Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 527
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Endocrinol ; 580: 112101, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37923055

RESUMO

Terrestrial vertebrates have a population of androgen-dependent vasotocin (VT)-expressing neurons in the extended amygdala that are more abundant in males and mediate male-typical social behaviors, including aggression. Teleosts lack these neurons but instead have novel male-specific VT-expressing neurons in the tuberal hypothalamus. Here we found in medaka that vt expression in these neurons is dependent on post-pubertal gonadal androgens and that androgens can act on these neurons to directly stimulate vt transcription via the androgen receptor subtype Ara. Furthermore, administration of exogenous VT induced aggression in females and alterations in the androgen milieu led to correlated changes in the levels of tuberal hypothalamic vt expression and aggression in both sexes. However, genetic ablation of vt failed to prevent androgen-induced aggression in females. Collectively, our results demonstrate a marked androgen dependence of male-specific vt expression in the teleost tuberal hypothalamus, although its relevance to male-typical aggression needs to be further validated.


Assuntos
Agressão , Oryzias , Animais , Feminino , Masculino , Agressão/fisiologia , Androgênios/farmacologia , Androgênios/metabolismo , Comportamento Sexual Animal/fisiologia , Vasotocina/metabolismo , Oryzias/metabolismo , Hipotálamo/metabolismo
2.
Eur J Neurosci ; 57(7): 1068-1080, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36796802

RESUMO

By targeting the endocannabinoid system, delta-9-tetrahydrocannabinol (THC) modulates female motivated behaviours, influenced by sex hormones. Both medial preoptic nucleus (MPN) and ventromedial nucleus of the hypothalamus (VMN) are involved in the modulation of female sexual responses. The first triggers proceptivity, whereas the ventrolateral division of the latter (VMNvl) triggers receptivity. These nuclei are modulated by glutamate, which inhibits female receptivity, and GABA, which has a dichotomous action in female sexual motivation. Here, we evaluated the action of THC on the modulation of social and sexual behaviours, on signalling pathways of MPN and VMNvl and how sex hormones influence these parameters. Young ovariectomized female rats, given sex hormones (oestradiol benzoate, EB, and progesterone, P) and THC were used for behavioural testing and for immunofluorescence analyses of vesicular glutamate transporter 2 (VGlut2) and GAD (glutamic acid decarboxylase)67 expression. Results showed that females given EB + P exhibited a higher preference for male partner, as well as higher proceptivity and a higher receptivity than control or females given only EB. Females treated with THC presented similar responses in control or EB + P female rats and even more facilitated behavioural responses in EB females than the ones that did not receive THC. Immunofluorescence results in the MPN exhibited a decreased expression of GAD67 and VGlut2 in EB + THC-treated female rats. Within VMNvl of EB-primed rats no changes in the expression of both proteins were observed after THC exposure. This study demonstrates how the possible outcomes of endocannabinoid system instability within hypothalamic neuron connectivity can modify female rat sociosexual behaviour.


Assuntos
Dronabinol , Comportamento Sexual Animal , Ratos , Animais , Feminino , Masculino , Humanos , Dronabinol/farmacologia , Comportamento Sexual Animal/fisiologia , Endocanabinoides , Progesterona , Estradiol/farmacologia , Estradiol/fisiologia , Hipotálamo , Ovariectomia
3.
Cell ; 186(1): 178-193.e15, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608653

RESUMO

The hypothalamus regulates innate social behaviors, including mating and aggression. These behaviors can be evoked by optogenetic stimulation of specific neuronal subpopulations within MPOA and VMHvl, respectively. Here, we perform dynamical systems modeling of population neuronal activity in these nuclei during social behaviors. In VMHvl, unsupervised analysis identified a dominant dimension of neural activity with a large time constant (>50 s), generating an approximate line attractor in neural state space. Progression of the neural trajectory along this attractor was correlated with an escalation of agonistic behavior, suggesting that it may encode a scalable state of aggressiveness. Consistent with this, individual differences in the magnitude of the integration dimension time constant were strongly correlated with differences in aggressiveness. In contrast, approximate line attractors were not observed in MPOA during mating; instead, neurons with fast dynamics were tuned to specific actions. Thus, different hypothalamic nuclei employ distinct neural population codes to represent similar social behaviors.


Assuntos
Comportamento Sexual Animal , Núcleo Hipotalâmico Ventromedial , Animais , Comportamento Sexual Animal/fisiologia , Núcleo Hipotalâmico Ventromedial/fisiologia , Hipotálamo/fisiologia , Agressão/fisiologia , Comportamento Social
4.
Neuron ; 110(18): 2893-2895, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36137518

RESUMO

In this issue of Neuron, Yin and colleagues describe a new subpopulation of neurons in the ventrolateral part of the ventromedial hypothalamus, cholecystokinin A receptor (Cckar)-expressing cells, and unravel their roles in regulating female sexual behavior over reproductive cycles.


Assuntos
Amor , Neurônios , Animais , Feminino , Hipotálamo , Receptor de Colecistocinina A , Comportamento Sexual , Comportamento Sexual Animal/fisiologia
5.
Nature ; 608(7924): 741-749, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922505

RESUMO

Mating and aggression are innate social behaviours that are controlled by subcortical circuits in the extended amygdala and hypothalamus1-4. The bed nucleus of the stria terminalis (BNSTpr) is a node that receives input encoding sex-specific olfactory cues from the medial amygdala5,6, and which in turn projects to hypothalamic nuclei that control mating7-9 (medial preoptic area (MPOA)) and aggression9-14 (ventromedial hypothalamus, ventrolateral subdivision (VMHvl)), respectively15. Previous studies have demonstrated that male aromatase-positive BNSTpr neurons are required for mounting and attack, and may identify conspecific sex according to their overall level of activity16. However, neural representations in BNSTpr, their function and their transformations in the hypothalamus have not been characterized. Here we performed calcium imaging17,18 of male BNSTprEsr1 neurons during social behaviours. We identify distinct populations of female- versus male-tuned neurons in BNSTpr, with the former outnumbering the latter by around two to one, similar to the medial amygdala and MPOA but opposite to VMHvl, in which male-tuned neurons predominate6,9,19. Chemogenetic silencing of BNSTprEsr1 neurons while imaging MPOAEsr1 or VMHvlEsr1 neurons in behaving animals showed, unexpectedly, that the male-dominant sex-tuning bias in VMHvl was inverted to female-dominant whereas a switch from sniff- to mount-selective neurons during mating was attenuated in MPOA. Our data also indicate that BNSTprEsr1 neurons are not essential for conspecific sex identification. Rather, they control the transition from appetitive to consummatory phases of male social behaviours by shaping sex- and behaviour-specific neural representations in the hypothalamus.


Assuntos
Comportamento Sexual Animal , Comportamento Social , Agressão/fisiologia , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Animais , Cálcio/análise , Cálcio/metabolismo , Feminino , Hipotálamo/citologia , Hipotálamo/fisiologia , Masculino , Neurônios/fisiologia , Área Pré-Óptica/citologia , Área Pré-Óptica/fisiologia , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia
6.
Neuron ; 110(18): 3000-3017.e8, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-35896109

RESUMO

Sexual behavior is fundamental for the survival of mammalian species and thus supported by dedicated neural substrates. The ventrolateral part of ventromedial hypothalamus (VMHvl) is an essential locus for controlling female sexual behaviors, but recent studies revealed the molecular complexity and functional heterogeneity of VMHvl cells. Here, we identify the cholecystokinin A receptor (Cckar)-expressing cells in the lateral VMHvl (VMHvllCckar) as the key controllers of female sexual behaviors. The inactivation of VMHvllCckar cells in female mice diminishes their interest in males and sexual receptivity, whereas activating these cells has the opposite effects. Female sexual behaviors vary drastically over the reproductive cycle. In vivo recordings reveal reproductive-state-dependent changes in VMHvllCckar cell spontaneous activity and responsivity, with the highest activity occurring during estrus. These in vivo response changes coincide with robust alternation in VMHvllCckar cell excitability and synaptic inputs. Altogether, VMHvllCckar cells represent a key neural population dynamically controlling female sexual behaviors over the reproductive cycle.


Assuntos
Agressão , Hipotálamo , Agressão/fisiologia , Animais , Feminino , Hipotálamo/fisiologia , Masculino , Mamíferos , Camundongos , Receptor de Colecistocinina A , Comportamento Sexual Animal/fisiologia
7.
Neuron ; 110(5): 737-739, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35240060

RESUMO

In this issue of Neuron, Liu et al. (2022) molecularly identify subsets of estrogen receptor-1-positive neurons within the female ventrolateral subdivision of the ventromedial hypothalamus activated during sexual receptivity versus agonistic behaviors in distinct reproductive states and demonstrate that these subsets control state-dependent changes in social behaviors.


Assuntos
Comportamento Sexual Animal , Animais , Feminino , Hipotálamo/fisiologia , Neurônios/fisiologia , Comportamento Sexual Animal/fisiologia , Comportamento Social
8.
Neuron ; 110(5): 841-856.e6, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34982958

RESUMO

Female mice exhibit opposing social behaviors toward males depending on their reproductive state: virgins display sexual receptivity (lordosis behavior), while lactating mothers attack. How a change in reproductive state produces a qualitative switch in behavioral response to the same conspecific stimulus is unknown. Using single-cell RNA-seq, we identify two distinct subtypes of estrogen receptor-1-positive neurons in the ventrolateral subdivision of the female ventromedial hypothalamus (VMHvl) and demonstrate that they causally control sexual receptivity and aggressiveness in virgins and lactating mothers, respectively. Between- and within-subject bulk-calcium recordings from each subtype reveal that aggression-specific cells acquire an increased responsiveness to social cues during the transition from virginity to maternity, while the responsiveness of the mating-specific population appears unchanged. These results demonstrate that reproductive-state-dependent changes in the relative activity of transcriptomically distinct neural subtypes can underlie categorical switches in behavior associated with physiological state changes.


Assuntos
Lactação , Comportamento Sexual Animal , Agressão/fisiologia , Animais , Feminino , Humanos , Hipotálamo/fisiologia , Masculino , Camundongos , Gravidez , Comportamento Sexual Animal/fisiologia , Comportamento Social
9.
Sci China Life Sci ; 65(3): 466-499, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34985643

RESUMO

All animals possess a plethora of innate behaviors that do not require extensive learning and are fundamental for their survival and propagation. With the advent of newly-developed techniques such as viral tracing and optogenetic and chemogenetic tools, recent studies are gradually unraveling neural circuits underlying different innate behaviors. Here, we summarize current development in our understanding of the neural circuits controlling predation, feeding, male-typical mating, and urination, highlighting the role of genetically defined neurons and their connections in sensory triggering, sensory to motor/motivation transformation, motor/motivation encoding during these different behaviors. Along the way, we discuss possible mechanisms underlying binge-eating disorder and the pro-social effects of the neuropeptide oxytocin, elucidating the clinical relevance of studying neural circuits underlying essential innate functions. Finally, we discuss some exciting brain structures recurrently appearing in the regulation of different behaviors, which suggests both divergence and convergence in the neural encoding of specific innate behaviors. Going forward, we emphasize the importance of multi-angle and cross-species dissections in delineating neural circuits that control innate behaviors.


Assuntos
Comportamento Animal , Vias Neurais/fisiologia , Animais , Bulimia , Hipotálamo/fisiologia , Ocitocina/farmacologia , Comportamento Predatório/fisiologia , Comportamento Sexual Animal/fisiologia , Comportamento Social , Vias Visuais/fisiologia , Zona Incerta/fisiologia
10.
Physiol Behav ; 244: 113649, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34798129

RESUMO

Sexually naïve female mice do not display high levels of sexual receptivity in their first sexual experience; they require around 4-5 sexual encounters to display the full receptive response, assessed by the lordosis reflex. In this study, we evaluated if repeated sexual stimulation with the same male is associated with changes in synaptic remodeling evaluated by synaptophysin (SYP) in brain structures involved in the control of sexual behavior such as the main and accessory olfactory bulbs (MOB and AOB, respectively), medial preoptic area (MPOA), ventromedial hypothalamus (VMH), and amygdala (AMG). Female mice were ovariectomized and hormonally primed to induce sexual receptivity. They were randomly distributed into three groups: a) sexually naïve (SN), with no prior sexual stimulation; b) sexually inexperienced (SI), with one prior mating session; and c) sexually experienced (SE), with six mating sessions. The SI group showed a significant decrease in SYP in the glomerular, mitral and granular layers of the AOB in comparison to SN and SE females. SYP expression increased in the SE group in comparison to SN and SI females in the glomerular and mitral cell layers of the AOB. No significant differences between groups were found in the other brain regions (MOB, MPOA, VMH or AMG). These changes in SYP expression in the AOB suggest that plastic modifications in this brain region can be associated with receptivity increase in sexual experience in female mice.


Assuntos
Bulbo Olfatório , Comportamento Sexual Animal , Animais , Feminino , Hipotálamo/metabolismo , Masculino , Camundongos , Bulbo Olfatório/metabolismo , Área Pré-Óptica/metabolismo , Comportamento Sexual Animal/fisiologia , Sinaptofisina/metabolismo
11.
Sci Rep ; 11(1): 24100, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916552

RESUMO

An approximate 1:1 sex ratio of American lobsters can be skewed due to environmental factors or fisheries management. Substantial skewness can impact mating behaviour and lower reproduction which could have far-reaching ecological and economic consequences. The aim was to investigate the sex ratio patterns of lobsters in two lobster fishing areas (LFAs) in southwestern Nova Scotia, Canada and identify factors associated with skewed sex ratios. This study analyzed biological data from more than 270,000 lobsters sampled over ten years (2010-2019) by the Fishermen and Scientists Research Society. A mixed effect logistic regression model evaluated the effect of spatial, temporal and environmental factors as well as size on the sex ratio of lobsters. There were significant temporal patterns in sex ratios that differed by LFA. After the effects of sampling month, year and LFA were accounted for, lower bottom temperature and deeper water depth were associated with a higher prevalence of females, especially in larger lobsters. We present the first long term analyses of sex ratio patterns in H. americanus in Atlantic Canada's most commercially important region for this species and provide evidence that these patterns are influenced by environmental factors and fisheries. In view of future climate change scenarios, monitoring the population dynamics of this iconic fishery species is crucial to ensure sustainable fisheries and healthy lobster stocks.


Assuntos
Ecossistema , Pesqueiros , Nephropidae/fisiologia , Reprodução/fisiologia , Razão de Masculinidade , Comportamento Sexual Animal/fisiologia , Animais , Mudança Climática , Feminino , Modelos Logísticos , Masculino , Nova Escócia , Água do Mar , Frutos do Mar , Temperatura , Fatores de Tempo
12.
Sci Rep ; 11(1): 5026, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658547

RESUMO

Biparental care is very rare in insects, and it was well-documented in only one bee species to this date - Ceratina nigrolabiata. However, biparental care was only recently discovered in this species, and detailed description of natural history of this species is missing. Here, we describe the nesting cycle of C. nigrolabiata. Pairs of C. nigrolabiata are established before female starts offspring provisioning. After provisioning is finished (when youngest offspring reached larval stage), the male abandons the nest. Males which are present in nests where female already finished provisioning brood cells, are probably mainly temporary visitors. The female can perform long-time offspring guarding, but only 22% of completely provisioned nests are guarded by a female. Most nests (54%) are closed and abandoned, when provisioning is completed, and other (24%) are orphaned before provisioning is finished. Guarded nests have statistically higher number of brood cells provisioned than unguarded nests. Generally, C. nigrolabiata is unique among bees due to its biparental behavior, but it has also uncommon traits of nesting biology among Ceratina bees, e.g. fast offspring development in comparison with provisioning rate, and high proportion of nests which are closed and abandoned by mother.


Assuntos
Abelhas/fisiologia , Comportamento Alimentar/fisiologia , Comportamento de Nidação/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Feminino , Larva/crescimento & desenvolvimento , Masculino , Pólen/química
13.
Sovrem Tekhnologii Med ; 13(6): 36-41, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35265357

RESUMO

The aim of the study is to identify the mechanisms mediating differences in sexual behavior between Sprague Dawley and Wistar rats, in order to choose the optimal stock for research into pharmacological correction of male sexual dysfunction. Materials and Methods: The experiments were carried out on sexually mature male rats of two stocks (Sprague Dawley and Wistar) weighing 350-450 g and aged 3 to 6 months. The comparative study of animal behavior was performed using standard tests for social interaction, locomotor activity, and anxiety level, as well as male mating behavior patterns. In order to determine the role of hypothalamic glycine receptors in the male sexual behavior, pharmacological manipulations of glycine receptor activity during mating with receptive females were conducted via bilateral intracerebral microcannulas implanted in the medial preoptic area (mPOA) of the male rat anterior hypothalamus. Results: The obtained results revealed statistically significant inter-stock differences in sexual behavior at the final consummatory stage of both intact animals and those after pharmacological activation of glycine receptors in the mPOA. The number of anxiety-related grooming patterns in the Open Field test significantly differed between the stocks for both intact animals and those after pharmacological activation of glycine receptors; the observed differences disappeared after the mPOA glycine receptors were blocked. In the Crowley test of social interaction, no significant difference was found between the stocks.Thus, the revealed difference in sexual behavior between Sprague Dawley and Wistar male rats is likely due to the difference in the level of anxiety, which, in turn, may be associated with difference in the mechanisms of glycinergic neurotransmission in the hypothalamic mPOAs of these rats. Conclusion: To study the relationship between the level of anxiety and sexual behavior, the choice of the Wistar rat stock is optimal since the male sexual behavior in this stock is more sensitive to stress than that in Sprague Dawley rats. However, to model male sexual dysfunction not associated with anxiety, the use of Sprague Dawley male rats should be preferred as these animals show more stable sexual behavior, which is less dependent on the level of anxiety.


Assuntos
Área Pré-Óptica , Comportamento Sexual Animal , Animais , Feminino , Hipotálamo , Masculino , Área Pré-Óptica/fisiologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Comportamento Sexual Animal/fisiologia
14.
J Fish Biol ; 98(1): 267-276, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33016336

RESUMO

Here we describe massive spawning aggregations and seasonal changes in the large-scale distribution of the Patagonian grouper Acanthistius patachonicus in the Southwest Atlantic based on three sources of information: (a) data from bottom trawl research surveys covering the distributional range of the species within the Argentine continental shelf; (b) folk ecological knowledge gathered from experienced captains of the Argentine industrial trawl fisheries; and (c) sampling of an artisanal trap fishery targeting the Patagonian grouper in a specific location off the coast of Buenos Aires Province. The trawl surveys showed a general pattern of aggregation of Patagonian grouper towards the coast during the reproductive period (September-December). Captains described massive aggregations of the species at specific near-shore locations, where trawl catches of up to 15 t in a single haul were registered during the reproductive season. At a local scale, the artisanal trap fishery described operates exclusively during the reproductive period, targeting near-shore aggregations with a high proportion of individuals releasing gametes onboard. These three sources of information provide evidence of the existence of massive transient spawning aggregations of Patagonian grouper in the Argentine shelf. This is the first report of a reef fish spawning aggregation in the southern region of the Southwest Atlantic. Anecdotal information gathered in this study points to the depletion of many of the aggregations targeted during the 1980s and 1990s by the industrial fleet. At the same time, the spawning aggregation site off Buenos Aires Province has been productive for the last 34 years, being exploited exclusively by traps. The Patagonian grouper is classified as Data Deficient by the International Union for Conservation of Nature, which highlights the need for further research to determine its stock status. Mapping its current spawning aggregations should be a priority to inform the design of a targeted monitoring program and management plan for this species.


Assuntos
Bass/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Oceano Atlântico , Pesqueiros , Reprodução , Estações do Ano
15.
Int J Neurosci ; 131(8): 780-788, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32303141

RESUMO

AIMS: A number of studies have shown that neuropeptide Y (NPY) is considered to be one of the key regulators of hypothalamic-pituitary-gonadal (HPG) axis in the mammals. In addition, kisspeptin (encode by Kiss1 gene), neurokinin B (encode by Tac3 gene) and dynorphin (encode by Pdyn gene) (commonly known as KNDy secreting neurons) are a powerful upstream regulators of GnRH neuron in hypothalamus. MATERIALS AND METHODS: The present study aims to investigate the effects of the intracerebroventricular (icv) injection of NPY and BIBP3226 (NPY receptor antagonist (NPYRA)) on the male sexual behavioral. Additionally, in order to see whether NPY signals can be relayed through the pathway of kisspeptin/neurokinin B/dynorphin, the gene expression of these peptides along with Gnrh1 gene in the hypothalamus were measured. RESULTS: The icv injection of NPY decreased the latencies and increase the frequencies of sexual parameters of the male rats in a significant way. In this line, NPYRA antagonized the stimulative effects of NPY. Moreover, data from real-time quantitative PCR indicated that injection of NPY significantly increased the gene expression of Gnrh1, Kiss1 and Tac3 and decrease the Pdyn while treatment with NPYRA controlled the modulative effects of NPY on these gene expression. CONCLUSIONS: In conclusion based on the results of this study, NPY can exert its impacts on the sexual behavior of male rats via modulation of the KNDy secreting neurons as an interneural pathway to GnRH neurons.


Assuntos
Neuropeptídeo Y/administração & dosagem , Neuropeptídeo Y/fisiologia , Comportamento Sexual Animal/efeitos dos fármacos , Comportamento Sexual Animal/fisiologia , Transdução de Sinais/efeitos dos fármacos , Animais , Dinorfinas/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Kisspeptinas , Masculino , Neurocinina B/metabolismo , Ratos Wistar
16.
Nature ; 589(7841): 258-263, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33268894

RESUMO

Animal behaviours that are superficially similar can express different intents in different contexts, but how this flexibility is achieved at the level of neural circuits is not understood. For example, males of many species can exhibit mounting behaviour towards same- or opposite-sex conspecifics1, but it is unclear whether the intent and neural encoding of these behaviours are similar or different. Here we show that female- and male-directed mounting in male laboratory mice are distinguishable by the presence or absence of ultrasonic vocalizations (USVs)2-4, respectively. These and additional behavioural data suggest that most male-directed mounting is aggressive, although in rare cases it can be sexual. We investigated whether USV+ and USV- mounting use the same or distinct hypothalamic neural substrates. Micro-endoscopic imaging of neurons positive for oestrogen receptor 1 (ESR1) in either the medial preoptic area (MPOA) or the ventromedial hypothalamus, ventrolateral subdivision (VMHvl) revealed distinct patterns of neuronal activity during USV+ and USV- mounting, and the type of mounting could be decoded from population activity in either region. Intersectional optogenetic stimulation of MPOA neurons that express ESR1 and vesicular GABA transporter (VGAT) (MPOAESR1∩VGAT neurons) robustly promoted USV+ mounting, and converted male-directed attack to mounting with USVs. By contrast, stimulation of VMHvl neurons that express ESR1 (VMHvlESR1 neurons) promoted USV- mounting, and inhibited the USVs evoked by female urine. Terminal stimulation experiments suggest that these complementary inhibitory effects are mediated by reciprocal projections between the MPOA and VMHvl. Together, these data identify a hypothalamic subpopulation that is genetically enriched for neurons that causally induce a male reproductive behavioural state, and indicate that reproductive and aggressive states are represented by distinct population codes distributed between MPOAESR1 and VMHvlESR1 neurons, respectively. Thus, similar behaviours that express different internal states are encoded by distinct hypothalamic neuronal populations.


Assuntos
Agressão/fisiologia , Hipotálamo/citologia , Hipotálamo/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Copulação , Receptor alfa de Estrogênio/metabolismo , Feminino , Homossexualidade Masculina , Masculino , Camundongos , Optogenética , Área Pré-Óptica/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
17.
Behav Brain Res ; 395: 112860, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32798594

RESUMO

Agonistic interaction is important for establishing social hierarchy and determining access to limited resources. Although there are substantial studies investigating the neural mechanisms of aggressive or defensive behavior in male rodents, little attention has been paid to the mechanisms underlying agonistic behaviors in females. In the present study, we depicted patterns of agonistic behaviors in sexually naïve female Mongolian gerbils (Meriones unguiculatus) and examined the neuronal activation in the brain by Fos-immunoreactive (Fos-ir) staining. We found that the winner-loser relationship was established rapidly. Winners displayed higher levels of aggression, environmental exploration, scent marking, and self-grooming, but less defensive behavior, in comparison to losers. Several patterns of Fos-ir expression emerged following agonistic interactions. Winners had the number of Fos-ir cells in the ventrolateral subnucleus of the ventromedial hypothalamus (VMHvl) and dorsal periaqueductal grey (PAGd) more than the controls but less than the losers. Losers also had more Fos-ir cells in the paraventricular nucleus of the hypothalamus (PVN), anterior medial (BSTam) and anteriolateral (BSTal) subnuclei of the bed nucleus of the stria terminalis (BST), and the ventral subnucleus of the lateral septum (LSv), as well as less Fos-ir cells in the dentate gyrus of the hippocampus (DG), compared to the controls. In addition, the number of Fos-ir cells showed similar increases in the principal nucleus (BSTpr) and interfascicular nucleus (BSTif) of the BST and amygdala (AMYG) in both the winners and losers, compared to the controls. Together, these data illustrate the patterns of altered neuronal activation in a behavior-, social status-, and brain region-specific manner, implicating potential roles of the brain neural circuit in mediating agonistic interactions in female Mongolian gerbils.


Assuntos
Agressão/fisiologia , Comportamento Agonístico/fisiologia , Gerbillinae/fisiologia , Tonsila do Cerebelo/metabolismo , Animais , Encéfalo/metabolismo , Feminino , Hierarquia Social , Hipotálamo/metabolismo , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Substância Cinzenta Periaquedutal/metabolismo , Comportamento Sexual Animal/fisiologia , Comportamento Social
18.
Nat Neurosci ; 23(9): 1111-1124, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32719562

RESUMO

Sexual and aggressive behaviors are fundamental to animal survival and reproduction. The medial preoptic nucleus (MPN) and ventrolateral part of the ventromedial hypothalamus (VMHvl) are essential regions for male sexual and aggressive behaviors, respectively. While key inhibitory inputs to the VMHvl and MPN have been identified, the extrahypothalamic excitatory inputs essential for social behaviors remain elusive. Here we identify estrogen receptor alpha (Esr1)-expressing cells in the posterior amygdala (PA) as a main source of excitatory inputs to the hypothalamus and key mediators for mating and fighting in male mice. We find two largely distinct PA subpopulations that differ in connectivity, gene expression, in vivo responses and social behavior relevance. MPN-projecting PAEsr1+ cells are activated during mating and are necessary and sufficient for male sexual behaviors, while VMHvl-projecting PAEsr1+ cells are excited during intermale aggression and promote attacks. These findings place the PA as a key node in both male aggression and reproduction circuits.


Assuntos
Agressão/fisiologia , Tonsila do Cerebelo/fisiologia , Vias Neurais/fisiologia , Comportamento Sexual Animal/fisiologia , Tonsila do Cerebelo/citologia , Animais , Hipotálamo/citologia , Hipotálamo/fisiologia , Masculino , Camundongos , Vias Neurais/citologia , Neurônios/citologia , Neurônios/fisiologia
19.
Sci Rep ; 10(1): 8981, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32488193

RESUMO

Female choice is an important driver of sexual selection, but can be costly, particularly when choosy females risk remaining unmated or experience delays to reproduction. Thus, females should reduce choosiness when mate encounter rates are low. We asked whether choosiness is affected by social context, which may provide reliable information about the local availability of mates. This has been demonstrated in the lab, but rarely under natural conditions. We studied western black widow spiders (Latrodectus hesperus) in the field, placing experimental final-instar immature females so they were either 'isolated' or 'clustered' near naturally occurring conspecifics (≥10 m or ≤1 m, respectively, from a microhabitat occupied by at least one other female). Upon maturity, females in both treatments were visited by similar numbers of males, but clustered females were visited by males earlier and in more rapid succession than isolated females, confirming that proximity to conspecifics reduces the risk of remaining unmated. As predicted, isolated females were less choosy in staged mating trials, neither rejecting males nor engaging in pre-copulatory cannibalism, in contrast to clustered females. These results demonstrate that exposure of females to natural variation in demography in the field can alter choosiness of adults. Thus, female behaviour in response to cues of local population density can affect the intensity of sexual selection on males in the wild.


Assuntos
Viúva Negra/fisiologia , Comportamento de Escolha/fisiologia , Preferência de Acasalamento Animal/fisiologia , Reprodução/fisiologia , Comportamento Sexual Animal/fisiologia , Animais , Canibalismo , Feminino , Masculino , Densidade Demográfica
20.
Physiol Behav ; 215: 112789, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31866231

RESUMO

Numerous studies have reported seasonal variations in regional morphology in the brains of seasonally breeding vertebrates. These alterations of neuronal morphology and dendritic spine density appear to be an active process within specific brain nuclei that regulate seasonal behaviors. In many cases, this neural plasticity has been found to be in response to changes in circulating sex steroid hormone levels and occur within pathways essential for the control of reproductive behaviors. Male red-sided garter snakes (Thamnophis sirtalis parietalis) (RSGS) exhibit a dissociated reproductive pattern where mating is initiated at a time when the gonads and steroidogenesis are inactive. And, although circulating levels of sex steroid hormones are elevated at the initiation of courtship and mating, the only known cue found to initiate courtship behavior and mating, is an extended period of low temperature dormancy (LTD) followed by exposure to warm temperatures. This study was designed to examine the role of seasons, sex steroid hormones, and LTD on neuronal and dendritic spine density within the anterior hypothalamus-preoptic area (AHPOA), a region shown to be critical for the regulation of reproductive behaviors. In the male RSGS, the density of dendritic spines on neurons in the AHPOA was significantly greater in spring, actively courting animals, than summer or fall, non-courting animals. Animals maintained under conditions of LTD exhibited significantly increasing spine density as time maintained in LTD increased. Animals receiving either testosterone or estradiol had a significantly greater density of dendritic spines than control animals. This study offers evidence suggesting that the "set up" of the pathways controlling courtship behavior and mating in the male RSGS, is not due solely to an extended period of LTD, but that an extended period of LTD in conjunction with circulating sex steroid hormones are critical for the initiation of reproductive behavior.


Assuntos
Colubridae/fisiologia , Espinhas Dendríticas/fisiologia , Hormônios Esteroides Gonadais/farmacologia , Plasticidade Neuronal/fisiologia , Prosencéfalo/fisiologia , Estações do Ano , Torpor/fisiologia , Animais , Temperatura Baixa , Corte , Estradiol/metabolismo , Estradiol/farmacologia , Hormônios Esteroides Gonadais/metabolismo , Hipotálamo/metabolismo , Masculino , Área Pré-Óptica/metabolismo , Comportamento Sexual Animal/fisiologia , Testosterona/metabolismo , Testosterona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA