ene (CLF1) against Staphylococcus aureus and Staphylococcus epidermidis strains. Bacterial susceptibility to CLF1 was evaluated by minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) assay. In addition, the effect combined with antibiotics (ampicillin and tetracycline) was verified by the checkerboard method. The biofilms susceptibility was assessed by enumeration of colony-forming units (CFUs) and quantification of total biomass by crystal violet staining. The compound showed bacteriostatic and bactericidal activity against all Staphylococcal strains tested. The synergistic effect with ampicillin was observed only for S. epidermidis strains. Moreover, CLF1 significantly inhibited the biofilm formation and disrupted preformed biofilm of the all strains. Scanning electron microscopy (SEM) images showed changes in the cell morphology and structure of S. aureus ATCC 700698 biofilms (a methicillin-resistant S. aureus strain). Molecular docking simulations showed that CLF1 has a more favorable interaction energy than the antibiotic ampicillin on penicillin-binding protein (PBP) 2a of MRSA, coupled in different regions of the protein. Based on the results obtained, CLF1 proved to be a promising antimicrobial compound against Staphylococcus biofilms.


Assuntos
Combretum , Staphylococcus aureus Resistente à Meticilina , Triterpenos , Staphylococcus aureus , Combretum/química , Staphylococcus , Triterpenos/farmacologia , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Ampicilina/farmacologia , Biofilmes , Staphylococcus epidermidis , Testes de Sensibilidade Microbiana
7.
Molecules ; 28(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36838778

RESUMO

Kinkéliba (Combretum micranthum, Seh-Haw in Wolof) is a popular bush tea in West African countries. Although the kinkéliba plant's leaves have been widely consumed for its nutritional and medicinal properties, its benefits on skin health potential have been practically untouched. In human epidermal primary keratinocytes, vitexin and isovitexin-rich kinkéliba extract treatment significantly (p < 0.001) enhanced up to 39.6% of the cell survival rate decreased by UV radiation irritation. The treatment of kinkéliba leaf extracts also reduced the production of UV-induced pro-inflammatory cytokines IL-6 and IL-8 by 57.6% and 42.5%, respectively (p < 0.001), which cause skin redness and skin barrier dysfunction, as well as wrinkles and collagen degradation. The anti-inflammation efficacy of kinkéliba leaf extracts might involve significant inhibition on the levels of cellular reactive oxygen species (ROS) (-70.8%, p < 0.001) and nitrotyrosine (-56.9%, p < 0.05). Further topical applications of kinkéliba leaf extract gel were found to reduce sodium lauryl sulfate (SLS)-induced skin inflammation: at D7, the skin trans-epidermal water loss (TEWL) and skin redness (a* value) were both reduced by 59.81% (p < 0.001) and 22.4% (p < 0.001), compared with D0. In vitro and in vivo data support a new topical application of the kinkéliba leaf as an effective active ingredient for the treatment of skin inflammation, as well as subsequent barrier dysfunction and inflammaging.


Assuntos
Combretum , Dermatite , Humanos , Extratos Vegetais/farmacologia , Pele , Queratinócitos
8.
Planta Med ; 89(9): 860-878, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36539209

RESUMO

Herbal medicines are invaluable in African medicine, but quality and safety are not documented in many cases. Besides controlled farming, validated quality control methods are needed to ensure identity, purity, and content. Analytical specifications within modern monographs are needed for consistent batch quality. Combretum mucronatum leaves are widely used in West Africa, but state-of-the-art quality control methods and specifications are non-existent. The aim of the following study was the development of ICH-validated chromatographic protocols for identity, purity, content assay, and analytical specifications for consideration into pharmacopoeial monographs. UPLC-ESI-Q-TOF-MS/MS was used for untargeted phytochemical information on composition. Optimisation of extraction was based on phytochemical profiling. HPTLC was used for differentiation of C. mucronatum from other Combretum species and UPLC for simultaneous determination of 7 marker compounds. C. mucronatum batch analyses (n = 49) investigated the influence of harvest time and geographical origin. Pesticides screening from a 349-compound panel were carried out. 30 compounds, identified by LC-MS, were used for characterization of the plant material. Orietin, isoorientin, vitexin and isovitexin were used as specific marker compounds for qualitative and quantitative HPTLC purposes, while UPLC quantified additionally epicatechin, procyanidins B2 and C1. Influence of harvest time and geographic origin on the content of marker compounds was observed. Differences in the metabolite profiles of C. mucronatum compared to related Combretum species were established for quality control purposes. Contamination with high amoounts of chlorpyrifos, and folpet (sum of folpet and phtalimide, expressed as folpet) were also observed.The study provides analytical protocols, analytical specifications and a drafted monograph for consideration for African pharmacopoeias, and reveals potential challenges in the quality of C. mucronatum.


Assuntos
Combretum , Combretum/química , Espectrometria de Massas em Tandem , Fluxo de Trabalho , Extratos Vegetais
9.
Phytochem Anal ; 34(1): 127-138, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36377224

RESUMO

INTRODUCTION: Combretum platypetalum is used in traditional African healing practices against different infections. Unfortunately, no scientific knowledge of its phytochemical composition exists, except for the isolation of two compounds from the leaves. Scientific study has been limited to the leaves only, despite the applications of stems and roots in traditional medicine practice and natural product drug discovery programs. OBJECTIVE: Omics was applied to identify and classify different volatile and semivolatile bioactive compounds in the leaf, stem, and root parts of C. platypetalum. The thermal stability of the plant constituents at 60-65°C extraction temperature by Soxhlet and maceration at room temperature on the type, class, and concentration of compounds in the leaf was further investigated. METHOD: A GC-MS untargeted metabolomics approach, automated deconvolution by the Automated Mass Spectral Deconvolution and Identification System (AMDIS) for GC-MS data, preprocessing by Metab R, and multivariate statistical data analysis were employed in this study. RESULTS: A total of 97 phytoconstituents, including 17 bioactive compounds belonging to the terpenoids, flavonoids, long-chain fatty acids, and other unclassified structural arrangements distributed across C. platypetalum, were identified for the first time. A correlation (r = 0.782; P = 0.000) between Soxhlet and maceration extraction methods relative to resolved chromatographic peak areas of metabolites was established. CONCLUSION: Findings corroborate the reported bio-investigation of its leaf extracts, its traditional uses, and previous findings from the Combretum genus. The results substantiate the possible applications of C. platypetalum in natural product drug discovery and provide a guide for future investigations.


Assuntos
Combretaceae , Combretum , Combretum/química , Extratos Vegetais/química , Cromatografia Gasosa-Espectrometria de Massas , Ácidos Graxos , Metabolômica
10.
Fundam Clin Pharmacol ; 36(5): 818-826, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35261066

RESUMO

Drugs used to manage type 2 diabetes mellitus cause adverse effects. Therefore, the search for new drugs as an alternative for the treatment of diabetes increases. The effect of triterpene 3ß-6ß-16ß-trihydroxylup-20(29)-ene isolated from the leaves of C. leprosum (CLF-1) on sucrose-induced hyperglycemia in adult zebrafish (Danio rerio) was evaluated. Initially, adult zebrafish (n = 6/group) underwent hyperglycemia induction by sucrose at 83.25 mM/L for 7 days by immersion. The hyperglycemic groups were treated with CLF-1 (4, 20, and 40 mg/kg), metformin (200 mg/kg), and acarbose (300 mg/kg) for 4 days. The in silico interaction of CLF-1, metformin, and acarbose with the enzyme maltase-glucoamylase (CtMGAM) was investigated. CLF-1 reduced sucrose-induced hyperglycemia after 4 days of treatment, in addition to having better affinity energy with CtMGAM than metformin and acarbose. Thus, CLF-1 may be a new pharmacological alternative as a hypoglycemic agent for the treatment of diabetes.


Assuntos
Combretum , Diabetes Mellitus Tipo 2 , Hiperglicemia , Metformina , Triterpenos , Acarbose/farmacologia , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hiperglicemia/induzido quimicamente , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Folhas de Planta , Sacarose , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Peixe-Zebra
11.
Molecules ; 27(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35164024

RESUMO

Tomato brown rugose fruit virus (ToBRFV) is a new damaging plant virus of great interest from both an economical and research point of view. ToBRFV is transmitted by contact, remains infective for months, and to-date, no resistant cultivars have been developed. Due to the relevance of this virus, new effective, sustainable, and operator-safe antiviral agents are needed. Thus, 4-hydroxybenzoic acid was identified as the main product of the alkaline autoxidation at high temperature of the methanolic extract of the leaves of C. micranthum, known for antiviral activity. The autoxidized extract and 4-hydroxybenzoic acid were assayed in in vitro experiments, in combination with a mechanical inoculation test of tomato plants. Catechinic acid, a common product of rearrangement of catechins in hot alkaline solution, was also tested. Degradation of the viral particles, evidenced by the absence of detectable ToBRFV RNA and the loss of virus infectivity, as a possible consequence of disassembly of the virus coat protein (CP), were shown. Homology modeling was then applied to prepare the protein model of ToBRFV CP, and its structure was optimized. Molecular docking simulation showed the interactions of the two compounds, with the amino acid residues responsible for CP-CP interactions. Catechinic acid showed the best binding energy value in comparison with ribavirin, an anti-tobamovirus agent.


Assuntos
Antivirais/farmacologia , Combretum/química , Doenças das Plantas/prevenção & controle , Solanum lycopersicum/efeitos dos fármacos , Tobamovirus/efeitos dos fármacos , Antivirais/química , Homeostase , Solanum lycopersicum/virologia , Metanol/química , Testes de Sensibilidade Microbiana , Modelos Moleculares , Simulação de Acoplamento Molecular , Oxirredução , Doenças das Plantas/virologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Vírus de Plantas/química , Vírus de Plantas/efeitos dos fármacos , Vírus de Plantas/patogenicidade , Tobamovirus/química , Tobamovirus/patogenicidade
12.
Fundam Clin Pharmacol ; 36(3): 486-493, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34989452

RESUMO

Globally, plant-derived medicines have been playing an increasing and relevant role in the treatment of several diseases, thus fostering the search for new bioactive substances. Among the various families of plants studied, those of the Combretum genus can be highlighted since they are widely used in folk medicine for the treatment of hepatitis, malaria, respiratory infections, cancer, skin hemorrhage, and anxiety. Phytochemical studies carried out on species of the Combretum genus demonstrated the presence of several classes of bioactive chemical compounds, including the triterpene 3ß,6ß,16ß-trihydroxilup-20(29)-ene (CLF-1). In this perspective, the objective of this review was to gather all pharmacological activities attributed to the CLF-1 triterpene, highlighting its importance for the pharmaceutical industry. The research was performed in scientific databases such as PubMed, SciELO, LILACS, SciFinder and Science Direct. The literature indicates a great pharmacological potential of CLF-1, evidencing its antioxidant, anti-inflammatory, antiviral, antiparasitic, antinociceptive, healing, and antibacterial action, antinociceptive and antitumor effect. Therefore, based on the different research above, it is plausible to consider CLF-1, obtained from different parts of the C. leprosum plant, as a molecule with biotechnological potential that may contribute to the development of new drugs and, consequently, in the treatment of various human pathologies.


Assuntos
Combretum , Triterpenos , Analgésicos/farmacologia , Anti-Inflamatórios/farmacologia , Combretum/química , Etnofarmacologia , Humanos , Extratos Vegetais/farmacologia , Triterpenos/farmacologia
13.
J Asian Nat Prod Res ; 24(7): 691-696, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34319176

RESUMO

Phytochemical investigation on the leaves of Combretum quadrangulare growing in Vietnam afforded a new trinorcycloartane triterpenoid, norquandrangularic acid D (1), along with three known compounds, betulinic acid (2), luteolin (3), and apigenin (4). Their structures were elucidated using spectroscopic methods and comparison was made with reports in the literature. Compounds 1 and 3 were evaluated for α-glucosidase inhibition. Compound 3 showed significant activity, with an IC50 value of 11.39 µM, (acarbose, used as a positive control, had an IC50 of 367 µM).


Assuntos
Combretum , Triterpenos , Combretum/química , Estrutura Molecular , Extratos Vegetais/química , Folhas de Planta/química , Triterpenos/química , alfa-Glucosidases
14.
J Biomol Struct Dyn ; 40(22): 12302-12315, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34436980

RESUMO

Chagas disease infects approximately seven million people worldwide. Benznidazole is effective only in the acute phase of the disease, with an average cure rate of 80% between acute and recent cases. Therefore, there is an urgent need to find new bioactive substances that can be effective against parasites without causing so many complications to the host. In this study, the triterpene 3ß-6ß-16ß-trihydroxilup-20 (29)-ene (CLF-1) was isolated from Combretum leprosum, and its molecular structure was determined by NMR and infrared spectroscopy. The CLF-1 was also evaluated in vitro and in silico as potential trypanocidal agent against epimastigote and trypomastigote forms of Trypanosoma cruzi (Y strain). The CLF-1 demonstrated good results highlighted by lower IC50 (76.0 ± 8.72 µM, 75.1 ± 11.0 µM, and 70.3 ± 45.4 µM) for epimastigotes at 24, 48 and 72 h, and LC50 (71.6 ± 11.6 µM) for trypomastigotes forms. The molecular docking study shows that the CLF-1 was able to interact with important TcGAPDH residues, suggesting that this natural compound may preferentially exert its effect by compromising the glycolytic pathway in T. cruzi. The ADMET study together with the MTT results indicated that the CLF-1 is well-absorbed in the intestine and has low toxicity. Thus, this work adds new evidence that CLF-1 can potentially be used as a candidate for the development of new options for the treatment of Chagas disease.Communicated by Ramaswamy H. Sarma.


Assuntos
Doença de Chagas , Combretum , Triterpenos , Tripanossomicidas , Trypanosoma cruzi , Humanos , Extratos Vegetais/química , Combretum/química , Triterpenos/farmacologia , Triterpenos/química , Simulação de Acoplamento Molecular , Doença de Chagas/tratamento farmacológico , Tripanossomicidas/farmacologia
15.
J Biomol Struct Dyn ; 40(20): 9801-9814, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34121622

RESUMO

Combretaceae are reported in the literature for presenting neuroprotective and anxiolytic effects in animal models. Combretum lanceolatum Pohl. has few scientific reports on its pharmacological effects. The aim of this study was to evaluate the anxiolytic and anticonvulsant effects of the ethanol extract from the leaves of C. lanceolatum Pohl. (EtFoCl) and its possible mechanism of GABAergic action in adult zebrafish. EtFoCl was subjected to determination of the total phenol concentration, identification of phytochemical flavonoids by HPLC and in vitro antioxidant activity test, open field test and 96-hour acute toxicity in zebrafish. Anxiolytic doses were tested for pentylenetetrazole-induced seizures in adult zebrafish. To study the mechanisms of action, molecular docking simulations were performed between the main phytochemicals and the GABAA receptor (anxiolytic activity) and carbonic anhydrase II (anticonvulsant). The non-toxic doses that caused motor impairment were assessed in acute and chronic anxiety using the light and dark test. EtFoCl had altered the animals' locomotion, presenting an effect similar to the anxiolytic and anticonvulsant. These effects were prevented with flumazenil (GABAA antagonist). The phytochemicals homoorientin and quercetin-3-O-galactoside coupling in a region close to that of the inhibitor diazepam (GABAA receptor). Regarding the anticonvulsant mechanism, Homoorientina and Isovitexina were identified as the most favorable for the complex form with the carbonic anhydrase enzyme. C. lanceolatum has pharmacological potential for the treatment of acute and chronic anxiety and seizures, which can be partially explained by an interaction with the GABAA receptor.Communicated by Ramaswamy H. Sarma.


Assuntos
Ansiolíticos , Combretum , Animais , Ansiolíticos/efeitos adversos , Peixe-Zebra , Receptores de GABA-A , Anticonvulsivantes/farmacologia , Simulação de Acoplamento Molecular , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Ansiedade/tratamento farmacológico , Extratos Vegetais/farmacologia
16.
J Toxicol Environ Health A ; 85(9): 364-375, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-34933666

RESUMO

The beneficial pharmacological actions including antioxidant effects as an antileishmanial, antibacterial, antifungal, antidiabetic, anti-inflammatory, antitumor, antiviral, and analgesic of compounds isolated from Combretum mellifluum Eichler (Combretaceae) are well established. The aim of the present study was to determine the phytochemistry as well as assess the antioxidant and antileishmanial activities of the leaves from Combretum mellifluum Eichler (Combretaceae). Analysis of ethanolic extract resulted in isolation and identification of two epimeric mixtures of four previously unknown cycloartane-type triterpenoids, methyl quadrangularate M and methyl 24-epiquadrangularate M, and 2α,3ß,24ß-trihydroxy-cycloart-25-ene and 2α, 3ß, 24α-trihydroxy-cycloart-25-ene, and eight known compounds. Their structures were using one-dimensional nuclear magnetic resonance (1D NMR), 2D NMR and high-resolution electrospray ionization mass spectroscopy (HRESIMS) analysis. Further, the extract and fractions were tested for antioxidant potential. The ethyl acetate and aqueous fractions demonstrated the highest antioxidant activity against 2,2-dipheny-1-picrylhydrazl (DPPH) free radicals, which correlated directly with total flavonoid content. All extracts and fractions from C. mellifluum Eichler were assessed for antileishmanial activity. The supernatant fraction exhibited highest potential, inhibiting the growth of Leishmania amazonensis with IC50 value 31.29 µg/ml. Our findings provide information on the chemical composition of C. mellifluum and the potential beneficial therapeutic usefulness as an antioxidant agent in various diseases.


Assuntos
Combretum , Triterpenos , Antioxidantes/análise , Antioxidantes/farmacologia , Combretum/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Triterpenos/análise , Triterpenos/química , Triterpenos/farmacologia
17.
Biomed Pharmacother ; 144: 112264, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34624680

RESUMO

In Sudanese traditional medicine, decoctions, macerations, and tonics of the stem and root of Combretum hartmannianum are used for the treatment of persistent cough, a symptom that could be related to tuberculosis (TB). To verify these traditional uses, extracts from the stem wood, stem bark, and roots of C. hartmannianum were screened for their growth inhibitory effects against Mycobacterium smegmatis ATCC 14468. Methanol Soxhlet and ethyl acetate extracts of the root gave the strongest effects (MIC 312.5 and 625 µg/ml, respectively). HPLC-UV/DAD and UHPLC/QTOF-MS analysis of the ethyl acetate extract of the root led to the detection of 54 compounds, of which most were polyphenols and many characterized for the first time in C. hartmannianum. Among the major compounds were terflavin B and its two isomers, castalagin, corilagin, tellimagrandin I and its derivative, (S)-flavogallonic acid dilactone, punicalagin, and methyl-ellagic acid xylopyranoside. In addition, di-, tri- and tetra-galloyl glucose, combregenin, terminolic acid, cordifoliside D, luteolin, and quercetin-3-O-galactoside-7-O-rhamnoside-(2→1)-O-ß-D-arabinopyranoside were characterized. Luteolin gave better growth inhibition against M. smegmatis (MIC 250 µg/ml) than corilagin, ellagic acid, and gallic acid (MIC 500-1000 µg/ml). Our study justifies the use of C. hartmannianum in Sudanese folk medicine against prolonged cough that could be related to TB infection. This study demonstrates that C. hartmannianum should be explored further for new anti-TB drug scaffolds and antibiotic adjuvants.


Assuntos
Antibacterianos/farmacologia , Combretum , Flavonoides/farmacologia , Glicosídeos/farmacologia , Taninos Hidrolisáveis/farmacologia , Mycobacterium smegmatis/efeitos dos fármacos , Triterpenos Pentacíclicos/farmacologia , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Antibacterianos/isolamento & purificação , Combretum/química , Etnofarmacologia , Flavonoides/isolamento & purificação , Glicosídeos/isolamento & purificação , Humanos , Taninos Hidrolisáveis/isolamento & purificação , Testes de Sensibilidade Microbiana , Mycobacterium smegmatis/crescimento & desenvolvimento , Triterpenos Pentacíclicos/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Sudão
18.
Molecules ; 26(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34361788

RESUMO

This research investigated a UPLC-QTOF/ESI-MS-based phytochemical profiling of Combretum indicum leaf extract (CILEx), and explored its in vitro antioxidant and in vivo antidiabetic effects in a Long-Evans rat model. After a one-week intervention, the animals' blood glucose, lipid profile, and pancreatic architectures were evaluated. UPLC-QTOF/ESI-MS fragmentation of CILEx and its eight docking-guided compounds were further dissected to evaluate their roles using bioinformatics-based network pharmacological tools. Results showed a very promising antioxidative effect of CILEx. Both doses of CILEx were found to significantly (p < 0.05) reduce blood glucose, low-density lipoprotein (LDL), and total cholesterol (TC), and increase high-density lipoprotein (HDL). Pancreatic tissue architectures were much improved compared to the diabetic control group. A computational approach revealed that schizonepetoside E, melianol, leucodelphinidin, and arbutin were highly suitable for further therapeutic assessment. Arbutin, in a Gene Ontology and PPI network study, evolved as the most prospective constituent for 203 target proteins of 48 KEGG pathways regulating immune modulation and insulin secretion to control diabetes. The fragmentation mechanisms of the compounds are consistent with the obtained effects for CILEx. Results show that the natural compounds from CILEx could exert potential antidiabetic effects through in vivo and computational study.


Assuntos
Antioxidantes/farmacologia , Combretum/química , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Arbutina/química , Arbutina/isolamento & purificação , Sítios de Ligação , Glicemia/efeitos dos fármacos , HDL-Colesterol/agonistas , HDL-Colesterol/sangue , LDL-Colesterol/antagonistas & inibidores , LDL-Colesterol/sangue , Biologia Computacional/métodos , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Flavonoides/química , Flavonoides/isolamento & purificação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Insulina/agonistas , Insulina/metabolismo , Masculino , Modelos Moleculares , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Extratos Vegetais/química , Folhas de Planta/química , Ligação Proteica , Conformação Proteica , Ratos , Ratos Long-Evans , Triterpenos/química , Triterpenos/isolamento & purificação
19.
Molecules ; 26(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34443320

RESUMO

Crop diseases caused by Fusarium pathogens, among other microorganisms, threaten crop production in both commercial and smallholder farming. There are increasing concerns about the use of conventional synthetic fungicides due to fungal resistance and the associated negative effects of these chemicals on human health, livestock and the environment. This leads to the search for alternative fungicides from nature, especially from plants. The objectives of this study were to characterize isolated compounds from Combretum erythrophyllum (Burch.) Sond. and Withania somnifera (L.) Dunal leaf extracts, evaluate their antifungal activity against Fusarium pathogens, their phytotoxicity on maize seed germination and their cytotoxicity effect on Raw 264.7 macrophage cells. The investigation led to the isolation of antifungal compounds characterized as 5-hydroxy-7,4'-dimethoxyflavone, maslinic acid (21-hydroxy-3-oxo-olean-12-en-28-oic acid) and withaferin A (4ß,27-dihydroxy-1-oxo-5ß,6ß-epoxywitha-2-24-dienolide). The structural elucidation of the isolated compounds was established using nuclear magnetic resonance (NMR) spectroscopy, mass spectroscopy (MS) and, in comparison, with the available published data. These compounds showed good antifungal activity with minimum inhibitory concentrations (MIC) less than 1.0 mg/mL against one or more of the tested Fusarium pathogens (F. oxysporum, F. verticilloides, F. subglutinans, F. proliferatum, F. solani, F. graminearum, F. chlamydosporum and F. semitectum). The findings from this study indicate that medicinal plants are a good source of natural antifungals. Furthermore, the isolated antifungal compounds did not show any phytotoxic effects on maize seed germination. The toxicity of the compounds A (5-hydroxy-7,4'-dimethoxyflavone) and AI (4ß,27-dihydroxy-1-oxo-5ß,6ß-epoxywitha-2-24-dienolide) was dose-dependent, while compound B (21-hydroxy-3-oxo-olean-12-en-28-oic acid) showed no toxicity effect against Raw 264.7 macrophage cells.


Assuntos
Antifúngicos/farmacologia , Combretum/química , Fusarium/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Withania/química , Animais , Camundongos , Testes de Sensibilidade Microbiana , Células RAW 264.7
20.
Molecules ; 26(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926133

RESUMO

Combretum quadrangulare Kurz is widely used in folk medicine in Eastern Asia and is associated with various ethnopharmacological properties including hepatoprotective, antipyretic, analgesic, antidysenteric, and anthelmintic activities. Previous phytochemical investigations reported the presence of numerous triterpenes (mostly cycloartanes, ursanes, lupanes, and oleananes) along with dozens of flavonoids. However, the extracts of C. quadrangulare and isolated flavonoids have not been evaluated for their alpha-glucosidase inhibition. In the frame of our efforts dedicated to the chemical investigation of Vietnamese medicinal plants and their biological activities, a phytochemical study of the MeOH extract of the leaves of C. quadrangulare using bioactive guided isolation was undertaken. In this paper, the isolation and structure elucidation of twelve known compounds, 5-hydroxy-3,7,4'-trimethoxyflavone (1), ayanin (2), kumatakenin (3), rhamnocitrin (4), ombuin (5), myricetin-3,7,3',5'-tetramethyl ether (6), gardenin D (7), luteolin (12), apigenin (13), mearnsetin (14), isoorientin (15), and vitexin (16) were reported. Bromination was applied to compounds 2 and 3 to provide four new synthetic analogues 8-11. All isolated and synthesized compounds were evaluated for alpha-glucosidase inhibition and antibacterial activity. Compounds 4 and 5 showed moderate antibacterial activity against methicillin-resistant Staphylococcus aureus while others were inactive. All compounds failed to reveal any activity toward extended spectrum beta-lactamase-producing Escherichia coli. Compounds 2, 4, 6-9, and 11-14 showed good alpha-glucosidase inhibition with IC50 values in the range of 30.5-282.0 µM. The kinetic of enzyme inhibition showed that 8 and 11 were noncompetitive type inhibition against alpha-glucosidase. In silico molecular docking model indicated that compounds 8 and 11 were potential inhibitors against enzyme α-glucosidase.


Assuntos
Combretum/química , Flavonas/química , Flavonas/farmacologia , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Relação Dose-Resposta a Droga , Flavonas/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Compostos Fitoquímicos/química , Extratos Vegetais/isolamento & purificação , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA