RESUMO
A novel synthetic compound from the 2-benzoyl-6-benzylidenecyclohexanone analogue, namely 2-benzoyl-6-(3-bromo-4-hydroxybenzylidene)cyclohexen-1-ol (BBHC), showed pronounced nitric oxide inhibition in IFN-γ/LPS-induced RAW 264.7 cells. Based on this previous finding, our present study aimed to investigate the antinociceptive effects of BBHC via chemical and thermal stimuli in vivo. The investigation of the antinociceptive activity of BBHC (0.1, 0.3, 1.0 and 3.0 mg/kg, i.p.) was initiated with 3 preliminary screening tests, then BBHC was subjected to investigate its possible involvement with excitatory neurotransmitters and opioid receptors. The potential acute toxicity of BBHC administration was also studied. Administration of BBHC significantly inhibited acetic acid-induced abdominal constrictions, formalin-induced paw licking activity and developed notable increment in the latency time. BBHC's ability to suppress capsaicin- and glutamate-induced paw licking activities, as well as to antagonise the effect of naloxone, had indicated the possible involvement of its antinociception with TRPV1, glutamate and opioid receptors, respectively. The antinociceptive activities of BBHC was not related to any sedative action and no evidence of acute toxic effect was detected. The present study showed that BBHC possessed significant peripheral and central antinociceptive activities via chemical- and thermal-induced nociceptive murine models without any locomotor alteration and acute toxicity.
Assuntos
Analgésicos , Dor/tratamento farmacológico , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Compostos de Benzil/farmacologia , Compostos de Benzil/uso terapêutico , Compostos de Bromo/farmacologia , Compostos de Bromo/uso terapêutico , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Glutamatos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neurotransmissores , Óxido Nítrico/antagonistas & inibidores , Células RAW 264.7 , Receptores Opioides , Canais de Cátion TRPVRESUMO
Salvia bulleyana is a rare Chinese medicinal plant that due to the presence of polyphenols lowers the risk of some chronic diseases especially those related to the cardiovascular system. The present study examines the organogenic competence of various combinations and concentrations of plant growth regulators to develop an efficient protocol for in vitro regeneration of S. bulleyana via leaf explants, maintaining the high production of active constituents. The purpose of the study was also to assess the possibilities of using a cytokinin-based regeneration to effectively produce therapeutic compounds. The adventitious shoot formation was observed through direct organogenesis on media with purine derivatives (meta-topolin, mT and benzylaminopurine, BAP), and through indirect organogenesis on media with urea derivatives (tidiazuron, TDZ and forchlorfenuron, CPPU). The highest regeneration frequency (95%) with 5.2 shoots per explant was obtained on leaves cultured on Murashige and Skoog (MS) medium containing 0.1 mg/L naphthalene-1-acetic acid (NAA) and 2 mg/L BAP. Following inter simple sequence repeat (ISSR) marker-based profiling, the obtained organogenic shoot lines revealed a similar banding pattern to the mother line, with total variability of 4.2-13.7%, indicating high level of genetic stability. The similar genetic profile of the studied lines translated into similar growth parameters. Moreover, HPLC analysis revealed no qualitative differences in the profile of bioactive metabolites; also, the total polyphenol content was similar for different lines, with the exception of the shoots obtained in the presence of CPPU that produced higher level of bioactive compounds. This is the first report of an effective and rapid in vitro organogenesis protocol for S. bulleyana, which can be efficiently employed for obtaining stable cultures rich in bioactive metabolites.
Assuntos
Citocininas/farmacologia , Plantas Medicinais/crescimento & desenvolvimento , Salvia/química , Técnicas de Cultura de Tecidos , Compostos de Benzil/farmacologia , Meios de Cultura/química , Meios de Cultura/farmacologia , Humanos , Medicina Tradicional Chinesa , Reguladores de Crescimento de Plantas/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Plantas Medicinais/química , Purinas/farmacologia , Regeneração/efeitos dos fármacos , Salvia/crescimento & desenvolvimentoRESUMO
The present study aims to investigate the protective effects of N-(3-methoxybenzyl)-(9Z,12Z,15Z)-octadecatrienamide (M 18:3) on corticosterone-induced neurotoxicity. A neurotoxic model was established by subcutaneous injection of corticosterone (40 mg per kg bw) for 21 days. Depressive behaviors (the percentage of sucrose consumption, the immobility time in the forced swimming test, and the total distance in the open field test) were observed. The levels of the brain-derived neurotrophic factor, the contents of tumor necrosis factor-α and interleukin-6, and the numbers of positive cells of doublecortin and bromodeoxyuridine in the hippocampus were measured. The density of hippocampal neurons was calculated. The morphological changes of hippocampal neurons (the density of dendritic spines, the dendritic length, and the area and volume of dendritic cell bodies) were observed. The expression levels of synaptophysin, synapsin I, and postsynaptic density protein 95 were measured. Behavioral experiments showed that M 18:3 (5 and 25 mg per kg bw) could remarkably improve the depressive behaviors. The enzyme-linked immunosorbent assay showed that M 18:3 could considerably reduce hippocampal neuroinflammation and increase hippocampal neurotrophy. Nissl staining showed that M 18:3 could remarkably improve the corticosterone-induced decrease in the hippocampal neuron density. Immunofluorescence analysis showed that M 18:3 could considerably promote hippocampal neurogenesis. Golgi staining showed that M 18:3 could remarkably improve the corticosterone-induced changes in the hippocampal dendritic structure. Western blotting showed that M 18:3 could considerably increase the expression levels of synaptic-structure-related proteins in the hippocampus. In conclusion, the protective effects of M 18:3 may be attributed to the anti-inflammatory, neurotrophic, and synaptic protection properties.
Assuntos
Alcenos/farmacologia , Compostos de Benzil/farmacologia , Hipocampo/efeitos dos fármacos , Lepidium , Fármacos Neuroprotetores/farmacologia , Alcenos/farmacocinética , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Compostos de Benzil/farmacocinética , Barreira Hematoencefálica/metabolismo , Contagem de Células , Forma Celular , Corticosterona , Depressão/tratamento farmacológico , Hipocampo/citologia , Hipocampo/metabolismo , Hipocampo/fisiologia , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurogênese , Neurônios/citologia , Fármacos Neuroprotetores/farmacocinética , Extratos Vegetais/química , Extratos Vegetais/farmacocinética , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar , Sinapses/efeitos dos fármacos , Sinapses/fisiologiaRESUMO
Hepatocellular carcinoma (HCC) frequently shows early invasion into blood vessels as well as intrahepatic metastasis. Innovations of novel small-molecule agents to block HCC invasion and subsequent metastasis are urgently needed. Moscatilin is a bibenzyl derivative extracted from the stems of a traditional Chinese medicine, orchid Dendrobium loddigesii. Although moscatilin has been reported to suppress tumor angiogenesis and growth, the anti-metastatic property of moscatilin has not been elucidated. The present results revealed that moscatilin inhibited metastatic behavior of HCC cells without cytotoxic fashion in highly invasive human HCC cell lines. Furthermore, moscatilin significantly suppressed the activity of urokinase plasminogen activator (uPA), but not matrix metalloproteinase (MMP)-2 and MMP-9. Interestingly, moscatilin-suppressed uPA activity was through down-regulation the protein level of uPA, and did not impair the uPA receptor and uPA inhibitory molecule (PAI-1) expressions. Meanwhile, the mRNA expression of uPA was inhibited via moscatilin in a concentration-dependent manner. In addition, the expression of phosphorylated Akt, rather than ERK1/2, was inhibited by moscatilin treatment. The expression of phosphor-IκBα, and -p65, as well as κB-luciferase activity were also repressed after moscatilin treatment. Transfection of constitutively active Akt (Myr-Akt) obviously restored the moscatilin-inhibited the activation of NF-κB and uPA, and cancer invasion in HCC cells. Taken together, these results suggest that moscatilin impedes HCC invasion and uPA expression through the Akt/NF-κB signaling pathway. Moscatilin might serve as a potential anti-metastatic agent against the disease progression of human HCC.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Compostos de Benzil/farmacologia , Movimento Celular/efeitos dos fármacos , NF-kappa B/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ativador de Plasminogênio Tipo Uroquinase/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/efeitos dos fármacos , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Regulação Neoplásica da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/antagonistas & inibidores , Ativador de Plasminogênio Tipo Uroquinase/metabolismoRESUMO
The lupeol detection in callus of Vernonanthura patens (Kunth) H. Rob. leaves is discussed. Leaf segments previously treated with sodium hypochlorite, ethanol, and distilled water were placed in MS basal medium (Murashige and Skoog) for 7 days. Next, callus induction were done in two complemented MS medium for 6 weeks. Then, callus propagation were performed in MS medium supplemented with 1.0 mg/L of benzylaminopurine (BAP) and 0.5 mg/L of 2,4-dichlorophenoxyacetic acid (2,4-D) for 50 days. Fresh callus were extracted every 10 days in an ultrasonic bath using ethyl acetate (1.0 g/10 mL). The identification was carried out by Gas Chromatography-Mass Spectrometry (GC-MS) using selected ion monitoring (SIM) acquisition mode with characteristic ions of lupeol. The results obtained indicate the occurrence of lupeol in callus extract after twenty days of proliferation. These findings could be use in subsequent scale-up studies for biomass production containing this active compound in order to replace conventional methods.
Assuntos
Asteraceae/citologia , Asteraceae/metabolismo , Triterpenos Pentacíclicos/análise , Triterpenos Pentacíclicos/metabolismo , Folhas de Planta/citologia , Ácido 2,4-Diclorofenoxiacético/farmacologia , Compostos de Benzil/farmacologia , Meios de Cultura/química , Meios de Cultura/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Folhas de Planta/metabolismo , Purinas/farmacologia , Técnicas de Cultura de Tecidos/métodosRESUMO
Functional dyspepsia (FD) is thought to be mainly based on gastric motility dysfunction and chronic hypersensitivity, yet FD animal models has been reported a few. We studied to establish the mouse model of impaired gastric motility induced by a pungent ingredient of wasabi allyl isothiocyanate (AITC), which is reliable to evaluate prokinetic agents. Male ddY mice were used. Gastric motility was measured by 13C-acetic acid breath test in conscious mice. AITC (80 mM) was given 60 min before the measurement of motility. Prokinetic agents including itopride (30, 100 mg/kg), mosapride (0.1-1 mg/kg), neostigmine (30 µg/kg), acotiamide (10-100 mg/kg), and daikenchuto (100-1000 mg/kg) were given 40 min before the measurement. AITC impaired gastric motility without mucosal damages, which reverted 24 h after AITC treatment. The decreased motility induced by AITC was restored by prokinetic agents such as itopride, mosapride, neostigmine, and acotiamide. In separate experiment, daikenchuto recovered the decreased motility induced by AITC, although daikenchuto had no effect on motility in normal condition. In conclusion, it is considered that the AITC-induced impaired gastric motility mouse model is useful to develop new prokinetic agents for treatment of FD, and to re-evaluate traditional Japanese herbal medicines.
Assuntos
Benzamidas/administração & dosagem , Compostos de Benzil/administração & dosagem , Dispepsia/tratamento farmacológico , Motilidade Gastrointestinal , Isotiocianatos/efeitos adversos , Morfolinas/administração & dosagem , Neostigmina/administração & dosagem , Fitoterapia , Extratos Vegetais/administração & dosagem , Tiazóis/administração & dosagem , Wasabia/química , Animais , Benzamidas/farmacologia , Compostos de Benzil/farmacologia , Modelos Animais de Doenças , Dispepsia/fisiopatologia , Motilidade Gastrointestinal/efeitos dos fármacos , Isotiocianatos/isolamento & purificação , Masculino , Camundongos Endogâmicos , Morfolinas/farmacologia , Neostigmina/farmacologia , Panax , Extratos Vegetais/farmacologia , Tiazóis/farmacologia , Zanthoxylum , ZingiberaceaeRESUMO
Dendrobium bibenzyls and phenanthrenes such as chrysotoxine, cypripedin, gigantol and moscatilin have been reported to show promising inhibitory effects on lung cancer growth and metastasis in ex vivo human cell line models, suggesting their potential for clinical application in patients with lung cancer. However, it remains to be determined whether these therapeutic effects can be also seen in primary human cells and/or in vivo. In this study, we comparatively investigated the immune modulatory effects of bibenzyls and phenanthrenes, including a novel Dendrobium bibenzyl derivative, in primary human monocytes. All compounds were isolated and purified from a Thai orchid Dendrobium lindleyi Steud, a new source of therapeutic compounds with promising potential of tissue culture production. We detected increased frequencies of TNF- and IL-6-expressing monocytes after treatment with gigantol and cypripedin, whereas chrysotoxine and moscatilin did not alter the expression of these cytokines in monocytes. Interestingly, the new 4,5-dihydroxy-3,3',4'-trimethoxybibenzyl derivative showed dose-dependent immune modulatory effects in lipopolysaccharide (LPS)-treated CD14lo and CD14hi monocytes. Together, our findings show immune modulatory effects of the new bibenzyl derivative from Dendrobium lindleyi on different monocyte sub-populations. However, therapeutic consequences of these different monocyte populations on human diseases including cancer remain to be investigated.
Assuntos
Bibenzilas/farmacologia , Dendrobium , Fatores Imunológicos/farmacologia , Monócitos/efeitos dos fármacos , Fenantrenos/farmacologia , Extratos Vegetais/farmacologia , Compostos de Benzil/química , Compostos de Benzil/farmacologia , Bibenzilas/química , Células Cultivadas , Dendrobium/química , Guaiacol/análogos & derivados , Guaiacol/química , Guaiacol/farmacologia , Humanos , Fatores Imunológicos/química , Monócitos/imunologia , Naftoquinonas/química , Naftoquinonas/farmacologia , Fenantrenos/química , Extratos Vegetais/químicaRESUMO
This study was aimed to develop in vitro micropropagation protocol of Aloe trichosantha Berger using offshoots as explants. MS media supplemented with plant growth regulators helped explants develop shoots within about 14 to 17 days. The mean number of days to shooting has decreased from 16.8 ± 0.8 with 0.5/0.5 mg/L BAP/NAA supplement to 15.5 ± 0.5 with 2.0/0.5 mg/L BAP/NAA. While the mean shoot number has increased with increasing the concentration of BAP supplements, the reverse was true with mean shoot lengths, whereas supplement of 2.0/0.5 mg/L BAP/NAA has generated significantly more shoots (17 ± 3.8), and longer shoots were produced with the addition of 0.5/0.5 and 1.0/0.5 mg/L BAP/NAA. In regard to rooting, though higher concentrations of NAA have resulted in quick rooting, the rooting performance in terms of mean number and length of roots was better with low concentrations. All the plantlets subjected to greenhouse acclimatization in cocopeat have survived. Secondary acclimatization in composted and manured soil media has also resulted in 93 to 95% survival rate. Lighting conditions (nursery shade or direct sunlight) of secondary acclimatization did not lead to any difference in the survival rate of the plantlets.
Assuntos
Aloe/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Técnicas de Cultura de Tecidos/métodos , Aloe/efeitos dos fármacos , Compostos de Benzil/farmacologia , Meios de Cultura/química , Meios de Cultura/farmacologia , Ácidos Naftalenoacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/citologia , Plantas Medicinais/crescimento & desenvolvimento , Purinas/farmacologiaRESUMO
Organogenesis constitutes the biological feature driving plant in vitro regeneration, in which the role of plant hormones is crucial. The use of machine learning (ML) technology stands out as a novel approach to characterize the combined role of two phytohormones, the auxin indoleacetic acid (IAA) and the cytokinin 6-benzylaminopurine (BAP), on the in vitro organogenesis of unexploited medicinal plants from the Bryophyllum subgenus. The predictive model generated by neurofuzzy logic, a combination of artificial neural networks (ANNs) and fuzzy logic algorithms, was able to reveal the critical factors affecting such multifactorial process over the experimental dataset collected. The rules obtained along with the model allowed to decipher that BAP had a pleiotropic effect on the Bryophyllum spp., as it caused different organogenetic responses depending on its concentration and the genotype, including direct and indirect shoot organogenesis and callus formation. On the contrary, IAA showed an inhibiting role, restricted to indirect shoot regeneration. In this work, neurofuzzy logic emerged as a cutting-edge method to characterize the mechanism of action of two phytohormones, leading to the optimization of plant tissue culture protocols with high large-scale biotechnological applicability.
Assuntos
Aprendizado de Máquina , Organogênese , Reguladores de Crescimento de Plantas/farmacologia , Plantas Medicinais/crescimento & desenvolvimento , Compostos de Benzil/farmacologia , Ácidos Indolacéticos/farmacologia , Kalanchoe/efeitos dos fármacos , Kalanchoe/crescimento & desenvolvimento , Organogênese/efeitos dos fármacos , Plantas Medicinais/efeitos dos fármacos , Purinas/farmacologiaRESUMO
The use of orchids in herbal medicine has a very long history. Dendrobium species are known to produce a variety of secondary metabolites such as phenanthrens, bibenzyls, fluorenones and sesquiterpenes, and alkaloids and are responsible for their wide variety of medicinal properties. For decades, bibenzyls, which are the main bioactive components derived from Dendrobium species, have been subjected to extensive investigation as likely candidates for cancer treatment. The present study was undertaken to investigate the effect of moscatilin, a bibenzyl derivative from the orchid Dendrobium loddigesii on human melanoma cells. In A375 cells compound moscatilin showed a clear dose-response relationship in the range of 6.25-50 µM concentrations. In addition, we demonstrated an apoptotic response after treatment of cancer cells with this bibenzyl compound at 6.25 and 12.5 µM concentrations that probably involves PTEN activity, inhibition of Hsp70 expression and reactive oxygen species production. Alternatively, the inhibition of the caspase cascade at higher concentrations, 25 and 50 µM, correlated with additional reactive oxygen species increase, probably switched the mode of moscatilin-induced cell death from apoptosis to necrosis.
Assuntos
Apoptose/efeitos dos fármacos , Compostos de Benzil/uso terapêutico , Dendrobium/química , Melanoma/tratamento farmacológico , Melanoma/patologia , Compostos de Benzil/química , Compostos de Benzil/farmacologia , Caspase 3/metabolismo , Caspase 9/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA de Neoplasias/metabolismo , Glutationa/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/metabolismoRESUMO
Influence of polyethylene glycol (PEG) mediated osmotic stress on reactive oxygen species (ROS) scavenging machinery of Chinese potato (Solenostemon rotundifolius (Poir.) J. K. Morton) was investigated. Five genotypes of Chinese potato were raised in Murashige and Skoog (MS) basal medium containing 6-benzylaminopurine (BAP, 1 mg L-1) along with various concentrations of PEG-6000 mediated stress conditions (0, -0.2 and -0.5 MPa) and evaluated for osmotic stress tolerance in vitro. The medium containing PEG-6000 had a detrimental effect on plantlet growth and development while compared with the control. Accumulation of H2O2 was lower in Sreedhara and Subala and higher in Nidhi under PEG stress, which was evident by in situ detection in leaves. Lipid peroxidation product such as malondialdehyde (MDA) content was increased due to PEG stress which was more in susceptible genotype than that in tolerant ones. An enhanced ROS-scavenging antioxidant enzyme was observed under stress with respect to the control. The enzymes of ascorbate-glutathione cycle showed an important role in scavenging ROS. The imposition of PEG stress also increased the non-enzymatic antioxidants viz., the ascorbate and reduced glutathione content which was prominent in tolerant genotypes in comparison to susceptible. The present study indicated that, Sreedhara and Subala showed more tolerance to osmotic stress with better ROS scavenging machineries which would be the lines of interest for augmenting future breeding strategies in this climate resilient minor tuber crop.
Assuntos
Osmose/efeitos dos fármacos , Pressão Osmótica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Solanum tuberosum/efeitos dos fármacos , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/metabolismo , Compostos de Benzil/farmacologia , Catalase/metabolismo , Clorofila/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Polietilenoglicóis/farmacologia , Purinas/farmacologia , Solanum tuberosum/metabolismo , Solanum tuberosum/fisiologia , Superóxido Dismutase/metabolismoRESUMO
Application of plant growth regulators has become one of the most important means of improving yield and quality of medicinal plants. To understand the molecular basis of phytohormone-regulated oleanolic acid metabolism, RNA-seq was used to analyze global gene expression in Achyranthes bidentata treated with 2.0 mg/L 1-naphthaleneacetic acid (NAA) and 1.0 mg/L 6-benzyladenine (6-BA). Compared with untreated controls, the expression levels of 20,896 genes were significantly altered with phytohormone treatment. We found that 13071 (62.5%) unigenes were up-regulated, and a lot of differentially expressed genes involved in hormone or terpenoid biosynthesis, or transcription factors were significantly up-regulated. These results suggest that oleanolic acid biosynthesis induced by NAA and 6-BA occurs due to the expression of key genes involved in jasmonic acid signal transduction. This study is the first to analyze the production and hormonal regulation of medicinal A. bidentata metabolites at the molecular level. The results herein contribute to a better understanding of the regulation of oleanane-type triterpenoid saponins accumulation and define strategies to improve the yield of these useful metabolites.
Assuntos
Achyranthes/efeitos dos fármacos , Achyranthes/metabolismo , Compostos de Benzil/farmacologia , Ciclopentanos/metabolismo , Ácidos Naftalenoacéticos/farmacologia , Ácido Oleanólico/biossíntese , Oxilipinas/metabolismo , Purinas/farmacologia , Achyranthes/crescimento & desenvolvimento , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Medicina Tradicional Chinesa , Filogenia , Reguladores de Crescimento de Plantas/metabolismo , Plantas Medicinais/efeitos dos fármacos , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , RNA-Seq , Saponinas/metabolismoRESUMO
Dendrobii Herba is an herbal medicine that uses the stems of Dendrobium species (Orchidacea). It has been traditionally used to treat fever, hydrodipsomania, stomach disorders, and amyotrophia. In our previous study, a bibenzyl compound, moscatilin, which is isolated from Dendrobii Herba, showed potent cytotoxicity against a FaDu human pharyngeal squamous carcinoma cell line. Prompted by this finding, we performed additional studies in FaDu cells to investigate the mechanism of action. Moscatilin induced FaDu cell death by using 5 µM of concentration and by mediating apoptosis, whereas cell proliferation following treatment with 1 µM of moscatilin was not suppressed to the same levels as by the anti-cancer agent, cisplatin. Apoptosis-related protein expression (cleaved caspase-8, cleaved caspase-7, cytochrome c, cleaved caspase-9, cleaved caspase-3, and poly (ADP-ribose) polymerase (PARP) was increased by treating with 5 µM of moscatilin. This suggests that moscatilin-mediated apoptosis is associated with the extrinsic and intrinsic apoptotic signaling pathways. In addition, moscatilin-induced apoptosis was mediated by the c-Jun N-terminal kinase (JNK) signaling pathway. Overall, this study identified additional biological activity of moscatilin derived from natural products and suggested its potential application as a chemotherapeutic agent for the management of head and neck squamous cell carcinoma.
Assuntos
Apoptose/efeitos dos fármacos , Compostos de Benzil/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Carcinoma de Células Escamosas de Cabeça e Pescoço/enzimologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismoRESUMO
Steroid sulfatase (STS) is a sulfatase enzyme that catalyzes the conversion of sulfated steroid precursors to free steroid. The inhibition of STS could abate estrogenic steroids that stimulate the proliferation and development of breast cancer, and therefore STS is a potential target for adjuvant endocrine therapy. In this study, a series of 3-benzylaminocoumarin-7-O-sulfamate derivatives targeting STS were designed and synthesized. Structure-relationship activities (SAR) analysis revealed that attachment of a benzylamino group at the 3-position of coumarin improved inhibitory activity. Compound 3j was found to have the highest inhibition activity against human placenta isolated STS (IC50 0.13 µM) and MCF-7 cell lines (IC50 1.35 µM). Kinetic studies found compound 3j to be an irreversible inhibitor of STS, with KI and kinact value of 86.9 nM and 158.7 min-1, respectively.
Assuntos
Cumarínicos/química , Cumarínicos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Esteril-Sulfatase/antagonistas & inibidores , Aminação , Compostos de Benzil/síntese química , Compostos de Benzil/química , Compostos de Benzil/farmacologia , Cumarínicos/síntese química , Inibidores Enzimáticos/síntese química , Feminino , Humanos , Células MCF-7 , Placenta/enzimologia , Gravidez , Esteril-Sulfatase/metabolismo , Relação Estrutura-Atividade , Ácidos Sulfônicos/síntese química , Ácidos Sulfônicos/química , Ácidos Sulfônicos/farmacologiaRESUMO
Potato tuberization is a complicated biological process regulated by multiple phytohormones, in particular cytokinins (CKs). The information available on the molecular mechanisms regulating tuber development by CKs remains largely unclear. Physiological results initially indicated that low 6-benzylaminopurine (BAP) concentration (3 mg l-1 ) advanced the tuberization beginning time and promoted tuber formation. A comparative proteomics approach was applied to investigate the proteome change of tuber development by two-dimensional gel electrophoresis in vitro, subjected to exogenous BAP treatments (0, 3, 6 and 13 mg l-1 ). Quantitative image analysis showed a total of 83 protein spots with significantly altered abundance (>2.5-fold, P < 0.05), and 55 differentially abundant proteins were identified by MALDI-TOF/TOF MS. Among these proteins, 22 proteins exhibited up-regulation with the increase of exogenous BAP concentration, and 31 proteins were upregulated at 3 mg l-1 BAP whereas being downregulated at higher BAP concentrations. These proteins were involved in metabolism and bioenergy, storage, redox homeostasis, cell defense and rescue, transcription and translation, chaperones, signaling and transport. The favorable effects of low BAP concentrations on tuber development were found in various cellular processes, mainly including the stimulation of starch and storage protein accumulation, the enhancement of the glycolysis pathway and ATP synthesis, the cellular homeostasis maintenance, the activation of pathogen defense, the higher efficiency of transcription and translation, as well as the enhanced metabolite transport. However, higher BAP concentration, especially 13 mg l-1 , showed disadvantageous effects. The proposed hypothetical model would explain the interaction of these proteins associated with CK-induced tuber development in vitro.
Assuntos
Citocininas/fisiologia , Proteínas de Plantas/fisiologia , Tubérculos/crescimento & desenvolvimento , Proteoma , Solanum tuberosum/fisiologia , Compostos de Benzil/farmacologia , Regulação da Expressão Gênica de Plantas , Purinas/farmacologiaRESUMO
Light emitting diodes (LEDs) have become a promising technology for agriculture and horticulture. I investigated the effects of white (W), red (R) and blue (B) LED lights on the propagation of Limnophila aromatica (Lamk.) Merr. and Rotala rotundifolia (Buch-Ham. ex Roxb) Koehne using tissue culture. The shoot tip explants of L. aromatica and R. rotundifolia under different light environments were cultured in Murashige and Skoog (MS) basic nutrient medium with 6-benzylaminopurine (BAP) (0.05, 0.10 and 0.20 mg/l) and gibberellic acid (GA3) 0.25 mg/l) + kinetin (KIN) 0.25, 0.50 and 0.75 mg/l. The explants grown under combinations of white, red and blue LEDs were more effective for propagation of the plants in vitro. In L. aromatica, the maximum number of shoots/explant and the longest shoot lengths were obtained using the combination of white, red and blue LED lights in a 1:2:1 ratio in MS medium supplemented with 0.10 and 0.20 mg/l BAP. In R. rotundifolia, the maximum shoots/explant and shoot lengths were obtained in the explants using the combination of white, red and blue LED lights in a 1:2:1 ratio in the MS culture media fortified with 0.25 mg/l GA3 + 0.25 and 0.75 mg/l KIN. After the regenerated shoots were rooted, they were adapted successfully to external conditions. LEDs have significant advantages over fluorescent lights.
Assuntos
Compostos de Benzil/farmacologia , Cinetina/farmacologia , Extratos Vegetais/farmacologia , Purinas/farmacologia , Regeneração/efeitos dos fármacos , Meios de Cultura/metabolismo , Meios de Cultura/farmacologia , Giberelinas/metabolismo , Giberelinas/farmacologiaRESUMO
Pepper (Capsicum annuum), one of the most economically important vegetables of the Solanaceae family, is cultivated worldwide. To apply versatile genome-editing tools to a pepper genome for precise molecular breeding, an in vitro regeneration protocol is indispensable and callus formation is an essential step in the regeneration of pepper. Here, we show that calli were successfully induced from young leaves (3-4 cm) of pepper plants, the hot pepper C. annum 'CM334' ('CM334') and bell pepper C. annum 'Dempsey' ('Dempsey'), grown on soil for less than 7 weeks. The excised leaf segments of 'CM334' produced white calli in B5 medium containing 3% sucrose (3S), 2 mg/L 6-benzylaminopurine (2BAP), and 1 mg/L α-naphthalene acetic acid (1NAA). The calli were able to proliferate in B5 3S 2BAP medium supplemented with 2-morpholinoethanesulphonic acid (MES) and 1.5 mg/L NAA (1.5NAA). The excised leaf segments of 'Dempsey' produced light-yellow and friable calli in MS medium supplemented with B5 vitamins (MSB5), 3S and 1 mg/L 2,4-dichlorophenoxyacetic acid (1 2,4D), and the calli were also maintained in the same medium. Our findings establish the conditions for leaf-derived callus formation, which is the basis for regeneration of whole plants for two different pepper cultivars, for obtaining stable protoplasts, and eventually for applying genome-editing tools to improve the quality of peppers.
Assuntos
Capsicum/fisiologia , Folhas de Planta/fisiologia , Compostos de Benzil/farmacologia , Capsicum/efeitos dos fármacos , Capsicum/genética , Folhas de Planta/efeitos dos fármacos , Purinas/farmacologia , Esterilização , Técnicas de Cultura de TecidosRESUMO
Several chemical compounds can restore pigmentation in vitiligo through mechanisms that vary according to disease etiology. In the present study, we investigated the melanogenic activity of six structurally distinct compounds, namely, scopoletin, kaempferol, chrysin, vitamin D3, piperine, and 6-benzylaminopurine. We determined their effectiveness, toxicity, and mechanism of action for stimulating pigmentation in B16F10 melanoma cells and in a zebrafish model. The melanogenic activity of 6-benzylaminopurine, the compound identified as the most potent, was further verified by measuring green fluorescent protein concentration in tyrp1 a: eGFP (tyrosinase-related protein 1) zebrafish and mitfa: eGFP (microphthalmia associated transcription factor) zebrafish and antioxidative activity. All the tested compounds were found to enhance melanogenesis responses both in vivo and in vitro at their respective optimal concentration by increasing melanin content and expression of TYR and MITF. 6-Benzyamino-purine showed the strongest re-pigmentation action at a concentration of 20 µmol·L-1in vivo and 100 µmol·L-1in vitro, and up-regulated the strong fluorescence expression of green fluorescent protein in tyrp1a: eGFP and mitfa: eGFP zebrafish in vitro. However, its relative anti-oxidative activity was found to be very low. Overall, our results indicated that 6-benzylaminopurine stimulated pigmentation through a direct mechanism, by increasing melanin content via positive regulation of tyrosinase activity in vitro, as well as up-regulating the expression of the green fluorescent protein in transgenic zebrafish in vivo.
Assuntos
Alcaloides/farmacologia , Benzodioxóis/farmacologia , Compostos de Benzil/farmacologia , Colecalciferol/farmacologia , Flavonoides/farmacologia , Quempferóis/farmacologia , Melaninas/metabolismo , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Purinas/farmacologia , Escopoletina/farmacologia , Vitiligo/metabolismo , Alcaloides/química , Animais , Benzodioxóis/química , Compostos de Benzil/química , Colecalciferol/química , Flavonoides/química , Humanos , Quempferóis/química , Melaninas/genética , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Pigmentação/efeitos dos fármacos , Piperidinas/química , Alcamidas Poli-Insaturadas/química , Purinas/química , Escopoletina/química , Vitiligo/tratamento farmacológico , Vitiligo/enzimologia , Peixe-ZebraRESUMO
BACKGROUND: Presumably, progression of developmental retinal vascular disorders is mainly driven by persistent ischemia/hypoxia. An investigation into vision-threatening retinal ischemia remains important. Our aim was to evaluate, in relation to retinal ischemia, protective effects and mechanisms of Dendrobium nobile Lindley (DNL) and its bibenzyl component moscatilin. The therapeutic mechanisms included evaluations of levels of placental growth factor (PLGF) and Norrie disease protein (NDP). METHODS: An oxygen glucose deprivation (OGD) model involved cells cultured in DMEM containing 1% O2, 94% N2 and 0 g/L glucose. High intraocular pressure (HIOP)-induced retinal ischemia was created by increasing IOP to 120 mmHg for 60 min in Wistar rats. The methods included electroretinogram (ERG), histopathology, MTT assay and biochemistry. RESULTS: When compared with cells cultured in DMEM containing DMSO (DMSO+DMEM), cells subjected to OGD and pre-administrated with DMSO (DMSO+OGD) showed a significant reduction in the cell viability and NDP expression. Moreover, cells that received OGD and 1 h pre-administration of 0.1 µM moscatilin (Pre-OGD Mos 0.1 µM) showed a significant counteraction of the OGD-induced decreased cell viability. Furthermore, compared with the DMSO+OGD group (44.54 ± 3.15%), there was significant elevated NDP levels in the Pre-OGD Mos 0.1 µM group (108.38 ± 29.33%). Additionally, there were significant ischemic alterations, namely reduced ERG b-wave, less numerous retinal ganglion cells, decreased inner retinal thickness, and reduced/enhanced amacrine's ChAT/Müller's GFAP or vimentin immunolabelings. Moreover, there were significantly increased protein levels of HIF-1α, VEGF, PKM2, RBP2 and, particularly, PLGF (pg/ml; Sham vs. Vehicle: 15.11 ± 1.58 vs. 39.53 ± 5.25). These ischemic effects were significantly altered when 1.0 g/Kg/day DNL (DNL1.0 + I/R or I/R+ DNL1.0) was applied before and/or after ischemia, but not vehicle (Vehicle+I/R). Of novelty and significance, the DNL1.0 action mechanism appears to be similar to that of the anti-PLGF Eylea [PLGF (pg/ml); DNL1.0 vs. Eylea+I/R: 19.93 ± 2.24 vs. 6.44 ± 0.60]. CONCLUSIONS: DNL and moscatilin are able to protect against retinal ischemic/hypoxic changes respectively by downregulating PLGF and upregulating NDP. Progression of developmental retinal vascular disorders such as Norrie disease due to persistent ischemia/hypoxia might be thus prevented.
Assuntos
Compostos de Benzil/farmacologia , Hipóxia Celular/efeitos dos fármacos , Dendrobium/química , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Retina/efeitos dos fármacos , Animais , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fator de Crescimento Placentário/genética , Fator de Crescimento Placentário/metabolismo , Substâncias Protetoras/química , Ratos , Ratos Wistar , Retina/citologia , Doenças Retinianas/metabolismo , Regulação para Cima/efeitos dos fármacosRESUMO
The Apiaceae family encompasses aromatic plants of economic importance employed in foodstuffs, beverages, perfumery, pharmaceuticals and cosmetics. Apiaceae are rich sources of essential oils because of the wealth of secretory structures (ducts and vittae) they are endowed with. The Apiaceae essential oils are available on an industrial level because of the wide cultivation and disposability of the bulky material from which they are extracted as well as their relatively cheap price. In the fight against protozoal infections, essential oils may represent new therapeutic options. In the present work, we focused on a panel of nine Apiaceae species (Siler montanum, Sison amomum, Echinophora spinosa, Kundmannia sicula, Crithmum maritimum, Helosciadium nodiflorum, Pimpinella anisum, Heracleum sphondylium and Trachyspermum ammi) and their essential oils as a model for the identification of trypanocidal compounds to be used as alternative/integrative therapies in the treatment of Human African trypanosomiasis (HAT) and as starting material for drug design. The evaluation of inhibitory effects of the Apiaceae essential oils against Trypanosoma brucei showed that some of them (E. spinosa, S. amomum, C. maritimum and H. nodiflorum) were active, with EC50 in the range 2.7-10.7⯵g/mL. Most of these oils were selective against T. brucei, except the one from C. maritimum that was highly selective against the BALB/3T3 mammalian cells. Testing nine characteristic individual components (α-pinene, sabinene, α-phellandrene, p-cymene, limonene, ß-ocimene, γ-terpinene, terpinolene, and myristicin) of these oils, we showed that some of them had much higher selectivity than the oils themselves. Terpinolene was particularly active with an EC50 value of 0.035⯵g/mL (0.26⯵M) and a selectivity index (SI) of 180. Four other compounds with EC50 in the range 1.0-6.0⯵g/mL (7.4-44⯵M) had also good SI: α-pinene (>100), ß-ocimene (>91), limonene (>18) and sabinene (>17). In conclusion, these results highlight that the essential oils from the Apiaceae family are a reservoir of substances to be used as leading compounds for the development of natural drugs for the treatment of HAT.