Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 283
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Environ Int ; 186: 108615, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38582061

RESUMO

Compost is widely used in agriculture as fertilizer while providing a practical option for solid municipal waste disposal. However, compost may also contain per- and polyfluoroalkyl substances (PFAS), potentially impacting soils and leading to PFAS entry into food chains and ultimately human exposure risks via dietary intake. This study examined how compost affects the bioavailability and uptake of eight PFAS (two ethers, three fluorotelomer sulfonates, and three perfluorosulfonates) by lettuce (Lactuca sativa) grown in commercial organic compost-amended, PFAS spiked soils. After 50 days of greenhouse experiment, PFAS uptake by lettuce decreased (by up to 90.5 %) with the increasing compost amendment ratios (0-20 %, w/w), consistent with their decreased porewater concentrations (by 30.7-86.3 %) in compost-amended soils. Decreased bioavailability of PFAS was evidenced by the increased in-situ soil-porewater distribution coefficients (Kd) (by factors of 1.5-7.0) with increasing compost additions. Significant negative (or positive) correlations (R2 ≥ 0.55) were observed between plant bioaccumulation (or Kd) and soil organic carbon content, suggesting that compost amendment inhibited plant uptake of PFAS mainly by increasing soil organic carbon and enhancing PFAS sorption. However, short-chain PFAS alternatives (e.g., perfluoro-2-methoxyacetic acid (PFMOAA)) were effectively translocated to shoots with translocation factors > 2.9, increasing their risks of contamination in leafy vegetables. Our findings underscore the necessity for comprehensive risk assessment of compost-borne PFAS when using commercial compost products in agricultural lands.


Assuntos
Compostagem , Fluorocarbonos , Lactuca , Poluentes do Solo , Solo , Poluentes do Solo/metabolismo , Poluentes do Solo/análise , Compostagem/métodos , Solo/química , Fluorocarbonos/metabolismo , Fluorocarbonos/análise , Lactuca/metabolismo , Disponibilidade Biológica , Agricultura/métodos
2.
Sci Total Environ ; 930: 172515, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642759

RESUMO

The disposal of Chinese medicinal herbal residues (CMHRs) derived from Chinese medicine extraction poses a significant environmental challenge. Aerobic composting presents a sustainable treatment method, yet optimizing nutrient conversion remains a critical concern. This study investigated the effect and mechanism of biochar addition on nitrogen and phosphorus transformation to enhance the efficacy and quality of compost products. The findings reveal that incorporating biochar considerably enhanced the process of nutrient conversion. Specifically, biochar addition promoted the retention of bioavailable organic nitrogen and reduced nitrogen loss by 28.1 %. Meanwhile, adding biochar inhibited the conversion of available phosphorus to non-available phosphorus while enhancing its conversion to moderately available phosphorus, thereby preserving phosphorus availability post-composting. Furthermore, the inclusion of biochar altered microbial community structure and fostered organic matter retention and humus formation, ultimately affecting the modification of nitrogen and phosphorus forms. Structural equation modeling revealed that microbial community had a more pronounced impact on bioavailable organic nitrogen, while humic acid exerted a more significant effect on phosphorus availability. This research provides a viable approach and foundation for regulating the levels of nitrogen and phosphorus nutrients during composting, serving as a valuable reference for the development of sustainable utilization technologies pertaining to CMHRs.


Assuntos
Carvão Vegetal , Compostagem , Substâncias Húmicas , Nitrogênio , Fósforo , Fósforo/análise , Carvão Vegetal/química , Nitrogênio/análise , Compostagem/métodos , Microbiologia do Solo , Medicamentos de Ervas Chinesas/química , Solo/química
3.
Environ Sci Pollut Res Int ; 31(20): 29017-29032, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561539

RESUMO

We used microbiology and molecular biology techniques to screen out high-temperature and low-temperature-resistant saprobiotics for compost and prepared a compound fermentation bacteria agent to rapidly ferment cattle manure into high-quality organic fertilizer in low-temperature season. Conventional composting and high-throughput techniques were used to analyze the changes of physical and chemical indexes and biodiversity in the process of composting, from which high and low-temperature-resistant strains were obtained, and high-temperature and low-temperature-resistant solid composite bactericides were prepared and added to composting to verify the effects of composite bactericides on composting. The conventional composting cycle took 22 days, and the diversity of microflora increased first and then decreased. Composting temperature and microbial population were the key factors for the success or failure of composting. Two strains of high-temperature-resistant bacteria and six strains of low-temperature-resistant bacteria were screened out, and they were efficient in degrading starch, cellulose, and protein. The high-temperature and low-temperature-resistant solid bacterial agent was successfully prepared with adjuvant. The preparation could make the compost temperature rise quickly at low temperature, the high temperature lasted for a long time, the water content, C/N, and organic matter fell quickly, the contents of total phosphorus and total potassium were increased, and the seed germination index was significantly improved. Improve the composting effect. The solid composite bacterial agent can shorten the composting time at low temperature and improve the composting efficiency and quality.


Assuntos
Compostagem , Fermentação , Esterco , Animais , Bovinos , Temperatura , Bactérias , Fertilizantes
4.
J Hazard Mater ; 470: 134131, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38552390

RESUMO

Arsenic (As) in sewage sludge poses a significant threat to environmental and human health, which has attracted widespread attention. This study investigated the value of adding sodium percarbonate (SP) on phosphorus (P) availability and As efflux detoxification through HS-P-As interactions. Due to the unique structure of humus (HS) and the similar chemical properties of P and As, the conditions for HS-P-As interaction are provided. This study discussed the content, morphology and microbial communities of HS, P and As by using metagenomic and correlation analysis. The results showed that the humification index in the experiment group (SPC) was 2.34 times higher than that in the control group (CK). The available phosphorus (AP) content of SPC increased from 71.09 mg/kg to 126.14 mg/kg, and SPC was 1.11 times that of CK. The relative abundance of ACR3/ArsB increased. Pst, Actinomyces and Bacillus commonly participated in P and As conversion. The correlation analysis revealed that the humification process was enhanced, the AP was strengthened, and the As was efflux detoxified after SP amendment. All in all, this study elucidated the key mechanism of HS-P-As interaction and put forward a new strategy for sewage sludge resource utilization and detoxification.


Assuntos
Arsênio , Compostagem , Substâncias Húmicas , Fósforo , Esgotos , Fósforo/metabolismo , Fósforo/química , Esgotos/microbiologia , Arsênio/metabolismo , Arsênio/química , Microbiologia do Solo
5.
Bioresour Technol ; 398: 130503, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38442847

RESUMO

Targeted regulation of composting to convert organic matter into humic acid (HA) holds significant importance in compost quality. Owing to its low carbon content, chicken manure compost often requires carbon supplements to promote the humification progress. The addition of lignite can increase HA content through biotic pathways, however, its structure was not explored. The Parallel factor analysis revealed that lignite can significantly increase the complexity of highly humified components. The lignite addition improved phenol oxidase activity, particularly laccase, during the thermophilic and cooling phases. The abundance and transformation functions of core bacteria also indicated that lignite addition can influence the activity of microbial transformation of HA components. The structural equation model further confirmed that lignite addition had a direct and indirect impact on enhancing the complexity of HA components through core bacteria and phenol oxidase. Therefore, lignite addition can improve HA structure complexity during composting through biotic pathways.


Assuntos
Compostagem , Substâncias Húmicas , Animais , Substâncias Húmicas/análise , Solo , Esterco , Galinhas , Carvão Mineral , Monofenol Mono-Oxigenase , Carbono
6.
J Environ Manage ; 353: 120145, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38306857

RESUMO

This work aimed to investigate the microbial mechanisms for the improvement of composting efficiency driven by the compound microbial inoculum (MI) (Bacillus subtilis SL-44, Enterobacter hormaechei Rs-189 and Trichoderma reesei) during co-composting of spent mushroom substrate (SMS) and chicken manure (CM). The treatments used in the study were as follows: 1) MI (inoculation with microbial inoculum), 2) CI (inoculation with commercial microbial inoculum), and 3) CK (without inoculation). The results demonstrated that MI increased the seed germination index (GI) by 25.11%, and contents of humus, humic acid (HA) and available phosphorus (AP) were correspondingly promoted by 12.47%, 25.93% and 37.16%, respectively. The inoculation of MI increased the temperature of the thermophilic stage by 3-7 °C and achieved a cellulose degradation rate of 52.87%. 16S rRNA gene analysis indicated that Actinobacteria (11.73-61.61%), Firmicutes (9.46-65.07%), Proteobacteria (2.86-32.17%) and Chloroflexi (0.51-10.92%) were the four major phyla during the inoculation composting. Bacterial metabolic functional analysis revealed that pathways involved in amino acid and glycan biosynthesis and metabolism were boosted in the thermophilic phase. There was a positive correlation between bacterial communities and temperature, humification and phosphorus fractions. The average dry weight, fresh weight and seedling root length in the seedling substrates adding MI compost were 1.13, 1.23 and 1.06 times higher than those of the CK, respectively. This study revealed that biological inoculation could improve the composting quality and efficiency, potentially benefiting the resource utilization of agricultural waste resources.


Assuntos
Agaricales , Compostagem , Animais , Esterco , Galinhas , RNA Ribossômico 16S , Solo , Fósforo
7.
Sci Total Environ ; 918: 170649, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38331290

RESUMO

Anthropogenic disturbance of soils can disrupt soil structure, diminish fertility, alter soil chemical properties, and cause erosion. Current remediation practices involve amending degraded urban topsoils lacking in organic matter and nutrition with organic amendments (OA) to enhance vegetative growth. However, the impact of OAs on water quality and structural properties at rates that meet common topsoil organic matter specifications need to be studied and understood. This study tested three commonly available OAs: shredded wood mulch, leaf-based compost, and class A Exceptional Quality stabilized sewage sludge (or biosolids) for nutrient (nitrogen and phosphorus) water quality, soil shear strength, and hydraulic properties, through two greenhouse tub studies. Findings showed that nitrogen losses to leachate were greater in the biosolids amended topsoils compared to leaf-compost, mulch amended topsoils, and control treatments. Steady-state mean total nitrogen (N) concentrations from biosolids treatment exceeded typical highway stormwater concentrations by at least 25 times. Soil total N content combined with the carbon:nitrogen ratio were identified to be the governing properties of N leaching in soils. Study soils, irrespective of the type of amendment, reduced the applied (tap) water phosphorus (P) concentration of ∼0.3 mg-P/L throughout the experiment. Contrary to the effects on N leaching, P was successfully retained by the biosolids amendment, due to the presence of greater active iron contents. A breakthrough mechanism for P was observed in leaf compost amended soil, where the effluent concentrations of P continued to increase with each rainfall application, possibly due to an saturation of soil adsorption sites. The addition of OAs also improved the strength and hydraulic properties of soils. The effective interlocking mechanisms between the soil and OA surfaces could provide soil its required strength and stability, particularly on slopes. OAs also improved soil fertility to promote turf growth. Presence of vegetative root zones can further reinforce the soil and control erosion.


Assuntos
Compostagem , Poluentes do Solo , Biossólidos , Resistência ao Cisalhamento , Solo/química , Fósforo/química , Nutrientes , Poluentes do Solo/análise , Esgotos/química , Nitrogênio
8.
J Environ Manage ; 354: 120328, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354615

RESUMO

This study aims to evaluate whether different doses of Bacillus-based inoculum inoculated in chicken manure and sawdust composting will provide distinct effects on the co-regulation of ammonia (NH3) and hydrogen sulfide (H2S), nutrient conversions and microbial topological structures. Results indicate that the Bacillus-based inoculum inhibits NH3 emissions mainly by regulating bacterial communities, while promotes H2S emissions by regulating both bacterial and fungal communities. The inoculum only has a little effect on total organic carbon (TOC) and inhibits total sulfur (TS) and total phosphorus (TP) accumulations. Low dose inoculation inhibits total potassium (TK) accumulation, while high dose inoculation promotes TK accumulation and the opposite is true for total nitrogen (TN). The inoculation slightly affects the bacterial compositions, significantly alters the fungal compositions and increases the microbial cooperation, thus influencing the compost substances transformations. The microbial communities promote ammonium nitrogen (NH4+-N), TN, available phosphorus (AP), total potassium (TK) and TS, but inhibit nitrate nitrogen (NO3--N), TP and TK. Additionally, the bacterial communities promote, while the fungal communities inhibit the nitrite nitrogen (NO2--N) production. The core bacterial and fungal genera regulate NH3 and H2S emissions through the secretions of metabolic enzymes and the promoting or inhibiting effects on NH3 and H2S emissions are always opposite. Hence, Bacillus-based inoculum cannot regulate the NH3 and H2S emissions simultaneously.


Assuntos
Bacillus , Compostagem , Microbiota , Animais , Bacillus/metabolismo , Galinhas , Esterco/microbiologia , Odorantes , Amônia/análise , Nitrogênio/análise , Bactérias/metabolismo , Nutrientes , Fósforo , Potássio , Solo/química
9.
Bioresour Technol ; 395: 130329, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38224785

RESUMO

Phosphorus (P) in nature mostly exists in an insoluble state, and humic reducing microorganisms (HRMs) can dissolve insoluble substances through redox properties. This study aimed to investigate the correlations between insoluble P and dominant HRMs amenable to individual culture during biochar composting. These analyses revealed that, in comparison to the control, biochar addition increased the relative abundance of dominant HRMs by 20.3% and decreased redox potential (Eh) levels by 15.4% hence, enhancing the moderately-labile-P and non-labile-P dissolution. The pathways underlying the observed effects were additionally assessed through structural equation modeling, revealing that biochar addition promoted insoluble P dissolution through both the direct effects of bacterial community structure as well as the direct effects of HRMs community structure and indirect effects based on Eh of HRMs community structure. This research offers a better understanding of the effect of HRMs on insoluble P during the composting process.


Assuntos
Compostagem , Solo/química , Fósforo , Carvão Vegetal/química , Oxirredução , Esterco
10.
Waste Manag ; 176: 85-104, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266478

RESUMO

Application of biosolids to agricultural land has gained increasing attention due to their rich nutrient content. There are a variety of treatment processes for converting sewage sludge to biosolids. Different treatment processes can change the physicochemical properties of the raw sewage sludge and affect the dynamics of nutrient release in biosolids-amended soils. This paper reviews heat drying, alkaline treatment, and composting as biosolids treatment processes and discusses the effects of these treatments on biosolid nitrogen (N) content and availability. Most N in the biosolids remain in organic forms, regardless of biosolids treatment type but considerable variation exists in the mean values of total N and mineralizable N across different types of biosolids. The highest mean total N content was recorded in heat-dried biosolids (HDB) (4.92%), followed by composted biosolids (CB) (2.25%) and alkaline-treated biosolids (ATB) (2.14%). The mean mineralizable N value was similar between HDB and ATB, with a broader range of mineralizable N in ATB. The lowest N availability was observed in CB. Although many models have been extensively studied for predicting potential N mineralization in soils amended with organic amendments, limited research has attempted to model soil N mineralization following biosolids application. With biosolids being a popular, economical, and eco-friendly alternative to chemical N-fertilizers, understanding biosolids treatment effects on biosolids properties is important for developing a sound biosolids management system. Moreover, modeling N mineralization in biosolids-amended soils is essential for the adoption of sustainable farming practices that maximize the agronomic value of all types of biosolids.


Assuntos
Compostagem , Poluentes do Solo , Solo/química , Esgotos/química , Biossólidos , Nitrogênio/análise , Temperatura Alta , Poluentes do Solo/análise
11.
Sci Total Environ ; 913: 169794, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38181963

RESUMO

Livestock manure is a major source of veterinary antibiotics and antibiotic resistance genes (ARGs). Elucidation of the residual characteristics of ARGs in livestock manure following the administration of veterinary antibiotics is critical to assess their ecotoxicological effects and environmental contamination risks. Here, we investigated the effects of enrofloxacin (ENR), a fluoroquinolone antibiotic commonly used as a therapeutic drug in animal husbandry, on the characteristics of ARGs, mobile genetic elements, and microbial community structure in swine manure following its intramuscular administration for 3 days and a withdrawal period of 10 days. The results revealed the highest concentrations of ENR and ciprofloxacin (CIP) in swine manure at the end of the administration period, ENR concentrations in swine manure in groups L and H were 88.67 ± 45.46 and 219.75 ± 88.05 mg/kg DM, respectively. Approximately 15 fluoroquinolone resistance genes (FRGs) and 48 fluoroquinolone-related multidrug resistance genes (F-MRGs) were detected in swine manure; the relative abundance of the F-MRGs was considerably higher than that of the FRGs. On day 3, the relative abundance of qacA was significantly higher in group H than in group CK, and no significant differences in the relative abundance of other FRGs, F-MRGs, or MGEs were observed between the three groups on day 3 and day 13. The microbial community structure in swine manure was significantly altered on day 3, and the altered community structure was restored on day 13. The FRGs and F-MRGs with the highest relative abundance were qacA and adeF, respectively, and Clostridium and Lactobacillus were the dominant bacterial genera carrying these genes in swine manure. In summary, a single treatment of intramuscular ENR transiently increased antibiotic concentrations and altered the microbial community structure in swine manure; however, this treatment did not significantly affect the abundance of FRGs and F-MRGs.


Assuntos
Compostagem , Microbiota , Animais , Suínos , Enrofloxacina , Fluoroquinolonas , Esterco/microbiologia , Genes Bacterianos , Antibacterianos/farmacologia , Gado
12.
J Environ Qual ; 53(2): 174-186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38297136

RESUMO

Land application of water treatment residual (WTR) in combination with phosphate-rich organic wastes, like compost or sewage sludge, in nutrient-poor soils was previously shown to promote crop growth. This WTR diversion from landfill to agriculture supports local and international mandates for waste circularity. Although soil-water dynamics-like saturated hydraulic conductivity, water retention, and hydrophobicity-are well-defined for compost and somewhat defined for WTR (except for hydrophobicity), the impacts of co-amending sandy soils with both are not well-defined. In laboratory analyses, co-amendment had an intermediate effect between individual amendments on the hydrophobic sandy soils, increasing water retention by 27% (WTR and compost both increased water retention), decreasing hydrophobicity by increasing hydraulic conductivity twofold (WTR and compost both decreased hydrophobicity), and having no effect on saturated hydraulic conductivity (decreased by WTR and increased by compost). With two positive effects and one "no effect" on soil-water dynamics in laboratory trials, the co-amendment was expected to buffer both crop water use efficiency (WUE) and nutrient availability under drought stress, for Swiss chard (Beta vulgaris L. var. cicla), co-investigated in a multifactorial pot trial. Soil nutrients, particularly phosphate, were shown more critical than soil-water dynamics to improve crop WUE. Thus, co-amended soils have significantly higher crop biomass and WUE than sandy soils. Phosphate-rich organic co-amendment is necessary for crop nutrient sufficiency and thus drought resilience in sandy soils amended with WTR. Thus, pairing wastes to soils for optimum fertility is a critical consideration in waste land application for both biomass and drought resilience.


Assuntos
Compostagem , Purificação da Água , Solo/química , Agricultura , Esgotos , Fosfatos
13.
Environ Sci Pollut Res Int ; 31(7): 9873-9885, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36820966

RESUMO

The European Union's commitment to increase recycling and recovery rates of municipal solid waste requires significant changes in current waste management. Local governments are developing various strategies for treating the organic fraction of municipal waste (biowaste) via composting. Community composting centres (CCC), green waste collection, treatment points and community gardens are some of these new approaches. Population density and spatial distribution, together with the existence of community green areas, determine the location of the various infrastructures for recycling local biowaste. The composting process consumes high amounts of bulking agent (BA) necessary to provide the structure that allows, amongst other uses, biowaste aeration and microbial surface colonisation. Shredded green waste from parks, gardens and households can be used as BA in community composting and home composting. In this study, a total of 46 compost samples obtained from CCC with two types of handling were analysed: 22 samples treated by vertical flow (VF) and 24 samples treated by horizontal flow (HF). The HF model allowed better use of the volume of modular composting units and the VF model required less effort and time for the CCC operator. Mature, stable and high-nutrient-content composts were obtained with both models. These composts met the legal requirements to be used as an organic amendment, and they can be delivered to the participants or used in community gardens in the municipality.


Assuntos
Compostagem , Gerenciamento de Resíduos , Humanos , Solo/química , Reciclagem/métodos , Gerenciamento de Resíduos/métodos , Resíduos Sólidos/análise , Excipientes
14.
Bioresour Technol ; 394: 130176, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086465

RESUMO

This study introduced a novel mechanically-enhanced dynamic composting (MEDC) method for treating kitchen waste (KW) through partial-mixing and stratified fermentation. A pilot test varied aeration frequencies (AF) to refine control parameters and explore the maturation mechanism. Results showed that a moderate AF (10 min/4 h) achieved optimal efficiency, with a compost germination index of 123 % within 15 d. Moderate AF enhanced the growth of Corynebacterium_1 (25.4 %) and Saccharomonospora (10.5 %) during the low-temperature stage and Bacillus growth (91.3 %) during the maturation stage. Moreover, it enhanced microbial interactions (with an average degree of 19.9) and promoted substrate degradation and transformation, expediting heating and maturation. Multivariate dimensionality reduction analysis showed the MEDC accomplished rapid composting through stratified composting, dividing the reactor into distinct functional zones: feeding, low-temperature, high-temperature, and maturation. This enabled efficient microorganism enrichment and material degradation, expediting KW decomposition and maturation. This study offers a promising alternative for accelerated KW composting.


Assuntos
Compostagem , Solo , Temperatura Baixa
15.
Environ Res ; 244: 117904, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38092239

RESUMO

Deciphering the pivotal components of nutrient metabolism in compost is of paramount importance. To this end, ecoenzymatic stoichiometry, enzyme vector modeling, and statistical analysis were employed to explore the impact of exogenous ore improver on nutrient changes throughout the livestock composting process. The total phosphorus increased from 12.86 to 18.72 g kg-1, accompanied by a marked neutralized pH with ore improver, resulting in the Carbon-, nitrogen-, and phosphorus-related enzyme activities decreases. However, the potential C:P and N:P acquisition activities represented by ln(ßG + CB): ln(ALP) and ln(NAG): ln(ALP), were increased with ore improver addition. Based on the ecoenzymatic stoiometry theory, these changes reflect a decreasing trend in the relative P/N limitation, with pH and total phosphorus as the decisive factors. Our study showed that the practical employment of eco stoichiometry could benefit the manure composting process. Moreover, we should also consider the ecological effects from pH for the waste material utilization in sustainable agriculture.


Assuntos
Compostagem , Ecossistema , Animais , Esterco , Gado/metabolismo , Solo , Nitrogênio/análise , Carbono/metabolismo , Fósforo
16.
Bioresour Technol ; 394: 130191, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081470

RESUMO

Understanding the mechanisms of sulfur and phosphorus transformation during composting is important for improving compost fertility. This study aims to investigate the microbial mechanism of available sulfur and phosphorus transformation during sheep manure composting under different moisture contents (45%: M45 and 60%: M60) on the Qinghai-Tibet Plateau using metagenomics technology. The results showed that the final available sulfur and phosphorus contents of M45 were 11% and 13% higher than those of M60, respectively. M45 enhanced sulfur oxidation, sulfate reduction, and thiosulfate disproportionation. These steps were significantly positively correlated with available sulfur, and Pseudomonas, Thermobifida, Luteimonas, Brevibacterium, Planifilum, and Xinfangfangia were the main participants. Available phosphorus was significantly positively correlated with polyphosphate degradation and inorganic P solubilization, and the main participants in these steps were Luteimonas, Brachybacterium, Corynebacterium, Jeotgalicoccus, Microbacterium, Streptomyces, and Pseudoxanthomonas. These findings reveal the microbial mechanisms of available and phosphorus transformation during composting at two moisture contents.


Assuntos
Compostagem , Animais , Humanos , Ovinos , Fósforo/análise , Esterco , Tibet , Solo , Enxofre , Nitrogênio/análise
17.
Folia Microbiol (Praha) ; 69(2): 323-332, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37338677

RESUMO

Fungi harboring lignocellulolytic activity accelerate the composting process of agricultural wastes; however, using thermophilic fungal isolates for this process has been paid little attention. Moreover, exogenous nitrogen sources may differently affect fungal lignocellulolytic activity. A total of 250 thermophilic fungi were isolated from local compost and vermicompost samples. First, the isolates were qualitative assayed for ligninase and cellulase activities using Congo red (CR) and carboxymethyl cellulose (CMC) as substrates, respectively. Then, twenty superior isolates harboring higher ligninase and cellulase activities were selected and quantitatively assayed for both enzymes in basic mineral (BM) liquid medium supplemented with the relevant substrates and nitrogen sources including (NH4)2SO4 (AS), NH4NO3 (AN), urea (U), AS + U (1:1), or AN + U (1:1) with final nitrogen concentration of 0.3 g/L. The highest ligninase activities of 99.94, 89.82, 95.42, 96.25, and 98.34% of CR decolorization were recorded in isolates VC85, VC94, VC85, C145, and VC85 in the presence of AS, U, AS + U, AN, and AN + U, respectively. Mean ligninase activity of 63.75% in superior isolates was achieved in the presence of AS and ranked the highest among other N compounds. The isolates C200 and C184 exhibited the highest cellulolytic activity in the presence of AS and AN + U by 8.8 and 6.5 U/ml, respectively. Mean cellulase activity of 3.90 U/mL was achieved in AN + U and ranked the highest among other N compounds. Molecular identification of twenty superior isolates confirmed that all of them are belonging to Aspergillus fumigatus group. Focusing on the highest ligninase activity of the isolate VC85 in the presence of AS, the combination can be recommended as a potential bio-accelerator for compost production.


Assuntos
Celulase , Compostagem , Oxigenases , Nitrogênio , Fungos
18.
Bioresour Technol ; 393: 130135, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38043688

RESUMO

Alterations in microbial community succession patterns and enzyme activities by petroleum pollutants during co-composting of straw and swine manure with the supplementary nitrogen source are unclear. In this study, urea was added into co-composting systems, and the removal performance of petroleum, microbial enzyme activity and community changes were investigated. Results showed that the polyphenol oxidase and catalase activities which were both related to the degradation of petroleum contaminants were accordingly increased from 20.65 to 30.31 U/g and from 171.87 to 231.86 U/g due to urea addition. The removal efficiency of petroleum contaminants in composting with urea increased from 45.06% to 82.29%. The addition of urea increased the diversity and abundance of petroleum-degrading microorganisms, and enhanced microbial linkages. This study provides a novel strategy for the degradation of petroleum hydrocarbon as well as a new insight into the effect of urea on both microbial processes and composting phases.


Assuntos
Compostagem , Microbiota , Petróleo , Suínos , Animais , Esterco , Solo
19.
Sci Total Environ ; 913: 169522, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38141992

RESUMO

In this study, an organic wastewater treatment process based on aerobic composting technology was developed in order to explore the transition of wastewater treatment from pollutants removal to resource recovery. The novelty of the process focuses towards the microbial metabolic heat that is often ignored during the composting, and taking advantage of this heat for wastewater evaporation to achieve zero-discharge treatment. Meanwhile, this process can retain the wastewater's nutrients in the composting substrate to realize the recovery of resources. This study determined the optimum condition for the process (initial water content of 50 %, C/N ratio of 25:1, ventilation rate of 3 m3/h), and 69.9 % of the total heat generated by composting was used for wastewater treatment under the condition. The HA/FA ratio of composting substrate increased from 0.07 to 0.53 after wastewater treatment, and the retention ratio of TOC and TN was 52.3 % and 61.7 %, respectively, which proved the high recycling value of the composting products. Thermoduric and thermophilic bacteria accounted for 44.3 % of the community structure at the maturation stage, which played a pivotal role in both pollutant removal and resource recovery.


Assuntos
Compostagem , Poluentes Ambientais , Purificação da Água , Águas Residuárias , Solo
20.
Braz J Biol ; 83: e275700, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38126481

RESUMO

Climate changes and the related rise in the frequency of excessive weather proceedings have a strong influence on the physical, chemical, and hydrological processes in soils. Recently the investigators confirmed that the use of biological treatments and resources to overcome abiotic stress is fruitful. Thus, pomegranate peel extract (PPE) because of its high efficacy and/or compost application could improve soil characteristics, soil organic matter and nutrient status. This effect may be referred back to the enhancement in the plant antioxidative defense system against stress conditions. This experiment was done to study the influence of spraying wheat plants with pomegranate peel extract (PPE) with and/or without soil compost added under salt stress on some growth parameters and physiological aspects. Wheat plants were grown in the presence or absence of compost in the soil and foliar sprayed with PPE (600 and 1200 mg L-1) under salt irrigation (3000 and 6000 mg L-1). Growth and yield traits were decreased with salinity stress. High levels of PPE (1200 mg L-1) induced the highest values of osmoprotectants (Total soluble sugars, total soluble protein, proline and free amino acids) in both unstressed or salinity-stressed plants presence or absence compost. Using compost in soil for cultivating wheat plants and PPE spraying treatments increased growth traits photosynthetic pigments and yield components. Moreover, these treatments increased the accumulation of minerals content (N, P, K and Ca) in plants. In general, the results of correlation coefficients showed a significant strong positive relationship among measured yield traits and other tested parameters. The correlation between 1000-grain Wt. and grain Wt./spike (r = 0.94**) was the highest. Meanwhile, a strong negative correlation coefficient between Na% and all yield parameters was recorded. Compost adding to soil and spraying pomegranate peel extract is a successful method for increasing wheat growth, yield and improving the nutritional value of the produced grains under salt stress.


Assuntos
Compostagem , Punica granatum , Triticum , Salinidade , Solo/química , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA