Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Dev Cell ; 57(2): 260-276.e9, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35077680

RESUMO

Metabolic flexibility is a hallmark of many cancers where mitochondrial respiration is critically involved, but the molecular underpinning of mitochondrial control of cancer metabolic reprogramming is poorly understood. Here, we show that reverse electron transfer (RET) through respiratory chain complex I (RC-I) is particularly active in brain cancer stem cells (CSCs). Although RET generates ROS, NAD+/NADH ratio turns out to be key in mediating RET effect on CSC proliferation, in part through the NAD+-dependent Sirtuin. Mechanistically, Notch acts in an unconventional manner to regulate RET by interacting with specific RC-I proteins containing electron-transporting Fe-S clusters and NAD(H)-binding sites. Genetic and pharmacological interference of Notch-mediated RET inhibited CSC growth in Drosophila brain tumor and mouse glioblastoma multiforme (GBM) models. Our results identify Notch as a regulator of RET and RET-induced NAD+/NADH balance, a critical mechanism of metabolic reprogramming and a metabolic vulnerability of cancer that may be exploited for therapeutic purposes.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Células-Tronco Neoplásicas/metabolismo , Receptores Notch/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Respiração Celular/fisiologia , Modelos Animais de Doenças , Drosophila , Transporte de Elétrons/fisiologia , Complexo I de Transporte de Elétrons/fisiologia , Elétrons , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Mitocôndrias/metabolismo , NAD/metabolismo , Células-Tronco Neoplásicas/fisiologia , Espécies Reativas de Oxigênio/metabolismo
2.
PLoS One ; 12(11): e0188087, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29136012

RESUMO

Knockout of the mitochondrial complex I protein, NDUFS4, profoundly increases sensitivity of mice to volatile anesthetics. In mice carrying an Ndufs4lox/lox gene, adeno-associated virus expressing Cre recombinase was injected into regions of the brain postulated to affect sensitivity to volatile anesthetics. These injections generated otherwise phenotypically wild type mice with region-specific, postnatal inactivation of Ndufs4, minimizing developmental effects of gene loss. Sensitivities to the volatile anesthetics isoflurane and halothane were measured using loss of righting reflex (LORR) and movement in response to tail clamp (TC) as endpoints. Knockdown (KD) of Ndufs4 in the vestibular nucleus produced resistance to both anesthetics for movement in response to TC. Ndufs4 loss in the central and dorsal medial thalami and in the parietal association cortex increased anesthetic sensitivity to both TC and LORR. Knockdown of Ndufs4 only in the parietal association cortex produced striking hypersensitivity for both endpoints, and accounted for half the total change seen in the global KO (Ndufs4(KO)). Excitatory synaptic transmission in the parietal association cortex in slices from Ndufs4(KO) animals was hypersensitive to isoflurane compared to control slices. We identified a direct neural circuit between the parietal association cortex and the central thalamus, consistent with a model in which isoflurane sensitivity is mediated by a thalamic signal relayed through excitatory synapses to the parietal association cortex. We postulate that the thalamocortical circuit is crucial for maintenance of consciousness and is disrupted by the inhibitory effects of isoflurane/halothane on mitochondria.


Assuntos
Anestésicos Inalatórios/farmacologia , Córtex Cerebral/efeitos dos fármacos , Complexo I de Transporte de Elétrons/fisiologia , Tálamo/efeitos dos fármacos , Animais , Córtex Cerebral/fisiologia , Complexo I de Transporte de Elétrons/genética , Feminino , Masculino , Camundongos , Camundongos Knockout , Tálamo/fisiologia
3.
J Bioenerg Biomembr ; 48(4): 413-23, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27525823

RESUMO

Propofol (2,6-diisopropylphenol) is an anaesthetic widely used for human sedation. Due to its intrinsic antioxidant properties, rapid induction of anaesthesia and fast recovery, it is employed in paediatric anaesthesia and in the intensive care of premature infants. Recent studies have pointed out that exposure to anaesthesia in the early stage of life might be responsible of long-lasting cognitive impairment. The apoptotic neurodegeneration induced by general anaesthetics (GA) involves mitochondrial impairment due to the inhibition of the OXPHOS machinery. In the present work, we aim to identify the main mitochondrial respiratory chain target of propofol toxicity and to evaluate the possible protective effect of CoQ10 supplementation. The propofol effect on the mitochondrial functionality was assayed in isolated mitochondria and in two cell lines (HeLa and T67) by measuring oxygen consumption rate. The protective effect of CoQ10 was assessed by measuring cells viability, NADH-oxidase activity and ATP/ADP ratio in cells treated with propofol. Our results show that propofol reduces cellular oxygen consumption rate acting mainly on mitochondrial Complex I. The kinetic analysis of Complex I inhibition indicates that propofol interferes with the Q module acting as a non-competitive inhibitor with higher affinity for the free form of the enzyme. Cells supplemented with CoQ10 are more resistant to propofol toxicity. Propofol exposure induces cellular damages due to mitochondrial impairment. The site of propofol inhibition on Complex I is the Q module. CoQ10 supplementation protects cells against the loss of energy suggesting its possible therapeutic role to minimizing the detrimental effects of general anaesthesia.


Assuntos
Complexo I de Transporte de Elétrons/fisiologia , Mitocôndrias/efeitos dos fármacos , Propofol/toxicidade , Ubiquinona/análogos & derivados , Linhagem Celular Tumoral , Respiração Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Suplementos Nutricionais , Células HeLa , Humanos , Hipnóticos e Sedativos/toxicidade , Mitocôndrias/química , Mitocôndrias/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Ubiquinona/efeitos dos fármacos , Ubiquinona/farmacologia
4.
Am J Physiol Heart Circ Physiol ; 305(8): H1131-40, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23955717

RESUMO

Superoxide (O2(·-)) production by the NADPH oxidases is implicated in the pathogenesis of many cardiovascular diseases, including hypertension. We have previously shown that activation of NADPH oxidases increases mitochondrial O2(·-) which is inhibited by the ATP-sensitive K(+) channel (mitoKATP) inhibitor 5-hydroxydecanoic acid and that scavenging of mitochondrial or cytoplasmic O2(·-) inhibits hypertension. We hypothesized that mitoKATP-mediated mitochondrial O2(·-) potentiates cytoplasmic O2(·-) by stimulation of NADPH oxidases. In this work we studied Nox isoforms as a potential target of mitochondrial O2(·-). We tested contribution of reverse electron transfer (RET) from complex II to complex I in mitochondrial O2(·-) production and NADPH oxidase activation in human aortic endothelial cells. Activation of mitoKATP with low dose of diazoxide (100 nM) decreased mitochondrial membrane potential (tetramethylrhodamine methyl ester probe) and increased production of mitochondrial and cytoplasmic O2(·-) measured by site-specific probes and mitoSOX. Inhibition of RET with complex II inhibitor (malonate) or complex I inhibitor (rotenone) attenuated the production of mitochondrial and cytoplasmic O2(·-). Supplementation with a mitochondria-targeted SOD mimetic (mitoTEMPO) or a mitochondria-targeted glutathione peroxidase mimetic (mitoEbselen) inhibited production of mitochondrial and cytoplasmic O2(·-). Inhibition of Nox2 (gp91ds) or Nox2 depletion with small interfering RNA but not Nox1, Nox4, or Nox5 abolished diazoxide-induced O2(·-) production in the cytoplasm. Treatment of angiotensin II-infused mice with RET inhibitor dihydroethidium (malate) significantly reduced blood pressure. Our study suggests that mitoKATP-mediated mitochondrial O2(·-) stimulates cytoplasmic Nox2, contributing to the development of endothelial oxidative stress and hypertension.


Assuntos
Pressão Sanguínea/fisiologia , Células Endoteliais/fisiologia , Glicoproteínas de Membrana/fisiologia , NADPH Oxidases/fisiologia , Estresse Oxidativo/fisiologia , Superóxidos , Animais , Aorta/citologia , Pressão Sanguínea/efeitos dos fármacos , Respiração Celular/fisiologia , Células Cultivadas , Diazóxido/farmacologia , Complexo I de Transporte de Elétrons/fisiologia , Complexo II de Transporte de Elétrons/fisiologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , NADPH Oxidase 2 , Canais de Potássio/metabolismo , Vasodilatadores/farmacologia
5.
CNS Spectr ; 13(9): 805-14, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18849900

RESUMO

INTRODUCTION: 99mTc-d,l-hexamethylpropylene amine oxime (99mTc-HMPAO) retention in brain is proportional to cerebral blood flow and related to both the local hemodynamic state and to the cellular content of reduced glutathione. Alterations of the regional distribution of 99mTc-HMPAO retention, with discrepant results, have been reported at functional brain imaging of unipolar depression. Since mitochondrial involvement has been reported in depressed patients, the aim of the study was to explore whether the 99mTc-HMPAO retention at single-photon emission computed tomography in depressed patients may relate to different levels of mitochondrial function. METHODS: All patients had audiological and muscular symptoms, somatic symptoms that are common in depression. Citrate synthase (CS) activity assessed in muscle mitochondria correlated strongly with the activities of three mitochondrial respiratory chain enzymes and was used as a marker of mitochondrial function. K-means clustering performed on CS grouped eight patients with low and 11 patients with normal CS. Voxel-based analysis was performed on the two groups by statistical parametric mapping. RESULTS: Voxel-based analysis showed significantly higher 99mTc-HMPAO retention in the patients with low CS compared with the patients with normal CS in the posterior and inferior frontal cortex, the superior and posterior temporal cortex, the somato-sensory cortex, and the associative parietal cortex. CONCLUSION: Low muscle CS in depressed patients is related to higher regional 99mTc-HMPAO retention that may reflect cerebrovascular adaptation to impaired intracellular metabolism and/or intracellular enzymatic changes, as previously reported in mitochondrial disorder. Mitochondrial dysfunction in varying proportions of the subjects may explain some of the discrepant results for 99mTc-HMPAO retention in depression.


Assuntos
Encéfalo/diagnóstico por imagem , Citrato (si)-Sintase/metabolismo , Transtorno Depressivo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Mitocôndrias Musculares/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Adulto , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Dominância Cerebral/fisiologia , Complexo I de Transporte de Elétrons/fisiologia , Feminino , Lobo Frontal/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Tecnécio Tc 99m Exametazima/farmacocinética
6.
Chem Biol Interact ; 150(3): 253-70, 2004 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-15560892

RESUMO

A comparison of Cd2+ and Ca2+ effects on in vitro rat liver mitochondria function and a further study of their interaction were conducted. Similarity and distinction in action of rotenone, oligomycin, N-ethylmaleimide, dithiothreitol, catalase, dibucaine, ruthenium red, cyclosporin A (CsA), and ADP on Cd2+ and/or Ca2+-induced mitochondrial dysfunction were revealed. We found that rotenone exerted a strong protective action both against Ca2+ and Cd2+-produced mitochondrial membrane permeabilization (MMP). In contrast to Ca2+, catalase and dibucaine did not influence on main Cd2+ effects. In NH4NO3 medium N-ethylmaleimide (NEM) at low concentrations increased markedly Cd2+-produced swelling of non-energized mitochondria, whereas it exhibited a partial reversal effect following energization. In sucrose medium low [NEM] did not change Cd2+-produced mitochondrial swelling. High [NEM] promoted synergistic increase of the Cd2+-produced swelling in NH4NO3 medium; all above effects were reversed (and prevented) by dithiothreitol, DTT. We shown also that when exogenous Ca2+ and Pi were simultaneously present in NH4NO3 medium, DTT reversed only partially Cd2+-produced swelling of succinate plus rotenone-energized mitochondria, while DTT recovery action was complete when either Ca2+ or Pi were separately administered to the Cd2+-treated mitochondria. Besides, DTT added following a low Cd2+ pulse in KCl medium containing exogenous Ca2+ induced a substantial enhancing of sustained Cd2+ stimulation of mitochondrial basal respiration and the stimulation was CsA-sensitive, while the activation promoted by low [Cd2+] alone was totally eliminated by DTT supplement. We observed the similar respiratory activation earlier when high concentrations of Cd2+ in the absence of added Ca2+ were used but it was completely CsA-insensitive. A possible involvement of respiratory chain components, namely complex I (P-site) and complex III (S-site) in Cd2+ and/or Ca2+-produced MMP was discussed.


Assuntos
Cádmio/farmacologia , Cálcio/farmacologia , Complexo III da Cadeia de Transporte de Elétrons/fisiologia , Complexo I de Transporte de Elétrons/fisiologia , Membranas Intracelulares/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Difosfato de Adenosina/farmacologia , Animais , Catalase/farmacologia , Dibucaína/farmacologia , Complexo I de Transporte de Elétrons/efeitos dos fármacos , Complexo III da Cadeia de Transporte de Elétrons/efeitos dos fármacos , Etilmaleimida/farmacologia , Técnicas In Vitro , Membranas Intracelulares/fisiologia , Masculino , Mitocôndrias Hepáticas/fisiologia , Dilatação Mitocondrial/efeitos dos fármacos , Oligomicinas/farmacologia , Permeabilidade/efeitos dos fármacos , Ratos , Rotenona/farmacologia , Rutênio Vermelho/farmacologia
7.
J Thorac Cardiovasc Surg ; 128(2): 180-8, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15282453

RESUMO

OBJECTIVE: This study tested the hypothesis that cardioplegic solution supplemented with a nitric oxide donor agent attenuates postischemic cardiomyocytic apoptosis by reduction of mitochondrial complex I up-regulation during global cardiac arrest under cardiopulmonary bypass. METHODS: Twenty-four anesthetized dogs supported by total vented bypass were divided evenly into 4 groups (n = 6) and subjected to 60 minutes of hypothermic ischemia followed by 4 degrees C multidose crystalloid cardioplegic solution infusion. Hearts received either standard crystalloid cardioplegic solution (control), crystalloid cardioplegic solution supplemented with 2 mmol/L L-arginine (L-Arg group), crystalloid cardioplegic solution supplemented with 400 micromol/L N(G)-monomethyl-L-arginine (L-NMMA group), or crystalloid cardioplegic solution supplemented with 100 micromol/L of NO donor compound (3-morpholinosydnonimine; SIN-1 group). After 60 minutes of cardioplegic arrest, the heart was reperfused for a total of 240 minutes after discontinuation of bypass. The occurrence of cardiomyocytic apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling and Western blot analysis of caspase-3. RESULTS: The occurrence of cardiomyocytic apoptosis was significantly reduced in SIN-1 and L-Arg groups compared with the control group. Mitochondrial complex I mRNA was up-regulated in the control group, and its expression was significantly higher in the L-NMMA group but significantly reduced in the SIN-1 and L-Arg groups. Western blot analysis of Bcl-2 and cytochrome c, an index of mitochondrial damage in postischemic myocardium, revealed a similar pattern. CONCLUSION: Nitric oxide-supplemented crystalloid cardioplegic solution diminished postischemic cardiomyocytic apoptosis after global cardiac arrest under cardiopulmonary bypass, possibly via prevention of mitochondrial complex I up-regulation.


Assuntos
Apoptose/efeitos dos fármacos , Ponte Cardiopulmonar , Complexo I de Transporte de Elétrons/fisiologia , Molsidomina/uso terapêutico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos , Doadores de Óxido Nítrico/uso terapêutico , Óxido Nítrico/uso terapêutico , Animais , Ponte Cardiopulmonar/efeitos adversos , Cães , Complexo I de Transporte de Elétrons/efeitos dos fármacos , Molsidomina/análogos & derivados , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/etiologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA