Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37959771

RESUMO

Selenium is an essential trace element in living organisms, and is present in selenoenzymes with antioxidant activity, like glutathione peroxidase (GPx) and thioredoxin reductase (TrxR). The search for small selenium-containing molecules that mimic selenoenzymes is a strong field of research in organic and medicinal chemistry. In this review, we review the synthesis and bioassays of new and known organoselenium compounds with antioxidant activity, covering the last five years. A detailed description of the synthetic procedures and the performed in vitro and in vivo bioassays is presented, highlighting the most active compounds in each series.


Assuntos
Compostos Organosselênicos , Selênio , Oligoelementos , Antioxidantes/química , Selênio/farmacologia , Estresse Oxidativo , Glutationa Peroxidase/metabolismo , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/química , Tiorredoxina Dissulfeto Redutase/metabolismo
2.
Mar Biotechnol (NY) ; 25(6): 1020-1030, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37819466

RESUMO

Selenoneine is an organic selenium compound contained in blood and dark muscle of fish. It has a strong antioxidative capacity and is considered useful as a new functional food material. However, the distribution and effects of selenoneine in the mammalian body have not been thoroughly examined. In this study, a selenoneine-rich mackerel extract was developed and fed to mice at 0.07% in standard rodent chow (ME diet) for 32 days to examine its distribution in the body. Selenoneine was distributed in the liver, kidney, and spleen in mice fed with mackerel extract, but it was not distributed in the plasma or erythrocytes. Moreover, concentrations of the major selenium-containing protein were not affected by the mackerel extract. The results of this study suggest that selenoneine is absorbed in the body following ingestion of low doses in crude material and preferentially accumulates in organs and later distributes in erythrocytes. Biochemical analyses of plasma in male mice showed that the glucose level was significantly increased and LDL-cholesterol level was significantly decreased by ME diet feeding. The results indicate that male mice are sensitive to ME diet.


Assuntos
Compostos Organosselênicos , Perciformes , Selênio , Masculino , Animais , Camundongos , Selênio/análise , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/análise , Compostos Organosselênicos/química , Ingestão de Alimentos , Mamíferos
3.
Comput Biol Chem ; 107: 107956, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37748316

RESUMO

The main protease (Mpro) of the novel coronavirus SARS-CoV-2 is a key target for developing antiviral drugs. Ebselen (EbSe) is a selenium-containing compound that has been shown to inhibit Mpro in vitro by forming a covalent bond with the cysteine (Cys) residue in the active site of the enzyme. However, EbSe can also bind to other proteins, like albumin, and low molecular weight compounds that have free thiol groups, such as Cys and glutathione (GSH), which may affect its availability and activity. In this study, we analyzed the Mpro interaction with EbSe, its analogues, and its metabolites with Cys, GSH, and albumin by molecular docking. We also simulated the electronic structure of the generated molecules by density functional theory (DFT) and explored the stability of EbSe and one of its best derivatives, EbSe-2,5-MeClPh, in the catalytic pocket of Mpro through covalent docking and molecular dynamics. Our results show that EbSe and its analogues bound to GSH/albumin have larger distance between the selenium atom of the ligands and the sulfur atom of Cys145 of Mpro than the other compounds. This suggests that EbSe and its GSH/albumin-analogues may have less affinity for the active site of Mpro. EbSe-2,5-MeClPh was found one of the best molecules, and in molecular dynamics simulations, it showed to undergo more conformational changes in the active site of Mpro, in relation to EbSe, which remained stable in the catalytic pocket. Moreover, this study also reveals that all compounds have the potential to interact closely with the active site of Mpro, providing us with a concept of which derivatives may be promising for in vitro analysis in the future. We propose that these compounds are potential covalent inhibitors of Mpro and that organoselenium compounds are molecules that should be studied for their antiviral properties.


Assuntos
COVID-19 , Compostos Organosselênicos , Selênio , Humanos , Domínio Catalítico , Simulação de Acoplamento Molecular , SARS-CoV-2 , Albuminas , Azóis/farmacologia , Cisteína , Glutationa , Simulação de Dinâmica Molecular , Compostos Organosselênicos/farmacologia , Peptídeo Hidrolases , Inibidores de Proteases , Antivirais/farmacologia
4.
Int J Mol Sci ; 24(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36902109

RESUMO

κ-Selenocarrageenan (KSC) is an organic selenium (Se) polysaccharide. There has been no report of an enzyme that can degrade κ-selenocarrageenan to κ-selenocarrageenan oligosaccharides (KSCOs). This study explored an enzyme, κ-selenocarrageenase (SeCar), from deep-sea bacteria and produced heterologously in Escherichia coli, which degraded KSC to KSCOs. Chemical and spectroscopic analyses demonstrated that purified KSCOs in hydrolysates were composed mainly of selenium-galactobiose. Organic selenium foods through dietary supplementation could help regulate inflammatory bowel diseases (IBD). This study discussed the effects of KSCOs on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in C57BL/6 mice. The results showed that KSCOs alleviated the symptoms of UC and suppressed colonic inflammation by reducing the activity of myeloperoxidase (MPO) and regulating the unbalanced secretion of inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-10). Furthermore, KSCOs treatment regulated the composition of gut microbiota, enriched the genera Bifidobacterium, Lachnospiraceae_NK4A136_group and Ruminococcus and inhibited Dubosiella, Turicibacter and Romboutsia. These findings proved that KSCOs obtained by enzymatic degradation could be utilized to prevent or treat UC.


Assuntos
Carragenina , Colite Ulcerativa , Microbioma Gastrointestinal , Compostos Organosselênicos , Animais , Camundongos , Colite Ulcerativa/prevenção & controle , Colite Ulcerativa/terapia , Sulfato de Dextrana , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Oligossacarídeos/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Carragenina/farmacologia , Carragenina/uso terapêutico , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/uso terapêutico
5.
Eur J Pharm Biopharm ; 178: 69-81, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35932964

RESUMO

The organoselenium compounds belong to a class of synthetic molecules that displays a remarkable spectrum of promising pharmacological properties. Despite the huge amount of preclinical data that supports a bright outlook for organoselenium compounds, some toxicity issues and physicochemical limitations delay the development of more advanced studies. Currently, several scientific reports demonstrated that the association of nanotechnology has emerged as an alternative to improve solubility and safety issues of these molecules as well as enhance pharmacological properties. Therefore, our main objective was to address studies that reported the development and biological evaluations of nano-based formulations to synthetic organoselenium compounds incorporation by constructing an integrative literature review. The data survey was performed using the Science Direct, PubMed, Web of Science, and SCOPUS online databases, covering studies that were published from January 2011 up to October 2021. In the last decade, there has been an exponential growth in research regarding the incorporation of synthetic organoselenium compounds into distinct nanocarrier systems such as nanocapsules, nanoemulsions, micelles, and others, reinforcing that the association of such molecules and nanotechnology is a promising alliance. The reports investigated many nanosystems containing selenium organic molecules intending oral, intravenous, and cutaneous applications. Besides that, these systems were evaluated in a variety of in vitro techniques and in vivo models, concerning their pharmacological potential, biodistribution profile, and safety. In summary, the findings indicate that the production of nano-based formulations containing organoselenium compounds either improved physicochemical and biological properties or minimize toxicological issues of compounds.


Assuntos
Nanocápsulas , Compostos Organosselênicos , Selênio , Nanocápsulas/química , Nanotecnologia , Compostos Organosselênicos/química , Compostos Organosselênicos/farmacologia , Distribuição Tecidual
6.
Drug Discov Today ; 27(8): 2268-2277, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35390546

RESUMO

The diverse pharmacological activities of organoselenium compounds are closely correlated to their ability to scavenge and induce reactive oxygen species (ROS), their intrinsic oxidative properties, and their Se(0) release property. The incorporation of selenium into small molecules, and particularly into heterocycles and natural products, has shown great potential in altering the potency and selectivity of these molecules. Therefore, selenium will play an important role in drug discovery in the near future. We summarize how different organoselenium species affect cellular oxidative stress levels, and try to correlate the structural properties of selenium-containing heterocycles and natural product derivatives to their biological activities and therapeutic applications. We also provide some information to guide the rational design of selenium-containing drugs.


Assuntos
Produtos Biológicos , Compostos Organosselênicos , Selênio , Antioxidantes , Produtos Biológicos/farmacologia , Compostos Organosselênicos/química , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/uso terapêutico , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio , Selênio/química
7.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216476

RESUMO

The review presents the latest data on the role of selenium-containing agents in the regulation of diseases of the immune system. We mainly considered the contributions of selenium-containing compounds such as sodium selenite, methylseleninic acid, selenomethionine, and methylselenocysteine, as well as selenoproteins and selenium nanoparticles in the regulation of defense mechanisms against various viral infections, including coronavirus infection (COVID-19). A complete description of the available data for each of the above selenium compounds and the mechanisms underlying the regulation of immune processes with the active participation of these selenium agents, as well as their therapeutic and pharmacological potential, is presented. The main purpose of this review is to systematize the available information, supplemented by data obtained in our laboratory, on the important role of selenium compounds in all of these processes. In addition, the presented information makes it possible to understand the key differences in the mechanisms of action of these compounds, depending on their chemical and physical properties, which is important for obtaining a holistic picture and prospects for creating drugs based on them.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Agentes de Imunomodulação/farmacologia , Compostos de Selênio/farmacologia , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Antivirais/química , Humanos , Sistema Imunitário/efeitos dos fármacos , Agentes de Imunomodulação/química , Compostos Organosselênicos/imunologia , Compostos Organosselênicos/farmacocinética , Compostos Organosselênicos/farmacologia , Compostos de Selênio/imunologia , Selenocisteína/análogos & derivados , Selenocisteína/imunologia , Selenocisteína/farmacologia , Selenometionina/farmacocinética , Selenometionina/farmacologia , Selenito de Sódio/farmacologia
8.
Nucleic Acids Res ; 50(3): 1484-1500, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35037045

RESUMO

The SARS-CoV-2 coronavirus is the causal agent of the current global pandemic. SARS-CoV-2 belongs to an order, Nidovirales, with very large RNA genomes. It is proposed that the fidelity of coronavirus (CoV) genome replication is aided by an RNA nuclease complex, comprising the non-structural proteins 14 and 10 (nsp14-nsp10), an attractive target for antiviral inhibition. Our results validate reports that the SARS-CoV-2 nsp14-nsp10 complex has RNase activity. Detailed functional characterization reveals nsp14-nsp10 is a versatile nuclease capable of digesting a wide variety of RNA structures, including those with a blocked 3'-terminus. Consistent with a role in maintaining viral genome integrity during replication, we find that nsp14-nsp10 activity is enhanced by the viral RNA-dependent RNA polymerase complex (RdRp) consisting of nsp12-nsp7-nsp8 (nsp12-7-8) and demonstrate that this stimulation is mediated by nsp8. We propose that the role of nsp14-nsp10 in maintaining replication fidelity goes beyond classical proofreading by purging the nascent replicating RNA strand of a range of potentially replication-terminating aberrations. Using our developed assays, we identify drug and drug-like molecules that inhibit nsp14-nsp10, including the known SARS-CoV-2 major protease (Mpro) inhibitor ebselen and the HIV integrase inhibitor raltegravir, revealing the potential for multifunctional inhibitors in COVID-19 treatment.


Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos , Exorribonucleases/metabolismo , Genoma Viral/genética , Instabilidade Genômica , SARS-CoV-2/enzimologia , SARS-CoV-2/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Exorribonucleases/antagonistas & inibidores , Genoma Viral/efeitos dos fármacos , Instabilidade Genômica/efeitos dos fármacos , Instabilidade Genômica/genética , Inibidores de Integrase de HIV/farmacologia , Isoindóis/farmacologia , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/metabolismo , Compostos Organosselênicos/farmacologia , RNA Viral/biossíntese , RNA Viral/genética , Raltegravir Potássico/farmacologia , SARS-CoV-2/efeitos dos fármacos , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas Virais Reguladoras e Acessórias/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
9.
Int J Biol Macromol ; 192: 82-89, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34619275

RESUMO

Seleno-ovalbumin (Se-OVA) was a selenium conjugating protein synthesized by the combination of ovalbumin (OVA) and inorganic selenium. In this paper, the structure of Se-OVA was characterized, and the anticancer effect of Se-OVA on hepatocellular carcinoma HepG2 cells was investigated. Through FT-IR, UV, endogenous fluorescence and XRD assays, it was found that the structural characterization of Se-OVA changed after seleno-modification. In addition, the cell assays showed that Se-OVA could induce apoptosis of HepG2 cells by arresting cell cycle in S phase, generating intracellular reactive oxygen species, reducing the mitochondrial transmembrane potential, and triggering the Bax- and Bcl-2-mediated mitochondria apoptosis pathway. These findings revealed that Se-OVA might serve as a novel anticancer drug for cancer adjuvant therapy.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Compostos Organosselênicos/química , Compostos Organosselênicos/farmacologia , Ovalbumina/química , Transdução de Sinais/efeitos dos fármacos , Carcinoma Hepatocelular , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Neoplasias Hepáticas , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Compostos Organosselênicos/síntese química , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Biochem J ; 478(13): 2499-2515, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34198327

RESUMO

The coronavirus 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), spread around the world with unprecedented health and socio-economic effects for the global population. While different vaccines are now being made available, very few antiviral drugs have been approved. The main viral protease (nsp5) of SARS-CoV-2 provides an excellent target for antivirals, due to its essential and conserved function in the viral replication cycle. We have expressed, purified and developed assays for nsp5 protease activity. We screened the nsp5 protease against a custom chemical library of over 5000 characterised pharmaceuticals. We identified calpain inhibitor I and three different peptidyl fluoromethylketones (FMK) as inhibitors of nsp5 activity in vitro, with IC50 values in the low micromolar range. By altering the sequence of our peptidomimetic FMK inhibitors to better mimic the substrate sequence of nsp5, we generated an inhibitor with a subnanomolar IC50. Calpain inhibitor I inhibited viral infection in monkey-derived Vero E6 cells, with an EC50 in the low micromolar range. The most potent and commercially available peptidyl-FMK compound inhibited viral growth in Vero E6 cells to some extent, while our custom peptidyl FMK inhibitor offered a marked antiviral improvement.


Assuntos
Antivirais/química , Antivirais/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , SARS-CoV-2/enzimologia , Bibliotecas de Moléculas Pequenas/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Azóis/farmacologia , Chlorocebus aethiops , Proteases 3C de Coronavírus/genética , Proteases 3C de Coronavírus/isolamento & purificação , Proteases 3C de Coronavírus/metabolismo , Ensaios Enzimáticos , Transferência Ressonante de Energia de Fluorescência , Ensaios de Triagem em Larga Escala , Isoindóis , Leupeptinas/farmacologia , Compostos Organosselênicos/farmacologia , Peptidomiméticos , Proteínas de Ligação a RNA/metabolismo , Reprodutibilidade dos Testes , SARS-CoV-2/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Células Vero , Proteínas não Estruturais Virais/metabolismo
11.
Molecules ; 26(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299505

RESUMO

Ebselen is the leader of selenorganic compounds, and starting from its identification as mimetic of the key antioxidant enzyme glutathione peroxidase, several papers have appeared in literature claiming its biological activities. It was the subject of several clinical trials and it is currently in clinical evaluation for the treatment of COVID-19 patients. Given our interest in the synthesis and pharmacological evaluation of selenorganic derivatives with this review, we aimed to collect all the papers focused on the biological evaluation of ebselen and its close analogues, covering the timeline between 2016 and most of 2021. Our analysis evidences that, even if it lacks specificity when tested in vitro, being able to bind to every reactive cysteine, it proved to be always well tolerated in vivo, exerting no sign of toxicity whatever the administered doses. Besides, looking at the literature, we realized that no review article dealing with the synthetic approaches for the construction of the benzo[d][1,2]-selenazol-3(2H)-one scaffold is available; thus, a section of the present review article is completely devoted to this specific topic.


Assuntos
Azóis/química , Azóis/síntese química , Azóis/farmacologia , Compostos Organosselênicos/química , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/farmacologia , Animais , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Antivirais/farmacologia , Biomimética/métodos , Inibidores de Ciclo-Oxigenase/farmacologia , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/farmacologia , Humanos , Isoindóis , Estrutura Molecular , Fármacos Neuroprotetores/farmacologia , Selênio/química , Selenoproteínas/síntese química , Selenoproteínas/farmacologia
12.
Nat Commun ; 12(1): 3061, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34031399

RESUMO

The SARS-CoV-2 pandemic has triggered global efforts to develop therapeutics. The main protease of SARS-CoV-2 (Mpro), critical for viral replication, is a key target for therapeutic development. An organoselenium drug called ebselen has been demonstrated to have potent Mpro inhibition and antiviral activity. We have examined the binding modes of ebselen and its derivative in Mpro via high resolution co-crystallography and investigated their chemical reactivity via mass spectrometry. Stronger Mpro inhibition than ebselen and potent ability to rescue infected cells were observed for a number of derivatives. A free selenium atom bound with cysteine of catalytic dyad has been revealed in crystallographic structures of Mpro with ebselen and MR6-31-2 suggesting hydrolysis of the enzyme bound organoselenium covalent adduct and formation of a phenolic by-product, confirmed by mass spectrometry. The target engagement with selenation mechanism of inhibition suggests wider therapeutic applications of these compounds against SARS-CoV-2 and other zoonotic beta-corona viruses.


Assuntos
Azóis/farmacologia , Proteases 3C de Coronavírus/antagonistas & inibidores , Compostos Organosselênicos/farmacologia , SARS-CoV-2/enzimologia , Antivirais/farmacologia , Azóis/química , Domínio Catalítico , Proteases 3C de Coronavírus/metabolismo , Cristalografia por Raios X , Cisteína/química , Hidrólise , Isoindóis , Modelos Moleculares , Compostos Organosselênicos/química , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Padrões de Referência , SARS-CoV-2/efeitos dos fármacos , Salicilanilidas/química , Salicilanilidas/farmacologia , Selênio/metabolismo
13.
Arch Toxicol ; 95(4): 1179-1226, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33792762

RESUMO

Here, we addressed the pharmacology and toxicology of synthetic organoselenium compounds and some naturally occurring organoselenium amino acids. The use of selenium as a tool in organic synthesis and as a pharmacological agent goes back to the middle of the nineteenth and the beginning of the twentieth centuries. The rediscovery of ebselen and its investigation in clinical trials have motivated the search for new organoselenium molecules with pharmacological properties. Although ebselen and diselenides have some overlapping pharmacological properties, their molecular targets are not identical. However, they have similar anti-inflammatory and antioxidant activities, possibly, via activation of transcription factors, regulating the expression of antioxidant genes. In short, our knowledge about the pharmacological properties of simple organoselenium compounds is still elusive. However, contrary to our early expectations that they could imitate selenoproteins, organoselenium compounds seem to have non-specific modulatory activation of antioxidant pathways and specific inhibitory effects in some thiol-containing proteins. The thiol-oxidizing properties of organoselenium compounds are considered the molecular basis of their chronic toxicity; however, the acute use of organoselenium compounds as inhibitors of specific thiol-containing enzymes can be of therapeutic significance. In summary, the outcomes of the clinical trials of ebselen as a mimetic of lithium or as an inhibitor of SARS-CoV-2 proteases will be important to the field of organoselenium synthesis. The development of computational techniques that could predict rational modifications in the structure of organoselenium compounds to increase their specificity is required to construct a library of thiol-modifying agents with selectivity toward specific target proteins.


Assuntos
Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/toxicidade , Aminoácidos/química , Animais , Azóis , Humanos , Isoindóis , Estrutura Molecular , Selênio/química , Selênio/fisiologia , Selenoproteínas/química , Compostos de Sulfidrila/química
14.
Eur J Med Chem ; 219: 113441, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33862517

RESUMO

Cumulative evidence suggests that ß-amyloid and oxidative stress are closely related with each other and play key roles in the process of Alzheimer's disease (AD). Multitarget regulation of both pathways might represent a promising therapeutic strategy. Here, a series of selenium-containing compounds based on ebselen and verubecestat were designed and synthesized. Biological evaluation showed that 13f exhibited good BACE-1 inhibitory activity (IC50 = 1.06 µΜ) and potent GPx-like activity (ν0 = 183.0 µM min-1). Aß production experiment indicated that 13f could reduce the secretion of Aß1-40 in HEK APPswe 293T cells. Moreover, 13f exerted a cytoprotective effect against the H2O2 or 6-OHDA caused cell damage via alleviation of intracellular ROS, mitochondrial dysfunction, Ca2+ overload and cell apoptosis. The mechanism studies indicated that 13f exhibited cytoprotective effect by activating the Keap1-Nrf2-ARE pathway and stimulating downstream anti-oxidant protein including HO-1, NQO1, TrxR1, GCLC, and GCLM. In addition, 13f significantly reduced the production of NO and IL-6 induced by LPS in BV2 cells, which confirmed its anti-inflammatory activity as a Nrf2 activator. The BBB permeation assay predicted that 13f was able to cross the BBB. In summary, 13f might be a promising multi-target-directed ligand for the treatment of AD.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ligantes , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fármacos Neuroprotetores/síntese química , Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Antioxidantes/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Azóis/química , Azóis/metabolismo , Azóis/farmacologia , Azóis/uso terapêutico , Sítios de Ligação , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Óxidos S-Cíclicos/química , Óxidos S-Cíclicos/metabolismo , Óxidos S-Cíclicos/farmacologia , Óxidos S-Cíclicos/uso terapêutico , Desenho de Fármacos , Humanos , Interleucina-6/metabolismo , Isoindóis , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Compostos Organosselênicos/química , Compostos Organosselênicos/metabolismo , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Selênio/química , Transdução de Sinais/efeitos dos fármacos , Tiadiazinas/química , Tiadiazinas/metabolismo , Tiadiazinas/farmacologia , Tiadiazinas/uso terapêutico
15.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925081

RESUMO

Her/2+ breast cancer accounts for ~25% mortality in women and overexpression of Her/2 leads to cell growth and tumor progression. Trastuzumab (Tz) with Taxane is the preferred treatment for Her/2+ patients. However, Tz responsive patients often develop resistance to Tz treatment. Herein, redox selenides (RSe-) were covalently linked to Tz using a selenium (Se)-modified Bolton-Hunter Reagent forming Seleno-Trastuzumab (Se-Tz; ~25 µgSe/mg). Se-Tz was compared to Tz and sodium selenite to assess the viability of JIMT-1 and BT-474 cells. Comparative cell viability was examined by microscopy and assessed by fluorometric/enzymatic assays. Se-Tz and selenite redox cycle producing superoxide (O2•-) are more cytotoxic to Tz resistant JIMT-1 and Tz sensitive BT-474 cells than Tz. The results of conjugating redox selenides to Tz suggest a wider application of this technology to other antibodies and targeting molecules.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Selênio/farmacologia , Trastuzumab/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Microscopia Eletrônica de Varredura , Compostos Organosselênicos/farmacologia , Oxirredução , Receptor ErbB-2/metabolismo , Superóxidos/metabolismo
16.
Chem Biol Interact ; 338: 109427, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33639173

RESUMO

Oxidative stress and inflammation are implicated in the occurrence and progression of diabetic nephropathy (DN). Diphenyl diselenide (DPDS) is a stable and simple diaryl diselenide with anti-hyperglycemic, anti-inflammatory, and antioxidant activities. However, the effects of DPDS on DN are still unclear to date. Herein, we aimed to explore whether DPDS could improve renal dysfunction in streptozotocin (STZ)-induced diabetic rats and its underlying mechanisms. STZ-induced DN rats were administered with DPDS (5 or 15 mg/kg) or metformin (200 mg/kg) once daily by intragastric gavage for 12 weeks. DPDS supplementation significantly improved hyperglycemia, glucose intolerance, dyslipidemia, and the renal pathological abnormalities, concurrent with significantly reduced serum levels of creatinine, urea nitrogen, urine volume, and urinary levels of micro-albumin, ß2-microglobulin and N-acetyl-glucosaminidase activities. Moreover, DPDS effectively promoted the activities of antioxidant enzymes, and reduced the levels of MDA and pro-inflammatory factors in serum and the kidney. Furthermore, DPDS supplementation activated the renal Nrf2/Keap1 signaling pathway, but attenuated the high phosphorylation levels of NFκB, JNK, p38 and ERK1/2. Altogether, the current study indicated for the first time that DPDS ameliorated STZ-induced renal dysfunction in rats, and its mechanism of action may be attributable to suppressing oxidative stress via activating the renal Nrf2/Keap1 signaling pathway and mitigating inflammation by suppressing the renal NFκB/MAPK signaling pathways, suggesting a potential therapeutic approach for DN.


Assuntos
Derivados de Benzeno/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/tratamento farmacológico , Inflamação/tratamento farmacológico , Compostos Organosselênicos/uso terapêutico , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Derivados de Benzeno/farmacologia , Citocinas/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/fisiopatologia , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/fisiopatologia , Dislipidemias/complicações , Dislipidemias/tratamento farmacológico , Dislipidemias/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Inflamação/complicações , Inflamação/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim/patologia , Rim/fisiopatologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Modelos Biológicos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Compostos Organosselênicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Estreptozocina
17.
Med Chem ; 17(9): 1007-1022, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32998677

RESUMO

BACKGROUND: Over the years, transition metal complexes have exhibited significant antimicrobial and antitumor activity. It all started with cisplatin discovery, but due to the large number of side effects it shows, there is a growing need to find a new metal-based compound with higher selectivity and activity on more tumors. OBJECTIVES: Two novel trans-palladium(II) complexes with organoselenium compounds as ligands, [Pd(L1)2Cl2] (L1 = 5-(phenylselanylmethyl)-dihydrofuran-2(3H)-one) and [Pd(L2)2Cl2] (L2 = 2- methyl-5-(phenylselanylmethyl)- tetrahydrofuran) were synthesized, in the text referred to as Pd-Se1 and Pd-Se2. Also, a structurally similar trans-palladium(II) complex, [Pd(L3)2Cl2] (L3= 2,2- dimethyl-3-(phenylselanylmethyl)-tetrahydro-2H-pyran) was synthesized according to an already published work and is referred to as Pd-Se3. The interaction of synthesized complexes with DNA and bovine serum albumin was observed. Also, antimicrobial activity and in vitro testing, cell viability, and cytotoxic effects of synthesized ligands and complexes on human epithelial colorectal cancer cell line HCT-116 were studied. Molecular docking simulations were performed to understand better the binding modes of the complexes reported in this paper with DNA and BSA, as well as to comprehend their antimicrobial activity. METHODS: The interactions of the synthesized complexes with DNA and bovine serum albumin were done using UV-Vis and emission spectral studies as well as docking studies. Antimicrobial activity was tested by determining the minimum inhibitory concentrations (MIC) and minimum microbicidal concentration (MMC) using the resazurin microdilution plate method. Cytotoxic activity on cancer cells was studied by MTT test. RESULTS: The Pd(II) complexes showed a significant binding affinity for calf thymus DNA and bovine serum albumin by UV-Vis and emission spectral studies. The intensity of antimicrobial activity varied with the complexes Pd-Se1 and Pd-Se3, showing significantly higher activity than the corresponding ligand. The most significant activity was shown on Pseudomonas aeruginosa. Under standardized laboratory conditions for in vitro testing, cell viability and cytotoxic effects of synthesized ligands and complexes were studied on human epithelial colorectal cancer cell line HCT-116, where Pd-Se2 showed some significant cytotoxic effects. CONCLUSION: The newly synthesized complexes have the potential to be further investigated as metallodrugs.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Compostos Organosselênicos/química , Compostos Organosselênicos/farmacologia , Paládio/química , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Antineoplásicos/química , Biofilmes/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , DNA/química , DNA/metabolismo , Avaliação Pré-Clínica de Medicamentos , Células HCT116 , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Compostos Organosselênicos/síntese química , Soroalbumina Bovina/química , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Viscosidade
18.
Redox Biol ; 37: 101715, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32992282

RESUMO

Selenium is a trace element essential to human health largely because of its incorporation into selenoproteins that have a wide range of protective functions. Selenium has an ongoing history of reducing the incidence and severity of various viral infections; for example, a German study found selenium status to be significantly higher in serum samples from surviving than non-surviving COVID-19 patients. Furthermore, a significant, positive, linear association was found between the cure rate of Chinese patients with COVID-19 and regional selenium status. Moreover, the cure rate continued to rise beyond the selenium intake required to optimise selenoproteins, suggesting that selenoproteins are probably not the whole story. Nonetheless, the significantly reduced expression of a number of selenoproteins, including those involved in controlling ER stress, along with increased expression of IL-6 in SARS-CoV-2 infected cells in culture suggests a potential link between reduced selenoprotein expression and COVID-19-associated inflammation. In this comprehensive review, we describe the history of selenium in viral infections and then go on to assess the potential benefits of adequate and even supra-nutritional selenium status. We discuss the indispensable function of the selenoproteins in coordinating a successful immune response and follow by reviewing cytokine excess, a key mediator of morbidity and mortality in COVID-19, and its relationship to selenium status. We comment on the fact that the synthetic redox-active selenium compound, ebselen, has been found experimentally to be a strong inhibitor of the main SARS-CoV-2 protease that enables viral maturation within the host. That finding suggests that redox-active selenium species formed at high selenium intake might hypothetically inhibit SARS-CoV-2 proteases. We consider the tactics that SARS-CoV-2 could employ to evade an adequate host response by interfering with the human selenoprotein system. Recognition of the myriad mechanisms by which selenium might potentially benefit COVID-19 patients provides a rationale for randomised, controlled trials of selenium supplementation in SARS-CoV-2 infection.


Assuntos
COVID-19/imunologia , Inflamação/imunologia , Selênio/imunologia , Selenoproteínas/imunologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Azóis/farmacologia , Azóis/uso terapêutico , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/imunologia , Citocinas/imunologia , Humanos , Inflamação/tratamento farmacológico , Isoindóis , Compostos Organosselênicos/farmacologia , Compostos Organosselênicos/uso terapêutico , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Inibidores de Protease Viral/farmacologia , Inibidores de Protease Viral/uso terapêutico , Tratamento Farmacológico da COVID-19
19.
Anticancer Res ; 40(9): 4921-4928, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32878780

RESUMO

BACKGROUND/AIM: Phenothiazines constitute a versatile family of compounds in terms of biological activity, which have also gained a considerable attention in cancer research. MATERIALS AND METHODS: Three phenothiazines (promethazine, chlorpromazine and thioridazine) have been tested in combination with 11 active selenocompounds against MDR (ABCB1-overexpressing) mouse T-lymphoma cells to investigate their activity as combination chemotherapy and as antitumor adjuvants in vitro with a checkerboard combination assay. RESULTS: Seven selenocompounds showed toxicity on mouse embryonic fibroblasts, while three showed selectivity towards tumor cells. Two compounds showed synergism with all tested phenothiazines in low concentration ranges (1.46-11.25 µM). Thioridazine was the most potent among the three phenothiazines. CONCLUSION: Phenothiazines belonging to different generations showed different levels of adjuvant activities. All the tested phenothiazines are already approved medicines with known pharmacological and toxicity profiles, therefore, their use as adjuvants in cancer may be considered as a potential drug repurposing strategy.


Assuntos
Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Compostos Organosselênicos/farmacologia , Fenotiazinas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Resistência a Múltiplos Medicamentos/genética , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Linfoma de Células T/tratamento farmacológico , Linfoma de Células T/patologia , Camundongos , Estrutura Molecular , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/química , Fenotiazinas/síntese química , Fenotiazinas/química
20.
J Am Chem Soc ; 142(29): 12802-12810, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32638590

RESUMO

Melanins are a family of heterogeneous biopolymers found ubiquitously across plant, animal, bacterial, and fungal kingdoms where they act variously as pigments and as radiation protection agents. There exist five multifunctional yet structurally and biosynthetically incompletely understood varieties of melanin: eumelanin, neuromelanin, pyomelanin, allomelanin, and pheomelanin. Although eumelanin and allomelanin have been the focus of most radiation protection studies to date, some research suggests that pheomelanin has a better absorption coefficient for X-rays than eumelanin. We reasoned that if a selenium enriched melanin existed, it would be a better X-ray protector than the sulfur-containing pheomelanin because the X-ray absorption coefficient is proportional to the fourth power of the atomic number (Z). Notably, selenium is an essential micronutrient, with the amino acid selenocysteine being genetically encoded in 25 natural human proteins. Therefore, we hypothesize that selenomelanin exists in nature, where it provides superior ionizing radiation protection to organisms compared to known melanins. Here we introduce this novel selenium analogue of pheomelanin through chemical and biosynthetic routes using selenocystine as a feedstock. The resulting selenomelanin is a structural mimic of pheomelanin. We found selenomelanin effectively prevented neonatal human epidermal keratinocytes (NHEK) from G2/M phase arrest under high-dose X-ray irradiation. Provocatively, this beneficial role of selenomelanin points to it as a sixth variety of yet to be discovered natural melanin.


Assuntos
Melaninas/química , Compostos Organosselênicos/química , Selênio/química , Humanos , Queratinócitos/efeitos dos fármacos , Melaninas/farmacologia , Estrutura Molecular , Compostos Organosselênicos/síntese química , Compostos Organosselênicos/farmacologia , Tamanho da Partícula , Selênio/farmacologia , Propriedades de Superfície , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA