RESUMO
In this work, we report on the synthesis, in-depth crystal structure studies as well as optical and magnetic properties of newly synthesized heterometallic quaternary selenides of the Eu+2Ln+3Cu+1Se3 composition. Crystal structures of the obtained compounds were refined by the derivative difference minimization (DDM) method from the powder X-ray diffraction data. The structures are found to belong to orthorhombic space groups Pnma (structure type Ba2MnS3 for EuLaCuSe3 and structure type Eu2CuS3 for EuLnCuSe3, where Ln = Sm, Gd, Tb, Dy, Ho and Y) and Cmcm (structure type KZrCuS3 for EuLnCuSe3, where Ln = Tm, Yb and Lu). Space groups Pnma and Cmcm were delimited based on the tolerance factor t', and vibrational spectroscopy additionally confirmed the formation of three structural types. With a decrease in the ionic radius of Ln3+ in the reported structures, the distortion of the (LnCuSe3) layers decreases, and a gradual formation of the more symmetric structure occurs in the sequence Ba2MnS3 â Eu2CuS3 â KZrCuS3. According to magnetic studies, compounds EuLnCuSe3 (Ln = Tb, Dy, Ho and Tm) each exhibit ferrimagnetic properties with transition temperatures ranging from 4.7 to 6.3 K. A negative magnetization effect is observed for compound EuHoCuSe3 at temperatures below 4.8 K. The magnetic properties of the discussed selenides and isostructural sulfides were compared. The direct optical band gaps for EuLnCuSe3, subtracted from the corresponding diffuse reflectance spectra, were found to be 1.87-2.09 eV. Deviation between experimental and calculated band gaps is ascribed to lower d states of Eu2+ in the crystal field of EuLnCuSe3, while anomalous narrowing of the band gap of EuYbCuSe3 is explained by the low-lying charge-transfer state. Ab initio calculations of the crystal structures, elastic properties and phonon spectra of the reported compounds were performed.
Assuntos
Elementos da Série dos Lantanídeos/química , Compostos Organometálicos/síntese química , Selênio/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/química , Difração de Pó , Difração de Raios XRESUMO
Metal phosphides have been proved to be potential theranostic agents of tumors. However, the limitations of single-modal imaging or the treatment effect of such materials need to be further improved. Here, we successfully prepared polyvinylpyrrolidone-modified bimetallic nickel cobalt phosphide (NiCoP/PVP) nanoparticles as a theranostic agent of tumors. Owing to the different types of magnetic properties of Ni and Co components, T1- and T2-weighted magnetic resonance imaging (MRI) could be simultaneously achieved to compensate the low accuracy brought about by single-modal MRI. In addition, NiCoP/PVP possesses excellent photothermal properties owing to its obvious absorption in the near-infrared (NIR) region, which endows NiCoP/PVP with high photothermal conversion efficiency (PCE) to serve as a photothermal agent for tumor ablation. Therefore, NiCoP/PVP is a promising theranostic agent for accurate diagnosis and effective treatment of tumors.
Assuntos
Antineoplásicos/farmacologia , Imageamento por Ressonância Magnética , Compostos Organometálicos/farmacologia , Fototerapia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Cobre/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Raios Infravermelhos , Camundongos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Níquel/química , Níquel/farmacologia , Imagem Óptica , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Tamanho da Partícula , Fosfinas/química , Fosfinas/farmacologia , Povidona/química , Povidona/farmacologia , Nanomedicina TeranósticaRESUMO
Herein we describe results for the synthesis and synthetic application of 4-amino-3-(arylselenyl)benzenesulfonamides, and preliminary evaluation of antioxidant, anti-edematogenic and antinociceptive properties. This class of compounds was synthesized in good yields by a reaction of commercially available sulfanilamide and diorganyl diselenides in the presence of 10â mol% of I2 . Furthermore, the synthesized compound 4-amino-3-(phenylselenyl)benzenesulfonamide (3 a) was evaluated on complete Freund's adjuvant (CFA)-induced acute inflammatory pain. Dose- and time-response curves of antinociceptive effect of compound 3 a were performed using this experimental model. Also, the effect of compound 3 a was monitored in a hot-plate test to evaluate the acute non-inflammatory antinociception. The open-field test was performed to evaluate the locomotor and exploratory behaviors of mice. Oxidative stress markers, such as glutathione peroxidase activity; reactive species, non-protein thiols, and lipid peroxidation levels were performed to investigate the antioxidant action of compound 3 a. Our findings suggest that the antioxidant effect of compound 3 a may contribute to reducing the nociception and suppress the signaling pathways of inflammation on the local injury induced by CFA. Thus, compound 3 a reduced the paw edema as well as the hyperalgesic behavior in mice, being a promising therapeutic agent for the treatment of painful conditions.
Assuntos
Analgésicos Opioides/farmacologia , Anti-Inflamatórios não Esteroides/farmacologia , Compostos Organometálicos/farmacologia , Dor/tratamento farmacológico , Compostos de Selênio/farmacologia , Sulfonamidas/farmacologia , Analgésicos Opioides/síntese química , Analgésicos Opioides/química , Animais , Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/química , Antioxidantes , Comportamento Animal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Edema/tratamento farmacológico , Adjuvante de Freund , Inflamação/tratamento farmacológico , Peroxidação de Lipídeos/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Camundongos , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Estresse Oxidativo/efeitos dos fármacos , Compostos de Selênio/química , Relação Estrutura-Atividade , Sulfonamidas/química , BenzenossulfonamidasRESUMO
Cyclodextrins (CDs), as pharmaceutical excipients with excellent biocompatibility, non-immunogenicity, and low toxicity in vivo, are widely used to carry drugs by forming inclusion complexes for improving the solubility and stability of drugs. However, the limited space of CDs' lipophilic central cavity affects the loading of many drugs, especially with larger molecules. In this study, ß-CDs were modified by acetonization to improve the affinity for the chemotherapy drug doxorubicin (DOX), and doxorubicin-adsorbing acetalated ß-CDs (Ac-CD:DOX) self-assembled to nanoparticles, followed by coating with the amphiphilic zinc phthalocyanine photosensitizer ZnPc-(PEG)5 for antitumor therapy. The final product ZnPc-(PEG)5:Ac-CD:DOX was demonstrated to have excellent stability and pH-sensitive drug release characteristics. The cell viability and apoptosis assay showed synergistic cytotoxic effects of chemotherapy and phototherapy. The mechanism of cytotoxicity was analyzed in terms of intracellular reactive oxygen species, mitochondrial membrane potential, and subcellular localization. More importantly, in vivo experiments indicated that ZnPc-(PEG)5:Ac-CD:DOX possessed significant tumor targeting, prominent antitumor activity, and less side effects. Our strategy expands the application of CDs as drug carriers and provides new insights into the development of CD chemistry.
Assuntos
Antineoplásicos/uso terapêutico , Doxorrubicina/uso terapêutico , Portadores de Fármacos/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Doxorrubicina/química , Portadores de Fármacos/síntese química , Portadores de Fármacos/efeitos da radiação , Liberação Controlada de Fármacos , Sinergismo Farmacológico , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Indóis/síntese química , Indóis/efeitos da radiação , Indóis/uso terapêutico , Isoindóis , Luz , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/efeitos da radiação , Compostos Organometálicos/síntese química , Compostos Organometálicos/efeitos da radiação , Compostos Organometálicos/uso terapêutico , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/efeitos da radiação , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Compostos de Zinco , beta-Ciclodextrinas/síntese química , beta-Ciclodextrinas/efeitos da radiação , beta-Ciclodextrinas/uso terapêuticoRESUMO
Phototherapy has the advantages of minimal invasion, few side effects, and improved accuracy for cancer therapy. The application of a polydopamine (PDA)-modified nano zero-valent iron (nZVI@PDA) as a new synergistic agent in combination with photodynamic/photothermal (PD/PT) therapy to kill cancer cells is discussed here. The nZVI@PDA offered high light-to-heat conversion and ROS generation efficiency under near-infrared (NIR) irradiation (808â nm), thus leading to irreversible damage to nZVI@PDA-treated MCF-7 cells at low concentration, without inducing apoptosis in normal cells. Irradiation of nZVI@PDA using an NIR laser converted the energy of the photons to heat and ROS. Our results showed that modification of the PDA on the surface of nZVI can improve the biocompatibility of the nZVI@PDA. This work integrated the PD and PT effects into a single nanodevice to afford a highly efficient cancer treatment. Meanwhile, nZVI@PDA, which combines the advantages of PDA and nZVI, displayed excellent biocompatibility and tumoricidal ability, thus suggesting its huge potential for future clinical research in cancer therapy.
Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Indóis/farmacologia , Ferro/farmacologia , Nanopartículas Metálicas/química , Compostos Organometálicos/farmacologia , Fotoquimioterapia , Polímeros/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Hipertermia Induzida , Indóis/química , Raios Infravermelhos , Ferro/química , Células MCF-7 , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Tamanho da Partícula , Polímeros/química , Relação Estrutura-Atividade , Propriedades de Superfície , Células Tumorais CultivadasRESUMO
Ultrasound (US)-driven sonodynamic therapy (SDT) has demonstrated wide application prospects in the eradication of deep-seated bacterial infections due to its noninvasiveness, site-confined irradiation, and high-tissue-penetrating capability. However, the ineffective accumulation of sonosensitizers at the infection site, the hypoxic microenvironment, as well as rapid depletion of oxygen during SDT greatly hamper the therapeutic efficacy of SDT. Herein, an US-switchable nanozyme system was proposed for the controllable generation of catalytic oxygen and sonosensitizer-mediated reactive oxygen species during ultrasound activation, thereby alleviating the hypoxia-associated barrier and augmenting SDT efficacy. This nanoplatform (Pd@Pt-T790) was easily prepared by bridging enzyme-catalytic Pd@Pt nanoplates with the organic sonosensitizer meso-tetra(4-carboxyphenyl)porphine (T790). It was really interesting to find that the modification of T790 onto Pd@Pt could significantly block the catalase-like activity of Pd@Pt, whereas upon US irradiation, the nanozyme activity was effectively recovered to catalyze the decomposition of endogenous H2O2 into O2. Such "blocking and activating" enzyme activity was particularly important for decreasing the potential toxicity and side effects of nanozymes on normal tissues and has potential to realize active, controllable, and disease-loci-specific nanozyme catalytic behavior. Taking advantage of this US-switchable enzyme activity, outstanding accumulation in infection sites, as well as excellent biocompatibility, the Pd@Pt-T790-based SDT nanosystem was successfully applied to eradicate methicillin-resistant Staphylococcus aureus (MRSA)-induced myositis, and the sonodynamic therapeutic progression was noninvasively monitored by photoacoustic imaging and magnetic resonance imaging. The developed US-switchable nanoenzyme system provides a promising strategy for augmenting sonodynamic eradication of deep-seated bacterial infection actively, controllably, and precisely.
Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Compostos Organometálicos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Terapia por Ultrassom , Animais , Antibacterianos/síntese química , Antibacterianos/química , Sobrevivência Celular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Imagem Óptica , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Paládio/química , Paládio/farmacologia , Tamanho da Partícula , Platina/química , Platina/farmacologia , Porfirinas/química , Porfirinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Infecções Estafilocócicas/metabolismo , Propriedades de Superfície , Ondas UltrassônicasRESUMO
A primary strategy to combat antimicrobial resistance is the identification of novel therapeutic targets and anti-infectives with alternative mechanisms of action. The inhibition of the metalloenzymes carbonic anhydrases (CAs, EC 4.2.1.1) from pathogens (bacteria, fungi, and protozoa) was shown to produce an impairment of the microorganism growth and virulence. As phosphonamidates have been recently validated as human α-CA inhibitors (CAIs) and no phosphorus-based zinc-binding group have been assessed to date against ß-class CAs, herein we report an inhibition study with this class of compounds against ß-CAs from pathogenic bacteria, fungi, and protozoa. Our data suggest that phosphonamidates are among the CAIs with the best selectivity for ß-class over human isozymes, making them interesting leads for the development of new anti-infectives.
Assuntos
Amidas/farmacologia , Anti-Infecciosos/farmacologia , Inibidores da Anidrase Carbônica/farmacologia , Anidrases Carbônicas/metabolismo , Compostos Organometálicos/farmacologia , Ácidos Fosfóricos/farmacologia , Amidas/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Inibidores da Anidrase Carbônica/síntese química , Inibidores da Anidrase Carbônica/química , Relação Dose-Resposta a Droga , Fungos/efeitos dos fármacos , Fungos/enzimologia , Humanos , Leishmania donovani/efeitos dos fármacos , Leishmania donovani/enzimologia , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Ácidos Fosfóricos/química , Fósforo/química , Fósforo/farmacologia , Relação Estrutura-Atividade , Zinco/química , Zinco/farmacologiaRESUMO
In an attempt to integrate photodynamic therapy (PDT) with photothermal therapy and chemotherapy for enhanced anticancer activity, we have rationally synthesized a multifunctional upconversion nanoplatform using NaYF4:Yb/Tm/Er/Fe nanoparticles (NPs) as the core and NaYbF4:1% Tm as a shell. The as-synthesized core-shell upconversion (CSU) NPs exhibited diverse and enhanced photoluminescence emissions in a wide range (UV to NIR) consequent upon Fe3+ doping in the core and fabrication of an active shell. Subsequently, CSU was first decorated with titania NPs as photosensitizers. Next, the mesoporous silica (MS) shell loaded with doxorubicin (DOX) via a photocleavable Ru complex as the gating molecule was developed around titania-containing CSU. Finally, gold nanorods (GNRs) with localized surface plasmon resonance (LSPR) at 800 nm were incorporated around the MS layer to obtain the multifunctional nanoplatform. We demonstrated that the UV, blue, and NIR emissions from the CSU produced ROS-mediated PDT through titania activation, induced DOX release through photocleavage of the Ru complex, and generated hyperthermia by LSPR activity of GNRs, respectively, upon a single NIR excitation through FRET. The therapeutic efficacy was validated on HeLa cell lines in vitro by various microscopic and biochemical studies under a significantly milder NIR irradiation and lower dosage of the nanoplatforms, which have been further demonstrated as diagnostic nanoprobes for cell imaging.
Assuntos
Nanocompostos/química , Fotoquimioterapia , Fototerapia , Antibióticos Antineoplásicos/síntese química , Antibióticos Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/síntese química , Doxorrubicina/química , Liberação Controlada de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Ouro/química , Células HeLa , Humanos , Raios Infravermelhos , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Tamanho da Partícula , Porosidade , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/química , Propriedades de SuperfícieRESUMO
Salt metathesis between the anionic rhenium(I) compound, Na[Re(η5-Cp)(BDI)] (BDI = N, N'-bis(2,6-diisopropylphenyl)-3,5-dimethyl-ß-diketiminate), and the uranium(III) salt, UI3(1,4-dioxane)1.5, generated the triple inverse sandwich complex, U[(µ-η5:η5-Cp)Re(BDI)]3, which was isolated and structurally characterized as the Lewis base adducts, (L)U[(µ-η5:η5-Cp)Re(BDI)]3 (1·L, L = THF, 1,4-dioxane, DMAP). The assignment as one uranium(III) and three rhenium(I) centers was supported by X-ray crystallography, NMR and EPR spectroscopies, and computational studies. An unusual shortening of the rhenium-Cp bond distances in 1·L relative to Na[Re(η5-Cp)(BDI)] was observed in the solid-state and reproduced in calculated structures of 1·THF and the anionic fragment, [Re(η5-Cp)(BDI)]-. Calculations suggest that the electropositive uranium center pulls electron density away from the electron-rich rhenium centers, reducing electron-electron repulsions in the rhenium-Cp moieties and thereby strengthening those interactions, while also making uranium-Cp bonding more favorable.
Assuntos
Compostos Organometálicos/síntese química , Rênio/química , Urânio/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular , Compostos Organometálicos/químicaRESUMO
[TiCp2S5] (phase A), [TiCp2Se5] (phase F), and five solid solutions of mixed titanocene selenide sulfides [TiCp2SexS5-x] (Cp = C5H5-) with the initial Se:S ranging from 1:4 to 4:1 (phases Bâ»E) were prepared by reduction of elemental sulfur or selenium or their mixtures by lithium triethylhydridoborate in thf followed by the treatment with titanocene dichloride [TiCp2Cl2]. Their 77Se and 13C NMR spectra were recorded from the CS2 solution. The definite assignment of the 77Se NMR spectra was based on the PBE0/def2-TZVPP calculations of the 77Se chemical shifts and is supported by 13C NMR spectra of the samples. The following complexes in varying ratios were identified in the CS2 solutions of the phases Bâ»E: [TiCp2Se5] (51), [TiCp2Se4S] (41), [TiCp2Se3S2] (31), [TiCp2SSe3S] (36), [TiCp2SSe2S2] (25), [TiCp2SSeS3] (12), and [TiCp2S5] (01). The disorder scheme in the chalcogen atom positions of the phases Bâ»E observed upon crystal structure determinations is consistent with the spectral assignment. The enthalpies of formation calculated for all twenty [TiCp2SexS5-x] (x = 0â»5) at DLPNO-CCSD(T)/CBS level including corrections for core-valence correlation and scalar relativistic, as well as spin-orbit coupling contributions indicated that within a given chemical composition, the isomers of most favourable enthalpy of formation were those, which were observed by 77Se and 13C NMR spectroscopy.
Assuntos
Compostos Organometálicos/síntese química , Selênio/química , Sulfetos/síntese química , Dissulfeto de Carbono/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cristalografia , Estrutura Molecular , Compostos Organometálicos/química , Teoria Quântica , Sulfetos/químicaRESUMO
A series of conjugated polymers comprising polythiophene, polyselenophene, and polytellurophene with branched 3,7-dimethyloctyl side chains, well-matched molecular weight, dispersity, and regioregularity is synthesized. The ionization potential is found to vary from 5.14 to 5.32 eV, with polytellurophene having the lowest potential. Field-effect transistors based on these materials exhibit distinct hole transport mobility that varies by nearly three orders of magnitude, with polytellurophene having the highest mobility (2.5 × 10-2 cm² V-1 s-1 ). The large difference in mobility demonstrates the significant impact of heteroatom substitution. Although the series of polymers are very similar in structure, their solid-state properties are different. While the thin film microstructure of polythiophene and polyselenophene is identical, polytellurophene reveals globular features in the film topography. Polytellurophenes also appear to be the least crystalline, even though their charge transport properties are superior to other samples. The torsional barrier and degree of planarity between repeat units increase as one moves down group-16 elements. These studies show how a single atom in a polymer chain can have a substantial influence on the bulk properties of a material, and that heavy group-16 atoms have a positive influence on charge transport properties when all other variables are kept unchanged.
Assuntos
Compostos Organometálicos/química , Polímeros/química , Selênio/química , Telúrio/química , Tiofenos/química , Estrutura Molecular , Compostos Organometálicos/síntese químicaRESUMO
Recently, fabrication of nanoscale MOFs (NMOFs) has attracted great attention for biomedical applications. NMOFs not only maintain the structural diversity and physicochemical properties of bulk MOFs, but also possess suitable dimensions, making them potential nanocarriers for imaging agents and drug molecules. In this work, highly monodispersed Fe-soc-MOF nanoparticles (about 100 nm) were fabricated through the liquid-solid-solution (LSS) method. Indocyanine green (ICG) was conjugated to the surface-modified Fe-soc-MOF to construct a multifunctional theranostic platform. The Fe-soc-MOF@PEG-NH2-ICG nanoparticles (FPINs) were tested for photothermal therapy (PTT)/photodynamic therapy (PDT) both in vitro and in vivo. Due to their low toxicity, good biocompatibility and excellent photothermal/photodynamic effect, the as-synthesized FPINs could be used to inhibit and kill cancer cells efficiently under the 808 nm laser irradiation.
Assuntos
Antineoplásicos/farmacologia , Verde de Indocianina/farmacologia , Ferro/farmacologia , Estruturas Metalorgânicas/farmacologia , Nanopartículas/química , Compostos Organometálicos/farmacologia , Fototerapia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Verde de Indocianina/química , Ferro/química , Estruturas Metalorgânicas/química , Camundongos , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Tamanho da Partícula , Relação Estrutura-Atividade , Propriedades de Superfície , TemperaturaRESUMO
The synthesis and reactivity of an NPN-chelating ligand containing a nontrigonal phosphorous triamide center (L1 = P(N( o-N(2-pyridyl)C6H4)2) is reported. Metalation of L1 with RuCl2(PPh3)3 gives RuCl2(PPh3)(L1) (2). By contrast, metalation of L1 with RuHCl(CO)(PPh3)3 yields RuCl(CO)(PPh3)(L1H) (3), a chelated 10-P-5 ruthenahydridophosphorane, via net insertion into the Ru-H bond. Hydride abstraction from 3 with Ph3CPF6 gives [RuCl(CO)(PPh3)(L1)]PF6 (4); reaction of 4 with NaBH4 returns 3.
Assuntos
Compostos Organometálicos/síntese química , Fosforanos/química , Fósforo/química , Elementos de Transição/química , Ligantes , Estrutura Molecular , Compostos Organometálicos/químicaRESUMO
The present paper deals with in silico evaluation of 32 virtually designed transition metal complexes of 2-butanone thiosemicarbazone and N,S,O containing donor hetero-ligands namely py, bpy, furan, thiophene, 2-picoline, 1,10-phenanthroline, piperazine and liquid ammonia. The complexes were designed with a view to assess their potential anticancer, antioxidant and antibacterial activity. The absorption, distribution, metabolism, excretion and toxicity (ADMET) properties of the chosen ligands were calculated by admetSAR software. Metabolic sites of different ligands likely to undergo metabolism were predicted using Metaprint 2D. The proposed complexes were also evaluated for their drug-like quality based on Lipinski's, Veber, Ghose and leadlikeness filters. Druglikeness and toxicity potential were predicted by OSIRIS property explorer. The pharmacokinetic properties and bioactivity scores were calculated by Molinspiration tool. Bioactivity scores of the complexes were predicted for drug targets including enzymes, nuclear receptors, kinase inhibitors, G-protein coupled receptor ligands and ion channel modulators. Molecular docking of selected Fe(II) mixed-ligand complexes was performed using AutoDock version 4.2.6 and i-GEMDOCK version 2.1 with two target proteins namely Ribonucleotide reductase (RR) and Topoisomerase II (Topo II). The results were compared with three standard reference drugs viz. Doxorubicin HCl, Letrozole (anticancer) and Tetracycline (antibiotic). Multivariate data obtained were analyzed using principal component analysis (PCA) for visualization and projection as scatter and 3D plots. Positive results obtained for hetero-ligands using admetSAR version 1.0 indicated good absorption and transport kinetics of the hetero-ligand complexes through the human intestine and blood-brain barrier. The hetero-ligands were predicted to have no associated mutagenic effect(s) also. However, none of the hetero-ligands was predicted to be Caco-2 (human colon cancer cell line) permeable. Most of the hetero-ligands and the parent ligand (2-butanone thiosemicarbazone) were predicted to undergo Phase-I metabolism prior to excretion using MetaPrint2D software. Pharmacokinetic evaluation of the proposed complexes revealed that all complexes displayed drug-like character and were predicted to have no apparent toxic side-effects. All the proposed complexes showed moderate to good biological activity scores (-5.0 to 0.0). Mixed complexes with bpy, 2-picoline and 1,10-phenanthroline showed significant bioactivity scores (as enzyme inhibitors) in the range 0.02-0.13. Likewise, good docking scores were obtained for Fe (II) complexes with the same ligands. [FeL(2-pic)2] displayed the lowest binding energy (-6.47â¯kcal/mol) with respect to Topo II followed by [FeL(py)2] (-6.14â¯kcal/mol) as calculated by AutoDock version 4.2.6. With respect to binding with RR, [FeL(2--pic)2] again displayed the lowest binding energy (-7.21â¯kcal/mol) followed by [FeL(py)2] (-5.96â¯kcal/mol). On the basis of docking predictions and various other computational evaluations, four mixed-ligand complexes of Fe in +2 oxidation state with py, bpy, 2--picoline and 1,10-phenanthroline were synthesized with 2-butanone thiosemicarbazone. All the synthesized Fe complexes were characterized using various spectroscopic techniques and tested for their potential anticancer activity in vitro against human breast carcinoma cell line MDA-MB 231 and human lung carcinoma cell line A549 cell line using MTT assay. [FeL(2-pic)2], [FeL(bpy)], and [FeL(py)2] were found to exhibit significant antiproliferative activity with IC50 values in the range of 80-100⯵M against breast and lung cancer cells. The synthesized Fe complexes also displayed mild antioxidant activities. The synthesized and studied Fe complexes have the potential for development into future anticancer agents if analyzed and modified further for improvement of their ADMET, solubility and permeability criteria set for potential drug-candidates.
Assuntos
Antineoplásicos/farmacologia , Técnicas de Química Combinatória , Desenho Assistido por Computador , Desenho de Fármacos , Compostos Organometálicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Butanonas/química , Butanonas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Solubilidade , Relação Estrutura-Atividade , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Elementos de Transição/química , Elementos de Transição/farmacologiaRESUMO
The synthesis of four cymantrene-5-fluorouracil derivatives (1-4) and two cymantrene-adenine derivatives (5 and 6) is reported. All of the compounds were characterized by spectroscopic methods and the crystal structure of two derivatives (1 and 6), together with the previously described cymantrene-adenine compound C was determined by X-ray crystallography. While the compounds 1 and 6 crystallized in the triclinic P-1 space group, compound C crystallized in the monoclinic P21/m space group. The newly synthesized compounds 1-6 were tested together with the two previously described cymantrene derivatives B and C for their in vitro antiproliferative activity against seven cancer cell lines (MCF-7, MCF-7/DX, MDA-MB-231, SKOV-3, A549, HepG2m and U-87-MG), five bacterial strains Staphylococcus aureus (methicillin-sensitive, methicillin-resistant and vancomycin-intermediate strains), Staphylococcus epidermidis, and Escherichia coli, including clinical isolates of S. aureus and S. epidermidis, as well as against the protozoan parasite Trypanosoma brucei. The most cytotoxic compounds were derivatives 2 and C for A549 and SKOV-3 cancer cell lines, respectively, with 50% growth inhibition (IC50) values of about 7 µM. The anticancer activity of the cymantrene compounds was determined to be due to their ability to induce oxidative stress and to trigger apoptosis and autophagy in cancer cells. Three derivatives (1, 4 and 5) displayed promising antitrypanosomal activity, with GI50 values in the low micromolar range (3-4 µM). The introduction of the 5-fluorouracil moiety in 1 enhanced the trypanocidal activity when compared to the activity previously reported for the corresponding uracil derivative. The antibacterial activity of cymantrene compounds 1 and C was within the range of 8-64 µg/mL and seemed to be the result of induced cell shrinking.
Assuntos
Adenina/análogos & derivados , Adenina/síntese química , Antibacterianos/síntese química , Antineoplásicos/síntese química , Fluoruracila/análogos & derivados , Fluoruracila/síntese química , Compostos Organometálicos/síntese química , Tripanossomicidas/síntese química , Adenina/farmacologia , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Escherichia coli/efeitos dos fármacos , Fluoruracila/farmacologia , Humanos , Compostos Organometálicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Relação Estrutura-Atividade , Tripanossomicidas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacosRESUMO
The synthesis and characterization of three dioxo U(VI) complexes, [UO2(L1)(OH2)], [UO2(L2)DMF], and [UO2(L2)DMSO], [L1]2- = 1,1'-(4-methyl-1,2-phenylenebis (nitrilomethylidyne))di-2-naphtholate: [L2]2- = 1,1'-(o-phenylenebis (nitrilomethylidyne)) di-2-naphtholate, are reported. Elemental analysis, FT-IR, 1HNMR, UV-Vis spectroscopy, molar conductivity and single crystal X-ray diffraction were used to characterize the complexes. It was found that the complexes adopt a distorted pentagonal bipyramidal coordination geometry. The interaction of the synthesized complexes with DNA and bovine serum albumin was thoroughly investigated using both experimental and theoretical studies. UV-Vis absorption and fluorescence quenching techniques were applied to determine the binding parameters as well as the mechanism of the interaction of each complex with DNA and the protein. The results obtained suggested that interaction of the complexes with DNA occurred through partial intercalation into the minor grooves of DNA with binding constants in the range of 0.661 × 105-1.56 × 105 M-1. In addition, interaction of the complexes with bovine serum albumin quenched the fluorescence emission of the tryptophan residues of the protein binding constants and thermodynamic parameters were obtained from the fluorescence quenching experiments at different temperatures. The values of binding constants revealed moderate interactions between the synthesized complexes and the protein suggesting that this protein could act as a suitable vehicle for transportation of the compounds. The results of molecular docking confirmed those of the experimental studies. The anticancer properties of the title complexes were also evaluated through a study of the in vitro cytotoxicity of the compounds against the HT-29 and MCF-7 cancer cell lines and the DPSC normal cell line using an MTT assay.
Assuntos
Antineoplásicos/farmacologia , Compostos Organometálicos/farmacologia , Salicilatos/farmacologia , Urânio/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Sítios de Ligação/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , DNA de Neoplasias/química , DNA de Neoplasias/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Salicilatos/química , Soroalbumina Bovina/química , Soroalbumina Bovina/efeitos dos fármacos , Relação Estrutura-Atividade , Termodinâmica , Células Tumorais Cultivadas , Urânio/químicaRESUMO
The coordination networking of discrete metal-organic polyhedra (MOPs) involving different ligands as well as metals is a challenging task due to the features of limited solubility and chemical stability of these polyhedra. An unusual approach, ligand-oriented polyhedral networking via click chemistry and further metal coordination is reported here. An alkyne decorated Cu(II)-MOP self-catalyzes the regioselective click reaction (1,3-dipolar cycloaddition) using azide-functionalized ligands under unconventional reaction conditions. Introducing new metal ions, M(II), interlinks the carboxylic groups on the MOP surfaces creating coordination networks. On the other hand, exposure of the respective individual ligand components in the presence of Cu(II) promotes an in-situ click reaction along with metal coordination generating a new 3D-framework. These materials demonstrated a high drug hosting potential exhibiting a controlled progressive release of anticancer (5-flourouracil) and stimulant (caffeine) drugs in physiological saline at 37 °C. These innovative and unconventional MOP networks provide a significant conceptual advance in understanding.
Assuntos
Coloides/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Compostos Organometálicos/química , Antineoplásicos/administração & dosagem , Cafeína/administração & dosagem , Estimulantes do Sistema Nervoso Central/administração & dosagem , Química Click/métodos , Coloides/síntese química , Cobre/química , Portadores de Fármacos/síntese química , Fluoruracila/administração & dosagem , Compostos Organometálicos/síntese químicaRESUMO
Selenium-incorporated fucoses (seleno-fucoses) differing in the position of the seleno-substituent were synthesized and applied to the X-ray structural determination of a carbohydrate-lectin complex using single/multi-wavelength anomalous dispersion (SAD/MAD) phasing. The hydroxyl groups at the C-1, -2, -3 and -4 position of fucose were individually substituted with a methylseleno group via a transacetalization reaction using MeSeCH2OBn or by an SN2 reaction with TolSe- equivalents to afford the corresponding MeSe-fucose. The three-dimensional structures of a fucose-binding lectin complexed with several of these MeSe-fucoses have been determined by SAD/MAD phasing by utilizing the diffraction of selenium in the bound MeSe-fucoses.
Assuntos
Fucose/química , Lectinas/análise , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Selênio/química , Cristalografia por Raios X , Modelos Moleculares , Estrutura MolecularRESUMO
Radiolabeling of the prostate-specific membrane antigen (PSMA) inhibitor Glu-NH-CO-NH-Lys(Ahx) using the 68Ga chelator HBED-CC (PSMAHBED) allows imaging of prostate cancer lesions because of high expression of PSMA in prostate carcinoma cells and in bone metastases and lymph nodes related to the disease. The aim of this work was to optimize labeling of 68Ga-PSMAHBED using the efficient cation-exchange postprocessing of 68Ga as well as the development of a thin-layer chromatography (TLC)-based quality control system. Methods: Labeling was optimized for online ethanol-postprocessed 68Ga eluate investigating various parameters, such as buffer molarity (0.1-1 M), temperature (25°C-90°C), tracer amount (0.11-0.74 nmol), and labeling time. In addition, purification of the crude product was tested. For radio-TLC quality control, various mobile phases were analyzed using silica gel 60 plates and the results were validated using high-performance liquid chromatography. The most superior mobile phases were also applied on instant thin-layer chromatography (ITLC) silica gel plates. Results: Using optimized conditions, labeling yields of more than 95% were obtained within 10 min when ethanol-based postprocessing was applied using PSMAHBED amounts as low as 0.1 nmol. A higher precursor concentration (0.7 nmol) further increased labeling and quantitative yields to more than 98% within 5 min. In clinical routine, patient batches (>200 applications) with radiochemical purity greater than 98% and specific activities of 326 ± 20 MBq/nmol are obtained reproducibly. When TLC quality control was performed on silica gel 60 plates, 4 mobile phases with suitable separation properties and complementary Rf values were identified. Two systems showed equivalent separation on ITLC silica gel plates, with ITLC analysis finished within 5 min, in contrast to 20 min for the TLC system. Labeling of PSMAHBED was optimized for cation-exchange postprocessing methods, ensuring almost quantitative labeling and high nuclide purity of final 68Ga-PSMAHBED, making subsequent purification steps unnecessary. Conclusion: The new radio-TLC method allows quality control in a short time using a fast, reliable, low-cost method with little equipment complexity. Using this approach, the synthesis is easily adopted by automated synthesis modules.
Assuntos
Antígenos de Superfície/química , Contaminação de Medicamentos/prevenção & controle , Radioisótopos de Gálio/química , Glutamato Carboxipeptidase II/química , Marcação por Isótopo/métodos , Compostos Organometálicos/síntese química , Compostos Radiofarmacêuticos/síntese química , Ácido Edético/análogos & derivados , Isótopos de Gálio , Radioisótopos de Gálio/análise , Radioisótopos de Gálio/normas , Alemanha , Glutamato Carboxipeptidase II/normas , Marcação por Isótopo/normas , Oligopeptídeos , Compostos Organometálicos/análise , Compostos Organometálicos/normas , Controle de Qualidade , Geradores de Radionuclídeos/normas , Compostos Radiofarmacêuticos/análise , Compostos Radiofarmacêuticos/normasRESUMO
The "antibiotic era", characterized by the overuse and misuse of antibiotics, over the last half-century has culminated in the present critical "era of resistance". The treatment of bacterial infections is challenging because of a decline in the current arsenal of useful antibiotics and the slow rate of new drug development. The discovery of a new gene (mcr-1) in 2015, which enables bacteria to be highly resistant to polymyxins (such as colistin), the last line of antibiotic defence left, heralds a new level of concern as this gene is susceptible to horizontal gene transfer, with alarming potential to be spread between different bacterial populations, suggesting that the progression from "extensive drug resistance" to "pan-drug resistance" may be inevitable. Clearly there is a need for the development of novel classes of anti-bacterial agents capable of killing bacteria through mechanisms that are different to those of the known classes of antibiotics. 1,10-phenanthroline (phen) is a heterocyclic organic compound which exerts in vitro antimicrobial activity against a broad-spectrum of bacteria. The antimicrobial activity of phen can be significantly modulated by modifying its structure. The development of metal-phen complexes offers the medicinal chemist an opportunity to expand such structural diversity by controlling the geometry and varying the oxidation states of the metal centre, with the inclusion of appropriate auxiliary ligands in the structure, offering the opportunity to target different biochemical pathways in bacteria. In this review, we summarize what is currently known about the antibacterial capability of metal-phen complexes and their mechanisms of action.