Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Curr Microbiol ; 79(9): 266, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35881211

RESUMO

The biosynthesis of nanoparticles (NPs) has gained an overwhelming interest due to their biological applications. However, NPs synthesis by pigmented extreme halophiles remains underexplored. The NPs synthesis using pigmented halophiles is inexpensive and less toxic than other processes. In this study, pigmented halophilic microorganisms (n = 77) were screened to synthesize silver chloride nanoparticles (AgCl-NPs) with silver nitrate as metal precursors, and their biological applications were assessed. The synthesis of AgCl-NPs was possible using the crude extract from cellular lysis (CECL) of six extreme halophiles. Two of the AgCl-NPs viz. AK2-NPs and MY6-NPs synthesized by the CECL of Haloferax alexandrinus RK_AK2 and Haloferax lucentense RK_MY6, respectively, exhibited antimicrobial, antioxidative, and anti-inflammatory activities. The surface plasmon resonance of the AgCl-NPs was determined with UV spectroscopy. XRD analysis of AK2-NPs and MY6-NPs confirmed the presence of silver in the form of chlorargyrite (silver chloride) having a cubic structure. The crystallite size of AK2-NPs and MY6-NPs, estimated with the Scherrer formula, was 115.81 nm and 137.50 nm. FTIR analysis verified the presence of diverse functional groups. Dynamic light-scattering analysis confirmed that the average size distribution of NPs was 71.02 nm and 117.36 nm for AK2-NPs and MY6-NPs, respectively, with monodisperse nature. The functional group in 1623-1641 cm-1 indicated the presence of protein ß-sheet structure and shifting of amino and hydroxyl groups from the pigmented CECL, which helps in capping and stabilizing nanoparticles. The study provides evidence that CECL of Haloferax species can rapidly synthesize NPs with unique characteristics and biological applications.


Assuntos
Halobacteriales , Nanopartículas Metálicas , Antibacterianos/metabolismo , Cloretos/farmacologia , Halobacteriales/metabolismo , Nanopartículas Metálicas/química , Extratos Vegetais , Compostos de Prata/química , Compostos de Prata/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
2.
ACS Appl Mater Interfaces ; 14(4): 6028-6038, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35044157

RESUMO

The microstructured surfaces of bioelectrical dry electrodes are important aspects of dry electrode design. However, traditional surfaces for microstructured bioelectrical dry electrodes are costly to produce and require complex fabrication methods. In this study, a novel stacked-template method is proposed for the first time, rapidly producing microstructured dry electrodes at a low cost and with a large surface area. Three types of microstructured Ag/AgCl thermoplastic polyurethane (TPU) electrodes with a Fructus xanthii-inspired barb structure (FXbs) are prepared using this method; then, the dynamic friction, hair interference resistance, electrochemical, and electrocardiogram (ECG) signal acquisition performance of the electrodes are tested, and the dynamic noise characteristics of the electrodes are comprehensively evaluated with simulated instruments. Compared to the plate structure, the dynamic friction coefficient of the FXbs electrode improved by about 38.8%, exhibiting strong hair interference resistance. In addition, the FXbs electrode exhibits low dynamic noise and comparable performance to the wet electrode, in terms of signal acquisition, when it is tested using simulated instruments. Therefore, the prepared FXbs electrode increases the friction coefficient between the electrode and the skin, which effectively resolves issues related to dynamic noise in bioelectrical signals, making it suitable for dynamic measurements.


Assuntos
Materiais Biomiméticos/química , Eletrocardiografia/instrumentação , Poliuretanos/química , Compostos de Prata/química , Prata/química , Adulto , Impedância Elétrica , Eletrodos , Humanos , Masculino , Fenômenos Fisiológicos da Pele , Xanthium/anatomia & histologia
3.
Sci Rep ; 12(1): 156, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997051

RESUMO

Increase in bacterial resistance to commonly used antibiotics is a major public health concern generating interest in novel antibacterial treatments. Aim of this scientific endeavor was to find an alternative efficient antibacterial agent from non-conventional plant source for human health applications. We used an eco-friendly approach for phyto-fabrication of silver nanoparticles (AgNPs) by utilizing logging residue from timber trees Gmelina arborea (GA). GC-MS analysis of leaves, barks, flowers, fruits, and roots was conducted to determine the bioactive compounds. Biosynthesis, morphological and structural characterization of GA-AgNPs were undertaken by UV-Vis spectroscopy, scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffractometer (XRD). GA-AgNPs were evaluated for antibacterial, antibiofilm, antioxidant, wound healing properties and their toxicity studies were carried out. Results identified the presence of terpenoids, sterols, aliphatic alcohols, aldehydes, and flavonoids in leaves, making leaf extract the ideal choice for phyto-fabrication of silver nanoparticles. The synthesis of GA-AgNPs was confirmed by dark brown colored colloidal solution and spectral absorption peak at 420 nm. Spherical, uniformly dispersed, crystalline GA-AgNPs were 34-40 nm in diameter and stable in solutions at room temperature. Functional groups attributed to the presence of flavonoids, terpenoids, and phenols that acted as reducing and capping agents. Antibacterial potency was confirmed against pathogenic bacteria Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus by disc diffusion assay, MIC and MBC assay, biofilm inhibition assay, electron-microscopy, cell staining and colony counting techniques. The results from zone of inhibition, number of ruptured cells and dead-cell-count analysis confirmed that GA-AgNPs were more effective than GA-extract and their bacteria inhibition activity level increased further when loaded on hydrogel as GA-AgNPs-PF127, making it a novel distinguishing feature. Antioxidant activity was confirmed by the free radical scavenging assays (DPPH and ABTS). Wound healing potential was confirmed by cell scratch assay in human dermal fibroblast cell lines. Cell-proliferation study in human chang liver cell lines and optical microscopic observations confirmed non-toxicity of GA-AgNPs at low doses. Our study concluded that biosynthesized GA-AgNPs had enhanced antibacterial, antibiofilm, antioxidant, and wound healing properties.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Química Verde , Lamiaceae , Extratos Vegetais/química , Compostos de Prata/farmacologia , Antibacterianos/química , Antibacterianos/toxicidade , Bactérias/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Viabilidade Microbiana/efeitos dos fármacos , Compostos de Prata/química , Compostos de Prata/toxicidade
4.
J Oleo Sci ; 71(2): 257-265, 2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35034942

RESUMO

Biogenic synthesis of silver nanoparticles (AgNPs) is more eco-friendly and cost-effective approach as compared to the conventional chemical synthesis. Biologically synthesized AgNPs have been proved as therapeutically effective and valuable compounds. In this study, the four bacterial strains Escherichia coli (MT448673), Pseudomonas aeruginosa (MN900691), Bacillus subtilis (MN900684) and Bacillus licheniformis (MN900686) were used for the biogenic synthesis of AgNPs. Agar well diffusion assay revealed to determine the antibacterial activity of all biogenically synthesized AGNPs showed that P. aeruginosa AgNPs possessed significantly high (p < 0.05) antibacterial potential against all tested isolates. The one-way ANOVA test showed that that P. aeruginosa AgNPs showed significantly (p < 0.05) larger zones of inhibition (ZOI: 19 to 22 mm) compared to the positive control (rifampicin: 50 µg/mL) while no ZOI was observed against negative control (Dimethyl sulfoxide: DMSO). Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) concentration against four test strains also showed that among all biogenically synthesized NPs, P. aeruginosa AgNPs showed effective MIC (3.3-3.6 µg/mL) and MBC (4.3-4.6 µg/mL). Hence, P. aeruginosa AGNPs were characterized using visual UV vis-spectroscopy, X-ray diffractometer (XRD), fourier transform infrared (FTIR) and scanning electron microscopy (SEM). The formation of peak around 430 nm indicated the formation of AgNPs while the FTIR confirmed the involvement of biological molecules in the formation of nanoparticles (NPs). SEM revealed that the NPs were of approximately 40 nm. Overall, this study suggested that the biogenically synthesized nanoparticles could be utilized as effective antimicrobial agents for effective disease control.


Assuntos
Antibacterianos , Nanopartículas Metálicas/química , Compostos de Prata/síntese química , Compostos de Prata/farmacologia , Ágar , Bacillus licheniformis/efeitos dos fármacos , Bacillus subtilis/efeitos dos fármacos , Análise Custo-Benefício , Avaliação Pré-Clínica de Medicamentos/métodos , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Pseudomonas aeruginosa/efeitos dos fármacos , Compostos de Prata/química , Difração de Raios X
5.
Pak J Pharm Sci ; 34(5(Supplementary)): 1837-1847, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34836849

RESUMO

Nanotechnology is a field of science that consists of atoms, molecules and supramolecular molecules that create nanoparticles ranging in size from 1-100nm. Silver nanoparticles are widely used that are considered as effective antimicrobial agents. In this paper, the antioxidant activity of biosynthesized SNPs were analyzed by the DPPPH activity, hydrogen peroxide activity, hydroxyl RSA, TAC, TFC; their results confirmed that the phenolic compounds of this plant peels extracts enhanced the antioxidant and antiglycation activity with respect to silver nanoparticles. Biosynthesized nanoparticles of this plant extracts also showed strong zone of inhibition against the different Xanthomas, Pseudomonas and E. coli. This study concluded that biosynthesized nanoparticles of Mukia maderaspatna (M.M) plant peels extracts have the great biological activities i.e. antiglycation, antioxidant and antibacterial. More research is needed to know the exact dose rate and to compare the different dose combination of the plant with the strong antibiotic agents against these bacteria.


Assuntos
Cucurbitaceae/química , Nanopartículas Metálicas/química , Compostos de Prata/química , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Frutas/química , Química Verde , Testes de Sensibilidade Microbiana , Paquistão , Tamanho da Partícula , Extratos Vegetais/farmacologia , Pseudomonas/efeitos dos fármacos , Xanthomonas/efeitos dos fármacos
6.
ACS Appl Mater Interfaces ; 13(39): 46451-46463, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34570459

RESUMO

Light-driven endogenous water oxidation has been considered as an attractive and desirable way to obtain O2 and reactive oxygen species (ROS) in the hypoxic tumor microenvironment. However, the use of a second near-infrared (NIR-II) light to achieve endogenous H2O oxidation to alleviate tumor hypoxia and realize deep hypoxic tumor phototherapy is still a challenge. Herein, novel plasmonic Ag-AgCl@Au core-shell nanomushrooms (NMs) were synthesized by the selective photodeposition of plasmonic Au at the bulge sites of the Ag-AgCl nanocubes (NCs) under visible light irradiation. Upon NIR-II light irradiation, the resulting Ag-AgCl@Au NMs could oxidize endogenous H2O to produce O2 to alleviate tumor hypoxia. Almost synchronously, O2 could react with electrons on the conduction band of the AgCl core to generate superoxide radicals (O2•-)for photodynamic therapy. Moreover, Ag-AgCl@Au NMs with an excellent photothermal performance could further promote the phototherapy effect. In vitro and in vivo experimental results show that the resulting Ag-AgCl@Au NMs could significantly improve tumor hypoxia and enhance phototherapy against a hypoxic tumor. The present study provides a new strategy to design H2O-activatable, O2- and ROS-evolving NIR II light-response nanoagents for the highly efficient and synergistic treatment of deep O2-deprived tumor tissue.


Assuntos
Antineoplásicos/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Hipóxia Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/síntese química , Antineoplásicos/efeitos da radiação , Catálise , Linhagem Celular Tumoral , Ouro/química , Ouro/efeitos da radiação , Ouro/uso terapêutico , Raios Infravermelhos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/efeitos da radiação , Camundongos Endogâmicos BALB C , Oxigênio/metabolismo , Fotoquimioterapia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/efeitos da radiação , Terapia Fototérmica , Prata/química , Prata/efeitos da radiação , Prata/uso terapêutico , Compostos de Prata/química , Compostos de Prata/efeitos da radiação , Compostos de Prata/uso terapêutico , Água/química
7.
Adv Mater ; 33(30): e2100077, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34117667

RESUMO

Deliberate and local increase of the temperature within solid tumors represents an effective therapeutic approach. Thermal therapies embrace this concept leveraging the capability of some species to convert the absorbed energy into heat. To that end, magnetic hyperthermia (MHT) uses magnetic nanoparticles (MNPs) that can effectively dissipate the energy absorbed under alternating magnetic fields. However, MNPs fail to provide real-time thermal feedback with the risk of unwanted overheating and impeding on-the-fly adjustment of the therapeutic parameters. Localization of MNPs within a tissue in an accurate, rapid, and cost-effective way represents another challenge for increasing the efficacy of MHT. In this work, MNPs are combined with state-of-the-art infrared luminescent nanothermometers (LNTh; Ag2 S nanoparticles) in a nanocapsule that simultaneously overcomes these limitations. The novel optomagnetic nanocapsule acts as multimodal contrast agents for different imaging techniques (magnetic resonance, photoacoustic and near-infrared fluorescence imaging, optical and X-ray computed tomography). Most crucially, these nanocapsules provide accurate (0.2 °C resolution) and real-time subcutaneous thermal feedback during in vivo MHT, also enabling the attainment of thermal maps of the area of interest. These findings are a milestone on the road toward controlled magnetothermal therapies with minimal side effects.


Assuntos
Meios de Contraste/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Nanocápsulas/química , Animais , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Temperatura Alta , Humanos , Hipertermia Induzida , Raios Infravermelhos , Campos Magnéticos , Magnetismo , Camundongos , Imagem Óptica , Terapia Fototérmica , Compostos de Prata/química
8.
ACS Appl Mater Interfaces ; 13(9): 10689-10704, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33621045

RESUMO

There have been reports of different types of wound dressings for various functions and purposes. Cotton being one of the most widely used wound dressing material due to its non-toxic, biodegradable, and other properties is used for fabrication as well as in the form of scaffolds for faster and effective wound closure. Our research team has already demonstrated the role of silver nitroprusside nanoparticles (SNPNPs) for wound healing and antibacterial activity. In the current study, we have developed cotton fabric impregnated with SNPNPs (SNPCFs) which remain photo inert and displayed long-term antimicrobial activity due to the surface modification with the silver nitroprusside complex. These SNPCFs were characterized by various analytical techniques (XRD, FTIR, UV spectroscopy, TGA, TEM, FESEM, EDAX, ICP-OES). The fabricated cotton dressings with nanoparticles showed an improved water contact angle (113-130°) than that of bare cotton gauze (60°) and exhibited more antibacterial property in case of both Gram-negative bacteria (Klebsiella aerogenes and Escherichia coli) and Gram-positive bacteria (Pseudomonas aeruginosa and Bacillus subtilis) even after several washings. The biocompatible nature of SNPCFs was assessed by in vivo chorioallantoic membrane assay that showed no obstruction in the formation of blood vessels. The SNPCFs exhibited better wound healing activity compared to the bare cotton and AgCFs as observed in the C57BL6/J mouse. The histopathological investigation reveals increase in re-epithelialization and deposition of connective tissue. The macrophage (M2) counts in SNPCF-treated skin tissues were supportive of more wound healing activity than mice treated with cotton fabric impregnated with chemically synthesized silver nanoparticles. Based on biodistribution analysis using ICP-OES, the data illustrated that a significant amount of silver is absorbed in the skin tissues of mice as compared to the blood and kidney. Furthermore, the absence of silver from the vital organs (heart, liver, and kidney) corroborates our hypothesis that the SNPCFs can act excellently in treating wounds when topically applied over skin. Thereafter, all these results highlight a strong possibility that SNPCFs exemplify the potential as a new antimicrobial and wound healing agent in future times.


Assuntos
Antibacterianos/uso terapêutico , Bandagens , Nanopartículas Metálicas/uso terapêutico , Nitroprussiato/uso terapêutico , Compostos de Prata/uso terapêutico , Cicatrização/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/farmacocinética , Bactérias/efeitos dos fármacos , Fibra de Algodão , Feminino , Gossypium/química , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos C57BL , Testes de Sensibilidade Microbiana , Nitroprussiato/química , Nitroprussiato/farmacocinética , Células RAW 264.7 , Compostos de Prata/química , Compostos de Prata/farmacocinética
9.
Molecules ; 25(17)2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32878143

RESUMO

Most previous studies of perovskite core/shell structures have been based on ZnO/TiO2 nanowires (NWs), which are not suitable for high photoelectric conversion efficiency. Here, core/shell ZnO/TiO2 NWs with AgCl-doped CdSe quantum dots were fabricated as an electron transport layer (ETL) for perovskite solar cells, based on ZnO/TiO2 arrays. We designed CdSe with AgCl dopants that were synthesized by a colloidal process. An improvement of the recombination barrier (Rct1), due to shell supplementation with AgCl-doped CdSe quantum dots, improved the open circuit voltage, the fill factor, and the adsorption capacity of CH3NH3PbI3 perovskite with NWs. The enhanced cell steady state was attributable to TiO2 with AgCl-doped CdSe QD supplementation. A maximum power conversion efficiency of 15.12% was attained in an atmospheric environment. The mechanism of the recombination and electron transport in the perovskite solar cells becoming the basis of ZnO/TiO2 core/shell arrays was investigated to represent the merit of ZnO/TiO2 core/shell arrays as an electron transport layer in effective devices. These results showed an uncomplicated approach for restraining non-radiative recombination loss in hetero-structure core/shell arrays to significantly improve perovskite solar cell performance and increase the effectiveness of photovoltaics.


Assuntos
Nanofios/química , Pontos Quânticos , Compostos de Selênio/química , Compostos de Prata/química , Titânio/química , Óxido de Zinco/química , Fontes de Energia Elétrica , Transporte de Elétrons , Nanofios/ultraestrutura , Análise Espectral
10.
Sci Rep ; 10(1): 13309, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764617

RESUMO

Research efforts towards developing near-infrared (NIR) therapeutics to activate the proliferation of human keratinocytes and collagen synthesis in the skin microenvironment have been minimal, and the subject has not been fully explored. Herein, we describe the novel synthesis Ag2S nanoparticles (NPs) by using a sonochemical method and reveal the effects of NIR irradiation on the enhancement of the production of collagen through NIR-emitting Ag2S NPs. We also synthesized Li-doped Ag2S NPs that exhibited significantly increased emission intensity because of their enhanced absorption ability in the UV-NIR region. Both Ag2S and Li-doped Ag2S NPs activated the proliferation of HaCaT (human keratinocyte) and HDF (human dermal fibroblast) cells with no effect on cell morphology. While Ag2S NPs upregulated TIMP1 by only twofold in HaCaT cells and TGF-ß1 by only fourfold in HDF cells, Li-doped Ag2S NPs upregulated TGF-ß1 by tenfold, TIMP1 by 26-fold, and COL1A1 by 18-fold in HaCaT cells and upregulated TGF-ß1 by fivefold and COL1A1 by fourfold in HDF cells. Furthermore, Ag2S NPs activated TGF-ß1 signaling by increasing the phosphorylation of Smad2 and Smad3. The degree of activation was notably higher in cells treated with Li-doped Ag2S NPs, mainly caused by the higher PL intensity from Li-doped Ag2S NPs. Ag2S NPs NIR activates cell proliferation and collagen synthesis in skin keratinocytes and HDF cells, which can be applied to clinical light therapy and the development of anti-wrinkle agents for cosmetics.


Assuntos
Colágeno/biossíntese , Raios Infravermelhos , Nanopartículas/química , Transdução de Sinais/efeitos dos fármacos , Compostos de Prata/química , Compostos de Prata/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo
11.
Molecules ; 25(10)2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32414219

RESUMO

The present study aimed to explore the eco-friendly synthesis of prism-like silver oxide nanoparticles (Ag2ONPs) from nappa cabbage extract and its p-nitrophenol sensing activity. The prepared Ag2ONPs were characterized by X-ray diffraction (XRD), field-emission scanning spectroscopy (FESEM), energy-dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and ultraviolet (UV)-visible light spectral analysis (UV-Vis). p-Nitrophenol sensing properties of the prepared nanoparticles were also determined using a simple I-V method. The results showed that the as-prepared Ag2ONPs have a face-centered cubic (fcc) crystalline nature and a prism-like morphology with particle size in the range 21.61-92.26 nm. The result also showed a high intensity of the (111) facet, making the Ag2ONP-carbon black/nickel foam electrode (Ag2ONP-C/NFE) exhibit a high-performance response to p-nitrophenol spanning a wide range of concentrations from 1.0 mM to 0.1 pM and a response time of around 5 s, indicating a high potential for water treatment applications.


Assuntos
Brassica napus/química , Nanopartículas/química , Nitrobenzenos/análise , Óxidos/química , Extratos Vegetais/química , Compostos de Prata/química , Nanopartículas/ultraestrutura , Tamanho da Partícula
12.
Pak J Pharm Sci ; 33(5(Supplementary)): 2285-2291, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33832902

RESUMO

Silver nanoparticles were synthesized using extra virgin olive oil (Olea europaea L.) and sunflower oil (Helianthus annuus L.) and characterized by UV-vis spectroscopy, X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The brown color solution of olive oil nanoparticles (EVOO-NPs) and sunflower oil nanoparticles (SFO-NPs) showed typical absorption at 418 nm and 434 nm respectively. The morphology of extra virgin olive oil was found to be in semi cubic shapes with particle size of 23.45 nm (XRD) and 42.30 nm (SEM) while particle size of (SFO-NPs) had 42.30 nm (XRD) and 46.80 nm (SEM). Antimicrobial activities of crude extra virgin olive oil (EVOO), crude sunflower oil (SFO), synthesized nanoparticle from (EVOO-NPs) and (SFO-NPs) against human pathogenic strains were investigated. Synthesized nanoparticle from each oil showed a potent antimicrobial activity against all tested micro-organisms than crude oil which increased by (81.14% to 174.65 %) and by (111.65% to 192.31 %) than (EVOO) and (SFO) respectively. Both (EVOO-NPs) and (EVOO) had more antimicrobial activities than (SFO-NPs) and (SFO). EVOO (NPs) and SFO (NPs) showed maximum antibacterial activities against K. pneumoniae. Therefore (EVOO-NPs) and (SFO-NPs) could be used as safe natural product against multidrug resistant microbes.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Bactérias/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Nanopartículas Metálicas , Azeite de Oliva/farmacologia , Compostos de Prata/farmacologia , Óleo de Girassol/farmacologia , Antibacterianos/química , Antifúngicos/química , Bactérias/crescimento & desenvolvimento , Candida albicans/crescimento & desenvolvimento , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Composição de Medicamentos , Azeite de Oliva/química , Compostos de Prata/química , Óleo de Girassol/química
13.
ACS Nano ; 14(1): 406-414, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31860277

RESUMO

Inspired by chasing-escaping behaviors of predator and swarming prey in nature, here we demonstrate a concept to create active micromotor systems from two species of passive microparticles with biomimetic predator-prey interactions. In this concept, the biomimetic predator-prey interactions are established in a binary particle system comprising the diffusiophoretic attractive microparticles (prey particles) and the diffusiophoretic repulsive ones (predator particles). In the absence of additional chemical fuels and external fields, the predator particles are attracted by and constantly chase the swarming prey particles, which, in response, escape from the former and show dynamic group reconfigurations because of the local repulsion. Based on this concept, various synthetic active micromotor systems have been demonstrated, including active ZnO-TiO2, Ag3PO4-TiO2, and ZnO-AgBr micromotor systems. As the predator and prey particles are powered by each other through the biomimetic predator-prey interactions, the concept proposed here provides an advanced method to develop not only a class of single micromotors powered by passive particles or "solid fuels" but also micromotor swarms capable of manipulating "moving cargo". In addition, it also illustrates a proof-of-concept implementation of intelligent micro/nanomotor systems composed of heterogeneous individuals with complementary or cooperative functions.


Assuntos
Materiais Biomiméticos/química , Brometos/química , Fosfatos/química , Compostos de Prata/química , Titânio/química , Óxido de Zinco/química , Tamanho da Partícula , Propriedades de Superfície
14.
Mater Sci Eng C Mater Biol Appl ; 107: 110324, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31761161

RESUMO

Bismuth (Bi)-based nanoagents for synergistic photodynamic therapy (PDT) and photothermal therapy (PTT) are attracting attention and are highly desired for malignant tumor diagnosis and treatment, but producing these materials is still a challenge. Here, we designed theranostic nanoparticles (NPs) based on AgBiS2 for computed tomography (CT) imaging and phototherapy of malignant tumors. These AgBiS2 NPs could effectively convert light into heat (with a high photothermal conversion efficiency of 36.51%) and significantly increase the generation of intracellular reactive oxygen species (ROS) under near infrared (NIR) laser irradiation. Remarkably, the combined PTT/PDT successfully inhibited the growth of a highly malignant osteosarcoma in vivo. In addition, AgBiS2 NPs exhibited an enhanced CT contrast ability for tumor imaging and killed clinically derived Staphylococcus aureus (S. aureus) to prevent infection. In conclusion the ability of AgBiS2 NPs to be used in phototherapy and CT imaging and their antibacterial abilities indicate that they are promising candidates for malignant tumor theranostics.


Assuntos
Antibacterianos/farmacologia , Nanopartículas Metálicas/uso terapêutico , Fototerapia/métodos , Compostos de Prata/química , Compostos de Prata/uso terapêutico , Sulfetos/química , Sulfetos/uso terapêutico , Animais , Neoplasias Ósseas/patologia , Neoplasias Ósseas/terapia , Linhagem Celular Tumoral , Meios de Contraste/química , Meios de Contraste/uso terapêutico , Humanos , Masculino , Nanopartículas Metálicas/química , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/terapia , Osteossarcoma/patologia , Osteossarcoma/terapia , Fotoquimioterapia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/isolamento & purificação , Tomografia Computadorizada por Raios X/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Molecules ; 24(23)2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31801244

RESUMO

In this present study, silver nanoparticles (Ag/AgCl NPs) were synthesized using an aqueous leaf extract of Oedera genistifolia as a reducing agent. The biosynthesized Ag/AgCl NPs was characterized by UV-visible spectrophotometry, transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). In addition, sequel to antibacterial assay, the cytotoxic effect of the phytofabricated Ag/AgCl NPs was assessed against the HeLa cell line (human cervix adenocarcinoma). The results of the characterization of the synthesized Ag/AgCl NPs indicate the successful synthesis using plant extract as a reducing agent, with UV-Vis spectra between 290-360 nm. TEM results showed that Ag/AgCl NPs was spherical in shape with an average size of 34.2 nm. EDX analysis revealed that the particles were predominantly composed of carbon, oxygen, chlorine, and silver, while FTIR identified major phytochemical compounds, which could be responsible for bio-reducing and capping potential. XRD analysis showed the crystallinity of Ag/AgCl NPs, with a face-centred cubic structure. The studied Ag/AgCl NPs had no cytotoxic effect on HeLa cells and exhibited antibacterial activity (minimum inhibitory concentration (MIC) 0.25-1 mg/mL; minimum bactericidal concentration (MBC) 2-16 mg/mL) against both the Gram-negative and Gram-positive bacteria investigated. Findings from this study suggest that this plant as a good candidate for producing new antibacterial drugs.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Asteraceae/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Compostos de Prata/química , Prata/química , Células HeLa , Humanos , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Folhas de Planta/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral
16.
J Photochem Photobiol B ; 199: 111593, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31505420

RESUMO

Greener way of synthesizing nanoparticles has emerged as a substitute method, as it is ecological and cost effectual. Numerous efforts have been completed for green synthesis of silver oxide nanoparticles (Ag2O NPs) by various plant extracts. Current work disclosed the green combustion synthesis of Ag2O NPs by using Lippia citriodora plant powder. Furthermore, photocatalytic properties of Ag2O NPs were studied on acid orange 8(AO8) dye was assessed under UV light irradiation. The catalyst shows good photocatalytic activity (PCA) for the degradation of AO8 dye, NPs synthesized by Lippia citriodora powder shows high percentage of degradation. The Ag2O NPs act as excellent antibacterial against S. Aureus and antifungal activity against A. Aureus. Further wound healing studies in excision skin wound model in albino wistar rats showed the effective wound healing activity of Ag2O NPs incorporated hydrogels compared to untreated and plant extract treatments. The majority upshot of this research will be recommended that biologically synthesized Ag2O from Lippia citriodora plant powder has more valuable against various disease-causing pathogens and hence could be useful for developing wound dressing agents for nursing care.


Assuntos
Anti-Infecciosos/química , Lippia/química , Nanopartículas Metálicas/química , Óxidos/química , Extratos Vegetais/química , Compostos de Prata/química , Cicatrização/efeitos dos fármacos , Animais , Anti-Infecciosos/farmacologia , Compostos Azo/química , Bandagens , Benzenossulfonatos/química , Catálise , Estabilidade de Medicamentos , Química Verde , Hidrogéis/química , Masculino , Metilcelulose/química , Testes de Sensibilidade Microbiana , Oxirredução , Óxidos/farmacologia , Processos Fotoquímicos , Ratos Wistar , Compostos de Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Propriedades de Superfície , Resultado do Tratamento
17.
Int J Biol Macromol ; 141: 207-217, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31479673

RESUMO

The pectin (CEP) was used as matrix material to prepare Ag@AgCl/ZnO nanocomposites with a green method for photocatalytic antibacterial activity in visible-light. Briefly, Ag@AgCl plasmonic hybrids were prepared in the CEP macromolecule matrix with size control, which was attributed to the stability of carboxyl and hydroxyl groups on the CEP. Subsequently, an effective and green two-steps approach was explored for the fabrication of CEP-Ag@AgCl/ZnO nanocomposites with resource saving and environment friendly. Interestingly, more Ag+ was converted into metallic Ag in the CEP-Ag@AgCl/ZnO than that in the CEP-Ag@AgCl. This phenomenon was attributed that the reducibility of free hemiacetal hydroxyl groups on CEP was realized with the help of NaOH in the preparation of CEP-ZnO. In addition, the CEP chains were not obviously destroyed except for the change in the crystallinity after the preparation of the CEP-Ag@AgCl/ZnO nanocomposites, indicating that the method was non-destructive. Moreover, the pH triggered release of Zn2+ and low release of Ag+ in CEP-Ag@AgCl/ZnO nanocomposites with excellent photocatalytic antibacterial activity were confirmed in this work. The proposed green process provides a new idea for the large-scale production of antibacterial pectin-based nanocomposites in industry with a low-cost.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Luz , Nanocompostos/química , Pectinas/química , Compostos de Prata/química , Prata/química , Óxido de Zinco/química , Catálise , Nanopartículas Metálicas/química , Modelos Químicos , Processos Fotoquímicos , Análise Espectral , Relação Estrutura-Atividade
18.
ACS Sens ; 4(8): 2039-2047, 2019 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-31282146

RESUMO

Ion sensitive field effect transistors (ISFETs) form a very attractive solution for wearable sensors due to their capacity for ultra-miniaturization, low power operation, and very high sensitivity, supported by complementary metal oxide semiconductor (CMOS) integration. This paper reports for the first time, a multianalyte sensing platform that incorporates high performance, high yield, high robustness, three-dimensional-extended-metal-gate ISFETs (3D-EMG-ISFETs) realized by the postprocessing of a conventional 0.18 µm CMOS technology node. The detection of four analytes (pH, Na+, K+, and Ca2+) is reported with excellent sensitivities (58 mV/pH, -57 mV/dec(Na+), -48 mV/dec(K+), and -26 mV/dec(Ca2+)) close to the Nernstian limit, and high selectivity, achieved by the use of highly selective ion selective membranes based on postprocessing integration steps aimed at eliminating any significant sensor hysteresis and parasitics. We are reporting simultaneous time-dependent recording of multiple analytes, with high selectivities. In vitro real sweat tests are carried out to prove the validity of our sensors. The reported sensors have the lowest reported power consumption, being capable of operation down to 2 pW/sensor. Due to the ultralow power consumption of our ISFETs, we achieve and report a final four-analyte passive system demonstrator including the readout interface and the remote powering of the ISFET sensors, all powered by an radio frequency (RF) signal.


Assuntos
Técnicas Biossensoriais , Cálcio/análise , Técnicas Eletroquímicas , Potássio/análise , Sódio/análise , Transistores Eletrônicos , Biomarcadores/análise , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Eletrodos , Desenho de Equipamento , Concentração de Íons de Hidrogênio , Semicondutores , Prata/química , Compostos de Prata/química
19.
J Mater Chem B ; 7(15): 2484-2492, 2019 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32255125

RESUMO

Ag2S quantum dots have received extensive attention as theranostic agents for second near-infrared (NIR-II) fluorescence and photoacoustic dual-mode imaging, and photothermal therapy. However, it is still greatly challenging to synthesize Ag2S quantum dots using aqueous synthesis. In this study, genetically engineered polypeptide-capped Ag2S quantum dots were successfully synthesized. Three cysteines were integrated to the C-terminal and N-terminal of RGDPC10A to enhance the stability and brightness of the synthesized Ag2S quantum dots. The RGDPC10A-capped Ag2S quantum dots exhibited excellent stability, outstanding resistance to photobleaching, and a superior quantum yield of up to 3.78% in the NIR-II biological window. The in vitro and in vivo results showed that the RGDPC10A-capped Ag2S quantum dots possessed typical NIR-II fluorescence, photoacoustic imaging, and photothermal therapeutic effectiveness against tumors. Moreover, the results of toxicity assays suggested that the RGDPC10A-capped Ag2S quantum dots have negligible long-term toxicity. These findings open up the possibility for synthesizing theranostic agents by using this aqueous method.


Assuntos
Imagem Óptica/métodos , Peptídeos/química , Técnicas Fotoacústicas/métodos , Fototerapia/métodos , Pontos Quânticos/química , Compostos de Prata/química , Água/química , Sequência de Aminoácidos , Animais , Técnicas de Química Sintética , Engenharia Genética , Células HeLa , Humanos , Raios Infravermelhos , Camundongos , Peptídeos/genética
20.
ACS Sens ; 3(11): 2375-2384, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30226368

RESUMO

The development of robotic sensors that mimic the human sensing capabilities is critical for the interaction and cognitive abilities of modern robots. Though robotic skin with embedded pressure or temperature sensors has received recent attention, robotic chemical sensors have long been unnoticed due to the challenges associated with realizing chemical sensing modalities on robotic platforms. For realizing such chemically sensitive robotic skin, we exploit here the recent advances in wearable chemical sensor technology and flexible electronics, and describe chemical sensing robotic fingers for rapid screening of food flavors and additives. The stretchable taste-sensing finger electrochemical devices are printed on the robotic glove, which simulates the soft skin, and are integrated with a wireless electronic board for real-time data transmission. The printed middle, index, and ring robotic fingers allow accurate discrimination between sweetness, sourness, and spiciness, via direct electrochemical detection of glucose, ascorbic acid, and capsaicin. The sweet-sensing ability has been coupled with a caffeine-sensing robotic finger for rapid screening of the presence of sugar and caffeine in common beverages. The "sense of taste" chemically sensitive robotic technology thus enables accurate discrimination between different flavors, as was illustrated in numerous tests involving a wide range of liquid and solid food samples. Such realization of advanced wearable taste-sensing systems at the robot fingertips should pave the way to automated chemical sensing machinery, facilitating robotic decision for practical food assistance applications, with broad implications to a wide range of robotic sensing applications.


Assuntos
Equipamentos para Diagnóstico , Robótica/instrumentação , Dispositivos Eletrônicos Vestíveis , Bebidas/análise , Carbono/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Enzimas Imobilizadas/química , Ferrocianetos/química , Glucose Oxidase/química , Peróxido de Hidrogênio/química , Tinta , Extratos Vegetais/análise , Prata/química , Compostos de Prata/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA