Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 904: 167001, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37704155

RESUMO

As a toxic element of global concern, the elevated concentration of antimony (Sb) in the environment has attracted increasing attention. Microorganisms have been reported as important driving forces for Sb transformation. Iron (Fe) is the most important metal associated element of Sb, however, how Fe-bearing minerals affect the biological transformation of Sb is still unclear. In this study, the effects of Fe-bearing minerals on biological Sb(V) reduction were investigated by employing a marine Shewanella sp. CNZ-1 (CNZ-1). Our results showed that the presence of hematite, magnetite and ferrihydrite (1 g/L) resulted in a decrease in Sb(III) concentration of ~19-31 % compared to the Fe(III)-minerals free system. The calculated Sb(V) reduction rates are 0.0256 (R2 0.71), 0.0389 (R2 0.87), 0.0299 (R2 0.96) and 0.0428 (R2 0.95) h-1 in the hematite-, magnetite-, ferrihydrite-supplemented and Fe(III)-minerals free systems, respectively. The cube-shaped Sb2O3 was characterized as a reductive product by using XRD, XPS, FTIR, TG and SEM approaches. Differential proteomic analysis showed that flagellar protein, cytochrome c, electron transfer flavoprotein, nitrate reductase and polysulfide reductase (up-regulation >1.5-fold, p value <0.05) were supposed to be included in the electron transport pathway of Sb(V) reduction by strain CNZ-1, and the key role of nitrate reductases was further highlighted during this reaction process based on the RT-qPCR and confirmatory experiments. Overall, these findings are beneficial to understand the environmental fate of Sb in the presence of Fe-bearing minerals and provide guidance in developing the bacteria/enzyme-mediated control strategy for Sb pollution.


Assuntos
Compostos Férricos , Ferro , Compostos Férricos/metabolismo , Ferro/metabolismo , Nitrato Redutase/metabolismo , Óxido Ferroso-Férrico , Proteômica , Oxirredução , Minerais/metabolismo , Antimônio/análise
2.
ISME J ; 17(5): 720-732, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36841901

RESUMO

The ever-increasing number of available microbial genomes and metagenomes provides new opportunities to investigate the links between niche partitioning and genome evolution in the ocean, especially for the abundant and ubiquitous marine picocyanobacteria Prochlorococcus and Synechococcus. Here, by combining metagenome analyses of the Tara Oceans dataset with comparative genomics, including phyletic patterns and genomic context of individual genes from 256 reference genomes, we show that picocyanobacterial communities thriving in different niches possess distinct gene repertoires. We also identify clusters of adjacent genes that display specific distribution patterns in the field (eCAGs) and are thus potentially involved in the same metabolic pathway and may have a key role in niche adaptation. Several eCAGs are likely involved in the uptake or incorporation of complex organic forms of nutrients, such as guanidine, cyanate, cyanide, pyrimidine, or phosphonates, which might be either directly used by cells, for example for the biosynthesis of proteins or DNA, or degraded to inorganic nitrogen and/or phosphorus forms. We also highlight the enrichment of eCAGs involved in polysaccharide capsule biosynthesis in Synechococcus populations thriving in both nitrogen- and phosphorus-depleted areas vs. low-iron (Fe) regions, suggesting that the complexes they encode may be too energy-consuming for picocyanobacteria thriving in the latter areas. In contrast, Prochlorococcus populations thriving in Fe-depleted areas specifically possess an alternative respiratory terminal oxidase, potentially involved in the reduction of Fe(III) to Fe(II). Altogether, this study provides insights into how phytoplankton communities populate oceanic ecosystems, which is relevant to understanding their capacity to respond to ongoing climate change.


Assuntos
Prochlorococcus , Synechococcus , Água do Mar/microbiologia , Ecossistema , Compostos Férricos/metabolismo , Oceanos e Mares , Synechococcus/genética , Synechococcus/metabolismo , Metagenoma , Família Multigênica , Nitrogênio/metabolismo , Fósforo/metabolismo , Prochlorococcus/genética , Filogenia
3.
J Hazard Mater ; 446: 130668, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608581

RESUMO

Uranium (U) is a naturally-occurring radionuclide that is toxic to living organisms. Given that proteins are primary targets of U(VI), their identification is an essential step towards understanding the mechanisms of radionuclide toxicity, and possibly detoxification. Here, we implemented a chromatographic strategy including immobilized metal affinity chromatography to trap protein targets of uranyl in Arabidopsis thaliana. This procedure allowed the identification of 38 uranyl-binding proteins (UraBPs) from root and shoot extracts. Among them, UraBP25, previously identified as plasma membrane-associated cation-binding protein 1 (PCaP1), was further characterized as a protein interacting in vitro with U(VI) and other metals using spectroscopic and structural approaches, and in planta through analyses of the fate of U(VI) in Arabidopsis lines with altered PCaP1 gene expression. Our results showed that recombinant PCaP1 binds U(VI) in vitro with affinity in the nM range, as well as Cu(II) and Fe(III) in high proportions, and that Ca(II) competes with U(VI) for binding. U(VI) induces PCaP1 oligomerization through binding at the monomer interface, at both the N-terminal structured domain and the C-terminal flexible region. Finally, U(VI) translocation in Arabidopsis shoots was affected in pcap1 null-mutant, suggesting a role for this protein in ion trafficking in planta.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Urânio , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Compostos Férricos/metabolismo , Membrana Celular/metabolismo , Cátions/química , Cátions/metabolismo , Urânio/química , Proteínas de Ligação ao Cálcio/metabolismo
4.
Bioresour Technol ; 363: 127997, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36152977

RESUMO

The efficient removal of nitrogen and phosphorus remains challenging for traditional wastewater treatment. In this study, the feasibility for enhancing the partial-denitrification and anammox process by Fe (III) reduction coupled to anammox and nitrate-dependent Fe (II) oxidation was explored using municipal wastewater. The nitrogen removal efficiency increased from 75.5 % to 83.0 % by adding Fe (III). Batch tests showed that NH4+-N was first oxidized to N2 or NO2--N by Fe (III), then NO3--N was reduced to NO2--N and N2 by Fe (II), and finally, NO2--N was utilized by anammox. Furthermore, the performance of phosphorus removal improved by Fe addition and the removal efficiency increased to 78.7 %. High-throughput sequencing showed that the Fe-reducing bacteria Pseudomonas and Thiobacillus were successfully enriched. The abundance of anammox bacterial increased from 0.03 % to 0.22 % by multiple nitrite supply pathways. Fe addition presents a promising pathway for application in the anammox process.


Assuntos
Desnitrificação , Águas Residuárias , Oxidação Anaeróbia da Amônia , Bactérias/metabolismo , Reatores Biológicos , Compostos Férricos/metabolismo , Compostos Ferrosos/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Nitrogênio/metabolismo , Dióxido de Nitrogênio , Oxirredução , Fósforo/metabolismo , Esgotos , Águas Residuárias/microbiologia
5.
mBio ; 13(4): e0149822, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35770947

RESUMO

Pseudomonas aeruginosa is an opportunistic pathogen responsible for acute and chronic infections in immunocompromised hosts. This organism is known to compete efficiently against coinfecting microorganisms, due in part to the secretion of antimicrobial molecules and the synthesis of siderophore molecules with high affinity for iron. P. aeruginosa possess a large repertoire of TonB-dependent transporters for the uptake of its own, as well as xenosiderophores released from other bacteria or fungi. Here, we show that P. aeruginosa is also capable of utilizing plant-derived polyphenols as an iron source. We found that exclusively plant-derived phenols containing a catechol group (i.e., chlorogenic acid, caffeic acid, quercetin, luteolin) induce the expression of the TonB-dependent transporters PiuA or PirA. This induction requires the two-component system PirR-PirS. Chlorogenic acid in its Fe(III)-loaded form was actively transported by PiuA and PirA and supported growth under iron-limiting conditions. Coincidentally, PiuA and PirA are also the main TonB transporters for the recently approved siderophore-drug conjugate cefiderocol. Surprisingly, quercetin supplementation increased the susceptibility of P. aeruginosa to siderophore-drug conjugates, due to induction of piuA and pirA expression mediated by the PirR-PirS two-component system. These findings suggest a potential novel therapeutic application for these biologically active dietary polyphenols. IMPORTANCE Iron is an essential element for living organisms. Most bacteria synthesize species-specific iron chelators, called siderophores, able to capture iron from their host or the environment. Pseudomonas aeruginosa, an opportunistic pathogen, produces two endogenous siderophores but is able to acquire iron also via xenosiderophores, produced by other bacteria or fungi, using a set of conserved TonB transporters. Here, we show that P. aeruginosa is also able to use plant metabolites, like quercetin and chlorogenic acid, as siderophores. These metabolites possess an iron-chelating catechol group and are recognized and transported by the TonB transporters PirA and PiuA. Since these transporters also promote the specific uptake of siderophore-drug conjugates, P. aeruginosa exposed to these plant catechols becomes hypersusceptible to this novel class of antibiotics. This unexpected finding suggests a potential therapeutic application for quercetin and chlorogenic acid, which were mainly investigated for their antioxidant and anti-inflammatory properties.


Assuntos
Pseudomonas aeruginosa , Sideróforos , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Catecóis/metabolismo , Catecóis/farmacologia , Ácido Clorogênico/metabolismo , Ácido Clorogênico/farmacologia , Compostos Férricos/metabolismo , Ferro/metabolismo , Quelantes de Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Pseudomonas aeruginosa/metabolismo , Quercetina/metabolismo , Sideróforos/metabolismo
6.
Sci Total Environ ; 837: 155810, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561910

RESUMO

Limitation of rice growth by low phosphorus (P) availability is a widespread problem in tropical and subtropical soils because of the high content of iron (Fe) (oxyhydr)oxides. Ferric iron-bound P (Fe(III)-P) can serve as a P source in paddies after Fe(III) reduction to Fe(II) and corresponding H2PO4- release. However, the relevance of reductive dissolution of Fe(III)-P for plant and microbial P uptake is still an open question. To quantify this, 32P-labeled ferrihydrite (30.8 mg P kg-1) was added to paddy soil mesocosms with rice to trace the P uptake by microorganisms and plants after Fe(III) reduction. Nearly 2% of 32P was recovered in rice plants, contributing 12% of the total P content in rice shoots and roots after 33 days. In contrast, 32P recovery in microbial biomass decreased from 0.5% to 0.08% of 32P between 10 and 33 days after rice transplantation. Microbial biomass carbon (MBC) and dissolved organic C content decreased from day 10 to 33 by 8-54% and 68-77%, respectively, suggesting that the microbial-mediated Fe(III) reduction was C-limited. The much faster decrease of MBC in rooted (by 54%) vs. bulk soil (8-36%) reflects very fast microbial turnover in the rice rhizosphere (high C and oxygen inputs) resulting in the mineralization of the microbial necromass. In conclusion, Fe(III)-P can serve as small but a relevant P source for rice production and could partly compensate plant P demand. Therefore, the P fertilization strategies should consider the P mobilization from Fe (oxyhydr)oxides in flooded paddy soils during rice growth. An increase in C availability for microorganisms in the rhizosphere intensifies P mobilization, which is especially critical at early stages of rice growth.


Assuntos
Oryza , Poluentes do Solo , Compostos Férricos/metabolismo , Ferro/análise , Óxidos , Fósforo/metabolismo , Solo , Poluentes do Solo/análise
7.
Environ Microbiol Rep ; 14(5): 804-811, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35641250

RESUMO

Application of ferric iron is conventionally considered to inhibit methanogenesis in anoxic environments. Here we show that Methanosarcina mazei zm-15, a strain isolated from the natural wetland of Tibetan plateau, is capable of Fe(III) reduction, which significantly promotes its growth and methanogenesis. We grew Ms. mazei zm-15 in a medium containing acetate supplemented with Fe(III) in ferric citrate or ferrihydrite and to some cultures anthraquinone-2,6-disulfonate (AQDS) was applied as an electron shuttle. The reduction of Fe(III) species occurred immediately. Ferric citrate was more readily reduced than ferrihydrite. The X-ray diffraction spectra analysis showed the formation of magnetite from ferrihydrite and amorphous reduced products from ferrihydrite plus AQDS. The analysis of protein contents revealed that Fe(III) reduction contributed 36%-46% of the cell growth. The growth yield, estimated as protein increment per acetate consumed for Fe(III) reduction, increased by 20- to 30-fold compared with methanogenesis, which is in consistence with the difference in free energy available by Fe(III) reduction relative to methanogenesis. We propose that the outer-surface multiheme c-type cytochrome predicted from Ms. mazei zm-15 genome serves as the terminal reductase with the energy-converting hydrogenase and F420 H2 dehydrogenase involved in electron transport chain for Fe(III) reduction. The findings shed a light to better understand the ecophysiology of Methanosarcina in anaerobic environments.


Assuntos
Compostos Férricos , Hidrogenase , Acetatos/metabolismo , Antraquinonas , Citocromos/metabolismo , Compostos Férricos/metabolismo , Óxido Ferroso-Férrico/metabolismo , Hidrogenase/metabolismo , Ferro/metabolismo , Methanosarcina/metabolismo , Oxirredução
8.
Water Res ; 218: 118501, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35523036

RESUMO

Reducing methane emission is of great importance to control the global greenhouse effect. Dissimilatory iron reduction (DIR) coupling of organic matter decomposition may suppress methane production via reducing primary electron donors available for methanogenesis. However, during DIR, the amorphous iron oxides (e.g., ferrihydrite) are easy to transform into more stable crystalline iron minerals, which slowdowns the rate of DIR. Humic substance (HS) with redox activity has been extensively reported to facilitate DIR via "electron shuttles" mechanism, yet little known about the effect of HS on mediating the mineralization of iron oxides and the subsequent influences on DIR and methanogenesis. To clarify this, ferrihydrite and fulvic acid (FA) (as the model substance of HS) were supplied to anaerobic methanogenesis systems. Results showed that FA could significantly decrease the formation of crystalline iron oxides, enhance DIR rate by 13.72% and suppress methanogenesis by 25.13% compared to ferrihydrite supplemented only. By X-ray absorption spectra analysis, it was found that FA could complex with ferrihydrite via forming a Fe-C/O structure on the second shell of Fe atom. Quantum chemical calculation further confirmed that FA reduced the adsorption energy between Fe(II) and ferrihydrite. Our study suggested that rational use of HS to mediate mineralization pathway of iron oxides could efficiently improve the availability of iron oxides to drive DIR and control the conversion of organics into CH4 in natural or engineered systems.


Assuntos
Gases de Efeito Estufa , Benzopiranos , Compostos Férricos/metabolismo , Substâncias Húmicas , Ferro/química , Metano , Oxirredução , Óxidos
9.
Angew Chem Int Ed Engl ; 61(6): e202113619, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866297

RESUMO

Sequential control of exogenous chemical events inside cells is a promising way to regulate cell functions and fate. Herein we report a DNA nanocomplex containing cascade DNAzymes and promoter-like Zn-Mn-Ferrite (ZMF), achieving combined gene/chemo-dynamic therapy. The promoter-like ZMF decomposed in response to intratumoral glutathione to release a sufficient quantity of metal ions, thus promoting cascade DNA/RNA cleavage and free radical generation. Two kinds of DNAzymes were designed for sequential cascade enzymatic reaction, in which metal ions functioned as cofactors. The primary DNAzyme self-cleaved the DNA chain with Zn2+ as cofactor, and produced the secondary DNAzyme; the secondary DNAzyme afterwards cleaved the EGR-1 mRNA, and thus downregulated the expression of target EGR-1 protein, achieving DNAzyme-based gene therapy. Meanwhile, the released Zn2+ , Mn2+ and Fe2+ induced Fenton/Fenton-like reactions, during which free radicals were catalytically generated and efficient chemo-dynamic therapy was achieved. In a breast cancer mouse model, the administration of DNA nanocomplex led to a significant therapeutic efficacy of tumor growth suppression.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Fototerapia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , DNA/química , DNA/metabolismo , DNA Catalítico/química , DNA Catalítico/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Compostos Férricos/química , Compostos Férricos/metabolismo , Terapia Genética , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Manganês/química , Manganês/metabolismo , Camundongos , Nanopartículas/química , Nanopartículas/metabolismo , Zinco/química , Zinco/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33836596

RESUMO

Legume trees form an abundant and functionally important component of tropical forests worldwide with N2-fixing symbioses linked to enhanced growth and recruitment in early secondary succession. However, it remains unclear how N2-fixers meet the high demands for inorganic nutrients imposed by rapid biomass accumulation on nutrient-poor tropical soils. Here, we show that N2-fixing trees in secondary Neotropical forests triggered twofold higher in situ weathering of fresh primary silicates compared to non-N2-fixing trees and induced locally enhanced nutrient cycling by the soil microbiome community. Shotgun metagenomic data from weathered minerals support the role of enhanced nitrogen and carbon cycling in increasing acidity and weathering. Metagenomic and marker gene analyses further revealed increased microbial potential beneath N2-fixers for anaerobic iron reduction, a process regulating the pool of phosphorus bound to iron-bearing soil minerals. We find that the Fe(III)-reducing gene pool in soil is dominated by acidophilic Acidobacteria, including a highly abundant genus of previously undescribed bacteria, Candidatus Acidoferrum, genus novus. The resulting dependence of the Fe-cycling gene pool to pH determines the high iron-reducing potential encoded in the metagenome of the more acidic soils of N2-fixers and their nonfixing neighbors. We infer that by promoting the activities of a specialized local microbiome through changes in soil pH and C:N ratios, N2-fixing trees can influence the wider biogeochemical functioning of tropical forest ecosystems in a manner that enhances their ability to assimilate and store atmospheric carbon.


Assuntos
Fabaceae/microbiologia , Florestas , Microbiota/fisiologia , Minerais/metabolismo , Nutrientes/metabolismo , Clima Tropical , Acidobacteria/classificação , Acidobacteria/genética , Acidobacteria/metabolismo , Biomassa , Carbono/análise , Fabaceae/crescimento & desenvolvimento , Fabaceae/metabolismo , Compostos Férricos/metabolismo , Concentração de Íons de Hidrogênio , Microbiota/genética , Minerais/análise , Nitrogênio/análise , Nitrogênio/metabolismo , Fixação de Nitrogênio , Nutrientes/análise , Panamá , Fósforo/metabolismo , Silicatos/análise , Silicatos/metabolismo , Solo/química , Microbiologia do Solo , Simbiose , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Árvores/microbiologia
11.
J Appl Microbiol ; 129(6): 1733-1743, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32472729

RESUMO

AIMS: To characterize the 21-kDa iron-regulated cell wall protein in Mycobacterium smegmatis co-expressed with the siderophores mycobactin, exochelin and carboxymycobactin upon iron limitation. METHODS AND RESULTS: Mycobacterium smegmatis, grown in the presence of 0·02 µg Fe ml-1 (low iron) produced high levels of all the three siderophores, which were repressed in bacteria supplemented with 8 µg Fe ml-1 (high iron). Exochelin, the major extracellular siderophore was the first to rise and was expressed at high levels during log phase of growth. Carboxymycobactin, a minor component in log phase iron-starved M. smegmatis continued to rise when cultured for longer periods, reaching levels greater than exochelin. Iron-starved bacteria expressed a 21-kDa iron-regulated protein (IrpA) that was identified as Clp protease subunit (MSMEG_3671) and characterized as a receptor for ferri-exochelin. CONCLUSIONS: Ferri-exochelin is the preferred siderophore in M. smegmatis and this ferri-exochelin: IrpA machinery is absent in Mycobacterium tuberculosis. SIGNIFICANCE AND IMPACT OF THE STUDY: Exochelin machinery is functional in M. smegmatis and the carboxymycobactin-mycobactin machinery is the sole iron uptake system in M. tuberculosis. The absence of the ferri-exochelin: IrpA system in the pathogen signifies the importance of the carboxymycobactin-mycobactin system machinery in M. tuberculosis.


Assuntos
Proteínas de Bactérias/metabolismo , Compostos Férricos/metabolismo , Proteínas Reguladoras de Ferro/metabolismo , Ferro/metabolismo , Mycobacterium smegmatis/metabolismo , Peptídeos Cíclicos/metabolismo , Transporte Biológico , Parede Celular/metabolismo , Meios de Cultura/química , Deficiências de Ferro , Mycobacterium smegmatis/crescimento & desenvolvimento , Oxazóis/metabolismo , Sideróforos/metabolismo
12.
Drug Dev Ind Pharm ; 46(5): 846-851, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32301636

RESUMO

In The present project, a variety of MnFe2O4 (Mn) and Cr2Fe6O12 (Cr)-based nanocarriers (NCs) were synthesized as photosensitizer and NCs for delivery of chemotherapeutic curcumin (CUR) and provide a new structure for Photodynamic Therapy (PDT). For determining efficiency of NCs release study, MTT assay, lethal dose test and hemolysis assay were carried out. The release study showed the release of CUR from NCs was pH-dependent, but, every NCs had its own behavior for releasing the drug. The data acquired from the release study showed the CUR release from Mn can reach to over 90% at acidic media instead of 41% at neutral media. However, the CUR released from Cr were approximately equal as Cr had equal zeta potential at both media. Hemolysis activity and lethal dose test displayed the cytotoxicity of NCs was neglectable at both in vitro and in vivo study. Also, the results of anti-cancer activity assay (MTT assay) showed that both of Cr and Mn NCs are suitable systems for PDT. Therefore, the results demonstrated that Mn is suitable NCs for PDT and anticancer drugs delivery of therapeutic drugs.


Assuntos
Antineoplásicos/administração & dosagem , Cromo/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Compostos Férricos/administração & dosagem , Compostos de Manganês/administração & dosagem , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Animais , Antineoplásicos/metabolismo , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Cromo/metabolismo , Relação Dose-Resposta a Droga , Feminino , Compostos Férricos/metabolismo , Células HEK293 , Humanos , Células MCF-7 , Masculino , Compostos de Manganês/metabolismo , Camundongos , Fármacos Fotossensibilizantes/metabolismo
13.
Plant Mol Biol ; 102(4-5): 431-445, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31907707

RESUMO

KEY MESSAGE: Iron deficiency conditions as well as iron supplied as a Fe(III)-mimosine complex induced a number of strategy I and strategy II genes for iron uptake in leucaena. Leucaena leucocephala (leucaena) is a tree-legume that can grow in alkaline soils, where metal-cofactors like Fe(III) are sparingly available. Mimosine, a known chelator of Fe(III), may facilitate Fe(III) uptake in leucaena by serving as a phytosiderophore. To test if mimosine can serve as a phytosiderophore, three sets of experiments were carried out. First, the binding properties and solubility of metal-mimosine complexes were assessed through spectrophotometry. Second, to study mimosine uptake in plants, pole bean, common bean, and tomato plants were supplied with mimosine alone and metal-mimosine complexes. Third, the expression of strategy I (S1) and strategy II (S2) genes for iron uptake from the soil was studied in leucaena plants exposed to different Fe(III) complexes. The results of this study show that (i) mimosine has high binding affinity for metallic cations at alkaline pH, Fe(III)-mimosine complexes are water soluble at alkaline pH, and that mimosine can bind soil iron under alkaline pH; (ii) pole bean, common bean, and tomato plants can uptake mimosine and transport it throughout the plant; and (iii) a number of S1 and S2 genes were upregulated in leucaena under iron-deficiency condition or when Fe(III) was supplied as a Fe(III)-mimosine complex. These findings suggest that leucaena may utilize both S1 and S2 strategies for iron uptake; and mimosine may play an important role in both strategies.


Assuntos
Fabaceae/efeitos dos fármacos , Fabaceae/metabolismo , Mimosina/farmacocinética , Transporte Biológico , Soluções Tampão , Cátions , Compostos Férricos/metabolismo , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ferro/metabolismo , Metais/metabolismo , Nitrogênio , Phaseolus/efeitos dos fármacos , Phaseolus/metabolismo , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Ligação Proteica , Sideróforos/metabolismo , Solo , Solanum/efeitos dos fármacos , Solanum/metabolismo , Solubilidade
14.
Aging (Albany NY) ; 11(21): 9846-9861, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31699955

RESUMO

Iron homeostasis is critical for maintaining normal brain physiological functions, and its mis-regulation can cause neurotoxicity and play a part in the development of many neurodegenerative disorders. The high incidence of iron deficiency makes iron supplementation a trend, and ferric citrate is a commonly used iron supplement. In this study, we found that the chronic oral administration of ferric citrate (2.5 mg/day and 10 mg/day) for 16 weeks selectively induced iron accumulation in the corpus striatum (CPu), substantia nigra (SN) and hippocampus, which typically caused parkinsonism phenotypes in middle-aged mice. Histopathological analysis showed that apoptosis- and oxidative stress-mediated neurodegeneration and dopaminergic neuronal loss occurred in the brain, and behavioral tests showed that defects in the locomotor and cognitive functions of these mice developed. Our research provides a new perspective for ferric citrate as a food additive or in clinical applications and suggests a new potential approach to develop animal models for Parkinson's disease (PD).


Assuntos
Encéfalo/metabolismo , Compostos Férricos/efeitos adversos , Sobrecarga de Ferro/induzido quimicamente , Transtornos Parkinsonianos/induzido quimicamente , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Compostos Férricos/administração & dosagem , Compostos Férricos/metabolismo , Sobrecarga de Ferro/patologia , Masculino , Camundongos , Estresse Oxidativo , Transtornos Parkinsonianos/patologia
15.
Molecules ; 24(20)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652583

RESUMO

The present work reports the successful synthesis of biosynthesized iron oxide nanoparticles (Fe3O4-NPs) with the use of non-toxic leaf extract of Neem (Azadirachta indica) as a reducing and stabilizing agent. The successful synthesis was confirmed by infrared spectra analysis with strong peak observed between 400-600 cm-1 that corresponds to magnetite nanoparticles characteristics. X-ray diffraction (XRD) analysis revealed that iron oxide nanoparticles were of high purity with crystalline cubic structure phases in nature. Besides, the average size of magnetite nanoparticles was observed to be 9-12 nm with mostly irregular shapes using a transmission electron microscope (TEM) and was supported by field emission scanning electron microscope (FESEM). Energy dispersive X-ray analysis shown that the elements iron (Fe) and oxygen (O) were present with atomic percentages of 33.29% and 66.71%, respectively. From the vibrating sample magnetometer (VSM) analysis it was proven that the nanoparticles exhibited superparamagnetic properties with a magnetization value of 73 emu/g and the results showed superparamagnetic behavior at room temperature, suggesting potential applications for a magnetic targeting drug delivery system.


Assuntos
Azadirachta/química , Compostos Férricos/química , Nanopartículas de Magnetita/química , Extratos Vegetais/química , Sistemas de Liberação de Medicamentos , Compostos Férricos/metabolismo , Magnetismo , Nanopartículas de Magnetita/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Folhas de Planta/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
16.
Sci Rep ; 9(1): 11252, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375707

RESUMO

Nanomaterials are widely used in medical and pharmaceutical fields, but their application in plant nutrition is at its infancy. Phosphorous (P) and iron (Fe) are essential mineral nutrients limiting in a wide range of conditions the yield of crops. Phosphate and Fe fertilizers to-date on the market display low efficiency (P fertilizers) and low persistence in soil (Fe fertilizers) and negatively affect the environment. In the tentative to overcome these problems, we developed a continuous industrially scalable method to produce FePO4 NPs based on the rapid mixing of salt solutions in a mixing chamber. The process, that included the addition of citrate as capping agent allowed to obtain a stable suspension of NPs over the time. The NPs were tested for their effectiveness as P and Fe sources on two hydroponically grown crop species (cucumber and maize) comparing their effects to those exerted by non-nanometric FePO4 (bulk FePO4). The results showed that FePO4 NPs improved the availability of P and Fe, if compared to the non-nano counterpart, as demonstrated by leaf SPAD indexes, fresh biomasses and P and Fe contents in tissues. The results open a new avenue in the application of nanosized material in the field of plant nutrition and fertilization.


Assuntos
Cucumis sativus/metabolismo , Fertilizantes , Nanopartículas/metabolismo , Zea mays/metabolismo , Agricultura/métodos , Técnicas de Química Sintética/métodos , Compostos Férricos/química , Compostos Férricos/metabolismo , Ferro/metabolismo , Nanopartículas/química , Nutrientes/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Fósforo/metabolismo
17.
ACS Chem Biol ; 14(8): 1760-1766, 2019 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-31260252

RESUMO

The Gram-negative bacterium Francisella tularensis secretes the siderophore rhizoferrin to scavenge necessary iron from the environment. Rhizoferrin, also produced by a variety of fungi and bacteria, comprises two citrate molecules linked by amide bonds to a central putrescine (diaminobutane) moiety. Genetic analysis has determined that rhizoferrin production in F. tularensis requires two enzymes: FslA, a siderophore synthetase of the nonribosomal peptide synthetase-independent siderophore synthetase (NIS) family, and FslC, a pyridoxal-phosphate-dependent decarboxylase. To discern the steps in the biosynthetic pathway, we tested F. tularensis strain LVS and its ΔfslA and ΔfslC mutants for the ability to incorporate potential precursors into rhizoferrin. Unlike putrescine supplementation, supplementation with ornithine greatly enhanced siderophore production by LVS. Radioactivity from L-[U-14C] ornithine, but not from L-[1-14C] ornithine, was efficiently incorporated into rhizoferrin by LVS. Although neither the ΔfslA nor the ΔfslC mutant produced rhizoferrin, a putative siderophore intermediate labeled by both [U-14C] ornithine and [1-14C] ornithine was secreted by the ΔfslC mutant. Rhizoferrin was identified by liquid chromatography and mass spectrometry in LVS culture supernatants, while citryl-ornithine was detected as the siderophore intermediate in the culture supernatant of the ΔfslC mutant. Our findings support a three-step pathway for rhizoferrin production in Francisella; unlike the fungus Rhizopus delemar, where putrescine functions as a primary precursor for rhizoferrin, biosynthesis in Francisella preferentially starts with ornithine as the substrate for FslA-mediated condensation with citrate. Decarboxylation of this citryl ornithine intermediate by FslC is necessary for a second condensation reaction with citrate to produce rhizoferrin.


Assuntos
Citratos/metabolismo , Compostos Férricos/metabolismo , Francisella tularensis/metabolismo , Ornitina/análogos & derivados , Ornitina/metabolismo , Sideróforos/biossíntese , Proteínas de Bactérias/metabolismo , Radioisótopos de Carbono , Carbono-Nitrogênio Ligases/metabolismo , Carboxiliases/metabolismo , Francisella tularensis/enzimologia
18.
Sci Rep ; 9(1): 6912, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061500

RESUMO

Iron oxide nanoparticles (IONPs) are known to induce cytotoxicity in various cancer cell lines through the generation of reactive oxygen species (ROS). However, the studies on its potential to induce toxicity in normal cell lines and in vivo system are limited and ambiguity still exists. Additionally, small molecules are known to interact with the DNA and cause damage to the DNA. The present study is designed to evaluate the potential interaction of IONPs with DNA along with their other toxicological effects and subsequent attenuation by thymoquinone both in vitro (primary lymphocytes) and in vivo (Wistar rats). IONPs were characterized by TEM, SEM-EDS, and XRD. The results from DNA interaction studies showed that IONPs formed a complex with DNA and also got intercalated between the base pairs of the DNA. The decrease in percent cell viability of rat's lymphocytes was observed along with an increase in ROS generation in a dose-dependent manner (50, 100, 200, 400 and 800 µg/ml of IONPs). The genetic damage in in vivo might be due to the generation of ROS as depletion in anti-enzymatic activity was observed along with an increase in lipid peroxidation in a dose-dependent manner (25, 50, 100 mg/kg of IONPs). Interestingly, supplementation of thymoquinone in combination with IONPs has significantly (P < 0.05) attenuated the genetic and oxidative damage in a dose-dependent manner both in vitro and in vivo. It can be concluded that thymoquinone has the potential to attenuate the oxidative stress and genetic toxicity in vitro and in vivo.


Assuntos
Benzoquinonas/farmacologia , DNA/metabolismo , Compostos Férricos/química , Compostos Férricos/toxicidade , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Animais , Compostos Férricos/antagonistas & inibidores , Compostos Férricos/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Mutagênicos/química , Mutagênicos/metabolismo , Mutagênicos/toxicidade , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
19.
J Vasc Interv Radiol ; 30(7): 1106-1115.e1, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30952520

RESUMO

PURPOSE: To label Clostridium novyi-NT spores (C. novyi-NT) with iron oxide nanoclusters and track distribution of bacteria during magnetic resonance (MR) imaging-monitored locoregional delivery to liver tumors using intratumoral injection or intra-arterial transcatheter infusion. MATERIALS AND METHODS: Vegetative state C. novyi-NT were labeled with iron oxide particles followed by induction of sporulation. Labeling was confirmed with fluorescence microscopy and transmission electron microscopy (TEM). T2 and T2* relaxation times for magnetic clusters and magnetic microspheres were determined using 7T and 1.5T MR imaging scanners. In vitro assays compared labeled bacteria viability and oncolytic potential to unlabeled controls. Labeled spores were either directly injected into N1-S1 rodent liver tumors (n = 24) or selectively infused via the hepatic artery in rabbits with VX2 liver tumors (n = 3). Hematoxylin-eosin, Prussian blue, and gram staining were performed. Statistical comparison methods included paired t-test and ANOVA. RESULTS: Both fluorescence microscopy and TEM studies confirmed presence of iron oxide labels within the bacterial spores. Phantom studies demonstrated that the synthesized nanoclusters produce R2 relaxivities comparable to clinical agents. Labeling had no significant impact on overall growth or oncolytic properties (P >.05). Tumor signal-to-noise ratio (SNR) decreased significantly following intratumoral injection and intra-arterial infusion of labeled spores (P <.05). Prussian blue and gram staining confirmed spore delivery. CONCLUSIONS: C. novyi-NT spores can be internally labeled with iron oxide nanoparticles to visualize distribution with MR imaging during locoregional bacteriolytic therapy involving direct injection or intra-arterial transcatheter infusion.


Assuntos
Terapia Biológica/métodos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/terapia , Clostridium/metabolismo , Meios de Contraste/administração & dosagem , Compostos Férricos/administração & dosagem , Neoplasias Hepáticas Experimentais/diagnóstico por imagem , Neoplasias Hepáticas Experimentais/terapia , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/administração & dosagem , Imagem Molecular/métodos , Esporos Bacterianos , Animais , Carcinoma Hepatocelular/microbiologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Clostridium/genética , Clostridium/patogenicidade , Meios de Contraste/metabolismo , Compostos Férricos/metabolismo , Neoplasias Hepáticas Experimentais/microbiologia , Neoplasias Hepáticas Experimentais/patologia , Valor Preditivo dos Testes , Coelhos , Ratos Sprague-Dawley
20.
J Environ Sci (China) ; 78: 193-203, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30665638

RESUMO

Microbially mediated bioreduction of iron oxyhydroxide plays an important role in the biogeochemical cycle of iron. Geobacter sulfurreducens is a representative dissimilatory iron-reducing bacterium that assembles electrically conductive pili and cytochromes. The impact of supplementation with γ-Fe2O3 nanoparticles (NPs) (0.2 and 0.6 g) on the G. sulfurreducens-mediated reduction of ferrihydrite was investigated. In the overall performance of microbial ferrihydrite reduction mediated by γ-Fe2O3 NPs, stronger reduction was observed in the presence of direct contact with γ-Fe2O3 NPs than with indirect contact. Compared to the production of Fe(II) derived from biotic modification with ferrihydrite alone, increases greater than 1.6- and 1.4-fold in the production of Fe(II) were detected in the biotic modifications in which direct contact with 0.2 g and 0.6 g γ-Fe2O3 NPs, respectively, occurred. X-ray diffraction analysis indicated that magnetite was a unique representative iron mineral in ferrihydrite when active G. sulfurreducens cells were in direct contact with γ-Fe2O3 NPs. Because of the sorption of biogenic Fe(II) onto γ-Fe2O3 NPs instead of ferrihydrite, the addition of γ-Fe2O3 NPs could also contribute to increased duration of ferrihydrite reduction by preventing ferrihydrite surface passivation. Additionally, electron microscopy analysis confirmed that the direct addition of γ-Fe2O3 NPs stimulated the electrically conductive pili and cytochromes to stretch, facilitating long-range electron transfer between the cells and ferrihydrite. The obtained findings provide a more comprehensive understanding of the effects of iron oxide NPs on soil biogeochemistry.


Assuntos
Biodegradação Ambiental , Compostos Férricos/metabolismo , Geobacter/fisiologia , Nanopartículas/metabolismo , Compostos Férricos/química , Óxido Ferroso-Férrico , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA