Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.916
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Methods Mol Biol ; 2788: 197-207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656515

RESUMO

The best Vaccinium corymbosum plant growth under in vitro conditions can be achieved by using the right composition and pH of the medium. For the initial phase of in vitro culture, a combination of cytokinins-mostly zeatin-can usually be used. Organic supplementation of the medium enables the use of a replacement for the expensive natural cytokinin used in micropropagation of highbush blueberry. This chapter describes the experiments with silicon Hydroplus™ Actisil (Si), coconut water (CW), and different pH (5.0; 5.5, and 6.0) as a stress factor. The addition of 200 mg dm-3 silicon solution and 15% coconut water strongly stimulated highbush blueberry plant growth in vitro. Moreover, silicon solution benefits the negative effects of higher pH of the medium used for micropropagation of V. corymbosum. Maximum vegetative development of blueberry explants was obtained at pH 5.


Assuntos
Mirtilos Azuis (Planta) , Meios de Cultura , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Mirtilos Azuis (Planta)/crescimento & desenvolvimento , Vaccinium/crescimento & desenvolvimento , Aclimatação , Silício/farmacologia
2.
J Nanobiotechnology ; 22(1): 180, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622591

RESUMO

To address the limitations of traditional photothermal therapy (PTT)/ photodynamic therapy (PDT) and real-time cancer metastasis detection, a pH-responsive nanoplatform (NP) with dual-modality imaging capability was rationally designed. Herein, 1 H,1 H-undecafluorohexylamine (PFC), served as both an oxygen carrier and a 19F magnetic resonance imaging (MRI) probe, and photosensitizer indocyanine green (ICG) were grafted onto the pH-responsive peptide hexahistidine (H6) to form H6-PFC-ICG (HPI). Subsequently, the heat shock protein 90 inhibitor, gambogic acid (GA), was incorporated into hyaluronic acid (HA) modified HPI (HHPI), yielding the ultimate HHPI@GA NPs. Upon self-assembly, HHPI@GA NPs passively accumulated in tumor tissues, facilitating oxygen release and HA-mediated cell uptake. Once phagocytosed by lysosomes, protonation of H6 was triggered due to the low pH, resulting in the release of GA. With near-infrared laser irradiation, GA-mediated decreased HSP90 expression and PFC-mediated increased ROS generation amplified the PTT/PDT effect of HHPI@GA, leading to excellent in vitro and in vivo anticancer efficacies. Additionally, the fluorescence and 19F MRI dual-imaging capabilities of HHPI@GA NPs enabled effective real-time primary cancer and lung metastasis monitoring. This work offers a novel approach for enhanced cancer phototherapy, as well as precise cancer diagnosis.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Fotoquimioterapia , Humanos , Fototerapia/métodos , Verde de Indocianina , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/terapia , Oxigênio , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral
3.
Lancet Planet Health ; 8 Suppl 1: S1, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38632904

RESUMO

BACKGROUND: Affective processes play an important role in physical and mental health and in adaptation responses to the global environmental crisis. Eco-emotions-emotions that are substantially associated with the environment and anthropogenic changes happening within it-are complex and culturally varied. Despite the disproportionate impact of the global environmental crisis on low-income and middle-income countries, most psychological research to date has been conducted in high-income countries and has focused on climate change and negative climate emotions (eg, climate anxiety). The absence of diverse, globally representative evidence about emotions associated with the global environmental crisis beyond climate change hinders evidence-based action on psychological adaptation and the development of contextually and culturally appropriate coping strategies toward the wider range of negative anthropogenic effects. To account for this wider range of anthropogenic effects, we previously introduced an eco-emotions framework built on the planetary boundaries concept. We aimed to apply this framework to the current research on eco-emotional responses to identify remaining gaps that hinder evidence-based action. METHODS: We conducted a literature review of peer-reviewed studies assessing core affect (ie, emotional valence and arousal) and emotions with emphasis on study populations from low-income and middle-income countries and on the eight non-climate change planetary boundaries (biodiversity loss, freshwater use, ocean acidification, chemical pollution, air pollution, land system change, ozone depletion, and nitrogen and phosphorus perturbation). We searched Web of Science from database inception to Oct 31, 2023, for observational empirical studies of adults, using planetary boundary-specific (eg, freshwater use) or wider, newer, or overarching emotional concept (eg, solastalgia, environmental change) search terms. FINDINGS: In contrast to previous climate emotions work, our preliminary results of 135 peer reviewed studies identified a significant body of literature beyond climate change concerning emotional responses to the planetary boundaries of biodiversity loss, freshwater scarcity, and chemical pollution as well as emerging evidence of emotional responses to the other five planetary boundaries. INTERPRETATION: We found that the spectrum of eco-emotional responses ranged from being specific to a single planetary boundary to encompassing all planetary boundaries. Our findings underscore the importance of and urgent need for more holistic and diverse psychological intervention strategies targeting the wider range of anthropogenic effects during the rapidly intensifying global environmental crisis. FUNDING: Emmett Interdisciplinary Program in Environment and Resources; McGee and Levorsen Research Grant Program; and Center on Philanthropy and Civil Society at Stanford University.


Assuntos
Poluição Ambiental , Água do Mar , Adulto , Humanos , Concentração de Íons de Hidrogênio , Emoções , Biodiversidade
4.
Sci Rep ; 14(1): 8406, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600150

RESUMO

The aim of this work was to synthesize a green nanoparticle SnCuO@FeO nanocomposite core-shell to break oily water emulsions during petroleum-enhancing production processes as an alternative to chemical and physical processes. In this study, eight bacterial isolates (MHB1-MHB8) have been isolated from tree leaves, giant reeds, and soil samples. The investigation involved testing bacterial isolates for their ability to make FeO nanoparticles and choosing the best producers. The selected isolate (MHB5) was identified by amplification and sequencing of the 16S rRNA gene as Bacillus paramycoides strain OQ878685. MHB5 produced the FeO nanoparticles with the smallest particle size (78.7 nm) using DLS. XRD, FTIR, and TEM were used to characterize the biosynthesized nanoparticles. The jar experiment used SnCuO@FeO with different ratios of Sn to CuO (1:1, 2:1, and 3:1) to study the effect of oil concentration, retention time, and temperature. The most effective performance was observed with a 1:1 ratio of Sn to CuO, achieving an 85% separation efficiency at a concentration of 5 mg/L, for a duration of 5 min, and at a temperature of 373 K. Analysis using kinetic models indicates that the adsorption process can be accurately described by both the pseudo-first-order and pseudo-second-order models. This suggests that the adsorption mechanism likely involves a combination of film diffusion and intraparticle diffusion. Regarding the adsorption isotherm, the Langmuir model provides a strong fit for the data, while the D-R model indicates that physical interactions primarily govern the adsorption mechanism. Thermodynamic analysis reveals a ∆H value of 18.62 kJ/mol, indicating an exothermic adsorption process. This suggests that the adsorption is a favorable process, as energy is released during the process. Finally, the synthesized green SnCuO@FeO nanocomposite has potential for use in advanced applications in the oil and gas industry to help the industry meet regulatory compliance, lower operation costs, reduce environmental impact, and enhance production efficiency.


Assuntos
Nanocompostos , Petróleo , Poluentes Químicos da Água , Emulsões , RNA Ribossômico 16S , Termodinâmica , Água/química , Adsorção , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio
5.
Environ Sci Pollut Res Int ; 31(20): 29264-29279, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573576

RESUMO

Guided by efficient utilization of natural plant oil and sulfur as low-cost sorbents, it is desired to tailor the porosity and composition of polysulfides to achieve their optimal applications in the management of aquatic heavy metal pollution. In this study, polysulfides derived from soybean oil and sulfur (PSSs) with improved porosity (10.2-22.9 m2/g) and surface oxygen content (3.1-7.0 wt.%) were prepared with respect to reaction time of 60 min, reaction temperature of 170 °C, and mass ratios of sulfur/soybean oil/NaCl/sodium citrate of 1:1:3:2. The sorption behaviors of PSSs under various hydrochemical conditions such as contact time, pH, ionic strength, coexisting cations and anions, temperature were systematically investigated. PSSs presented a fast sorption kinetic (5.0 h) and obviously improved maximum sorption capacities for Pb(II) (180.5 mg/g), Cu(II) (49.4 mg/g), and Cr(III) (37.0 mg/g) at pH 5.0 and T 298 K, in comparison with polymers made without NaCl/sodium citrate. This study provided a valuable reference for the facile preparation of functional polysulfides as well as a meaningful option for the removal of aquatic heavy metals.


Assuntos
Cobre , Chumbo , Metais Pesados , Óleo de Soja , Sulfetos , Poluentes Químicos da Água , Adsorção , Chumbo/química , Óleo de Soja/química , Cobre/química , Sulfetos/química , Porosidade , Poluentes Químicos da Água/química , Metais Pesados/química , Cromo/química , Cinética , Concentração de Íons de Hidrogênio
6.
Environ Pollut ; 348: 123768, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38493868

RESUMO

In this research, a sustainable substrate, termed green and long-lasting substrate (GLS), featuring a blend of emulsified substrate (ES) and modified rice husk ash (m-RHA) was devised. The primary objective was to facilitate the bioremediation of groundwater contaminated with trichloroethylene (TCE) using innovative GLS for slow carbon release and pH control. The GLS was concocted by homogenizing a mixture of soybean oil, surfactants (Simple Green™ and soya lecithin), and m-RHA, ensuring a gradual release of carbon sources. The hydrothermal synthesis was applied for the production of m-RHA production. The analyses demonstrate that m-RHA were uniform sphere-shape granules with diameters in micro-scale ranges. Results from the microcosm study show that approximately 83% of TCE could be removed (initial TCE concentration = 7.6 mg/L) with GLS supplement after 60 days of operation. Compared to other substrates without RHA addition, higher TCE removal efficiency was obtained, and higher Dehalococcoides sp. (DHC) population and hydA gene (hydrogen-producing gene) copy number were also detected in microcosms with GLS addition. Higher hydrogen concentrations enhanced the DHC growth, which corresponded to the increased DHC populations. The addition of the GLS could provide alkalinity at the initial stage to neutralize the acidified groundwater caused by the produced organic acids after substrate biodegradation, which was advantageous to DHC growth and TCE dechlorination. The addition of m-RHA reached an increased TCE removal efficiency, which was due to the fact that the m-RHA had the zeolite-like structure with a higher surface area and lower granular diameter, and thus, it resulted in a more effective initial adsorption effect. Therefore, a significant amount of TCE could be adsorbed onto the surface of m-RHA, which caused a rapid TCE removal through adsorption. The carbon substrates released from m-RHA could then enhance the subsequent dechlorination. The developed GLS is an environmentally-friendly and green substrate.


Assuntos
Água Subterrânea , Tricloroetileno , Poluentes Químicos da Água , Tricloroetileno/metabolismo , Biodegradação Ambiental , Carbono , Poluentes Químicos da Água/análise , Água Subterrânea/química , Hidrogênio , Concentração de Íons de Hidrogênio
7.
J Environ Manage ; 355: 120274, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452618

RESUMO

In this study, rooibos tea waste (RTW) incorporated with a binary oxide (BO; Fe2O3-SnO2) has been reported for the first time as a highly efficient adsorbent material for the elimination of Ni(II) ions. The as-synthesised rooibos tea waste-binary oxide (RWBO) composite adsorbent was characterised using miscellaneous techniques such as FTIR, XRD, SEM, EDX, TGA, BET, and XPS. The RWBO was then tested for the removal of Ni(II) in a batch adsorption experiment. The composite adsorbent showed a great removal efficiency of about 99.75% for Ni(II) ions at 45 °C, 180 min agitation time, pH 7, and dosage of 250 mg. The adsorption process was found to be endothermic and spontaneous. Also, the spent adsorbent [RWBO-Ni(II)] was found to be solar light active with a narrow band gap of 1.4 eV. It was further used as a photocatalyst for the photocatalytic abatement of 10 mg/L ciprofloxacin with an extent of degradation of 83% obtained after 150 min. In addition, the extent of mineralisation of the ciprofloxacin by the spent adsorbent as obtained from the TOC data was found to be 64%. Overall, the RWBO composite adsorbent lends itself as an efficient, eco-friendly and promising material for environmental remediation.


Assuntos
Aspalathus , Poluentes Químicos da Água , Níquel , Óxidos , Ciprofloxacina , Chá , Aspalathus/metabolismo , Adsorção , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Íons
8.
Int J Biol Macromol ; 263(Pt 1): 130513, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428758

RESUMO

Anthocyanins (ACNs) are natural compounds with potential applications due to their colorimetric response to pH. Due to their sensitivity to various environmental factors, nanoencapsulation with biopolymers is a successful strategy for stabilizing ACNs. In this work ACNs were extracted from grape skins and encapsulated into chitosan (CS) nanoparticles by ionic gelation using sodium tripolyphosphate (TPP) as a cross-linking agent. CS nanoparticles loaded with ACNs had particle sizes between 291 and 324 nm and polydispersity index around 0.3. The encapsulation efficiency of ACNs was approximately 60 %; and encapsulated anthocyanins (ACN-NPs) exhibited color change properties under different pH conditions. pH-sensitive labels based on polyvinyl alcohol (PVA) were prepared by the casting method. The effect of incorporating ACN-NPs on the physical, structural, and pH-sensitive properties of PVA labels was evaluated, and its application as shrimp freshness indicator was studied. The nanoencapsulation protected ACNs against heat and light treatments, preserving the original purple color. When applying the label, visible changes from red to blue until reaching yellow were observed with the change in the quality of the shrimp at the refrigeration temperature. The results suggest that PVA labels containing ACNs encapsulated in C-NPs can be used as smart packaging labels in the food industry.


Assuntos
Quitosana , Nanopartículas , Vitis , Quitosana/química , Álcool de Polivinil/química , Antocianinas/química , Nanopartículas/química , Extratos Vegetais/química , Embalagem de Alimentos/métodos , Concentração de Íons de Hidrogênio
9.
Methods Mol Biol ; 2791: 113-119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532098

RESUMO

Two-dimensional gel electrophoresis (2-DE) is a proteomic tool used for the separation of protein mixtures according to protein isoelectric point and molecular mass. Although gel-free quantitative and qualitative proteomic study techniques are now available, 2-DE remains a useful analytical tool. The presented protocol was performed to analyze the flower and leaf proteome of common buckwheat using 24 cm immobilized pH gradient strips (pH 4-7) and visualization of proteins on gels via colloidal Coomassie G-250 staining.


Assuntos
Fagopyrum , Proteoma , Proteoma/análise , Proteômica , Focalização Isoelétrica/métodos , Folhas de Planta/química , Flores , Eletroforese em Gel Bidimensional/métodos , Géis , Concentração de Íons de Hidrogênio
10.
Molecules ; 29(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542970

RESUMO

Currently, little is known about the characteristics of polyphenol oxidase from wheat bran, which is closely linked to the browning of wheat product. The wheat PPO was purified by ammonium sulfate precipitation, DEAE-Sepharose ion-exchange column, and Superdex G-75 chromatography column. Purified wheat PPO activity was 11.05-fold higher, its specific activity was 1365.12 U/mg, and its yield was 8.46%. SDS-PAGE showed that the molecular weight of wheat PPO was approximately 21 kDa. Its optimal pH and temperature were 6.5 and 35 °C for catechol as substrate, respectively. Twelve phenolic substrates from wheat and green tea were used for analyzing the substrate specificity. Wheat PPO showed the highest affinity to catechol due to its maximum Vmax (517.55 U·mL-1·min-1) and low Km (6.36 mM) values. Docking analysis revealed strong affinities between catechol, gallic acid, EGCG, and EC with binding energies of -5.28 kcal/mol, -4.65 kcal/mol, -4.21 kcal/mol, and -5.62 kcal/mol, respectively, for PPO. Sodium sulfite, ascorbic acid, and sodium bisulfite dramatically inhibited wheat PPO activity. Cu2+ and Ca2+ at 10 mM were considered potent activators and inhibitors for wheat PPO, respectively. This report provides a theoretical basis for controlling the enzymatic browning of wheat products fortified with green tea.


Assuntos
Catecol Oxidase , Fibras na Dieta , Catecol Oxidase/química , Fibras na Dieta/análise , Concentração de Íons de Hidrogênio , Cinética , Proteínas de Plantas/metabolismo , Catecóis/análise , Especificidade por Substrato , Chá
11.
Food Chem ; 448: 139104, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547711

RESUMO

Legume proteins can be induced to form amyloid-like fibrils upon heating at low pH, with the exact conditions greatly impacting the fibril characteristics. The protein extraction method may also impact the resulting fibrils, although this effect has not been carefully examined. Here, the fibrillization of lentil protein prepared using various extraction methods and the corresponding fibril morphology were characterized. It was found that an acidic, rather than alkaline, protein extraction method was better suited for producing homogeneous, long, and straight fibrils from lentil proteins. During alkaline extraction, co-extracted phenolic compounds bound proteins through covalent and non-covalent interactions, contributing to the formation of heterogeneous, curly, and tangled fibrils. Recombination of isolated phenolics and proteins (from acidic extracts) at alkaline pH resulted in a distinct morphology, implicating a role for polyphenol oxidase also in modifying proteins during alkaline extraction. These results help disentangle the complex factors affecting legume protein fibrillization.


Assuntos
Lens (Planta) , Fenóis , Proteínas de Plantas , Lens (Planta)/química , Fenóis/química , Fenóis/isolamento & purificação , Proteínas de Plantas/química , Proteínas de Plantas/isolamento & purificação , Concentração de Íons de Hidrogênio , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Amiloide/química , Fracionamento Químico/métodos
12.
Ultrason Sonochem ; 105: 106857, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552299

RESUMO

This work investigated the effects of the combined use of thermosonication-preconditioned lactic acid bacteria (LAB) with the addition of ultrasound-assisted pineapple peel extracts (UU group) on the post-acidification potential, physicochemical and functional qualities of yogurt products, aimed at achieving prolonged preservation and enhancing functional attributes. Accordingly, the physical-chemical features, adhesion properties, and sensory profiles, acidification kinetics, the contents of major organic acids, and antioxidant activities of the differentially processed yogurts during refrigeration were characterized. Following a 14-day chilled storage process, UU group exhibited acidity levels of 0.5-2 oT lower than the control group and a higher lactose content of 0.07 mg/ml as well as unmodified adhesion potential, indicating that the proposed combination method efficiently inhibited post-acidification and delayed lactose metabolism without leading to significant impairment of the probiotic properties. The results of physicochemical analysis showed no significant changes in viscosity, hardness, and color of yogurt. Furthermore, the total phenolic content of UU-treated samples was 98 µg/mL, 1.78 times higher than that of the control, corresponding with the significantly lower IC50 values of DPPH and ABTS radical scavenging activities of the UU group than those of the control group. Observations by fluorescence inverted microscopy demonstrated the obvious adhesion phenomenon with no significant difference found among differentially prepared yogurts. The results of targeted metabolomics indicated the proposed combination strategy significantly modified the microbial metabolism, leading to the delayed utilization of lactose and the inhibited conversion into glucose during post-fermentation, as well as the decreased lactic acid production and a notable shift towards the formation of relatively weak acids such as succinic acid and citric acid. This study confirmed the feasibility of thermosonication-preconditioned LAB inocula, in combination with the use of natural active components from fruit processing byproducts, to alleviate post-acidification in yogurt and to enhance its antioxidant activities as well as simultaneously maintaining sensory features.


Assuntos
Ananas , Antioxidantes , Fermentação , Extratos Vegetais , Iogurte , Iogurte/microbiologia , Iogurte/análise , Ananas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/farmacologia , Sonicação , Temperatura , Concentração de Íons de Hidrogênio , Manipulação de Alimentos/métodos , Qualidade dos Alimentos
13.
Environ Sci Pollut Res Int ; 31(17): 26112-26122, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492141

RESUMO

In this study, a bacterial strain Chryseobacterium bernardetii WK-3 was isolated from the rhizosphere soil of a uranium tailings in Southern China. It can efficiently adsorb hexavalent uranium with an adsorption ratio of 92.3%. The influence of different environmental conditions on the adsorption ratio of Chryseobacterium bernardetii strain WK-3 was investigated, and the adsorption mechanism was preliminarily discussed by scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS). The results showed that the optimal adsorption conditions for U(VI) by Chryseobacterium bernardetii strain WK-3 were pH = 5, temperature 30 ℃, NaCl concentration 1%, and inoculation volume 10%. When the initial concentration of U was 50 ~ 150 mg/L, the adsorption capacity of Chryseobacterium bernardetii strain WK-3 to U(VI) reached the maximum and maintained the equilibrium at 44 h. SEM-EDS results showed that phosphorus in cells participates in the interaction of uranyl ions, which may indicate that phosphate was produced during cell metabolism and was further combined to form U(VI)-phosphate minerals. In summary, Chryseobacterium bernardetii strain WK-3 would be a promising alternative for environmental uranium contamination remediation.


Assuntos
Chryseobacterium , Urânio , Urânio/análise , Adsorção , Solo , Fosfatos , Cinética , Concentração de Íons de Hidrogênio
14.
J Environ Manage ; 357: 120725, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38554454

RESUMO

Since the electroplating industry is springing up, effective control of phosphate has attracted global concerns. In this study, a novel biosorbent (MIL-88@CS-HDG) was synthesized by loading a kind of Fe-based metal organic framework called MIL-88 into chitosan hydrogel beads and applied in deep treatment of phosphate removal in electroplating wastewater. The adsorption capacities of H2PO4- on MIL-88@CS-HDG could reach 1.1 mmol/g (corresponding to 34.1 mg P/g and 106.7 mg H2PO4-/g), which was 2.65% higher than that on single MOF powders and chitosan hydrogel beads. The H2PO4- adsorption was well described by the Freundlich isotherm model. Over 90% H2PO4- could be adsorbed at contact time of 3 h. It could keep high adsorption capacity in the pH range from 2 to 7, which had a wider pH range of application compared with pure MIL-88. Only NO3- and SO42- limited the adsorption with the reduction rate of 11.42% and 23.23%, proving it tolerated most common co-existing ions. More than 92% of phosphorus could be recovered using NaOH and NaNO3. Electrostatic attraction between Fe core and phosphorus in MIL-88@CS-HDG and ion exchange played the dominant role. The recovered MIL-88@CS-HDG remained stable and applicable in the treatment process of real electroplating wastewater even after six adsorption-regeneration cycles. Based on the removal properties and superb regenerability, MIL-88@CS-HDG is potentially applicable to practical production.


Assuntos
Quitosana , Poluentes Químicos da Água , Fosfatos , Hidrogéis , Quitosana/química , Águas Residuárias , Galvanoplastia , Fósforo , Adsorção , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Cinética
15.
Int J Biol Macromol ; 265(Pt 1): 130934, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493824

RESUMO

Extraction of anthocyanins from grape pomace, is a way of valuing these abundant by-products with low added value. Its integration into films may allow it to be used in bioactive packaging, which creates new color and solubility properties for food and smart food packaging which tracks the freshness of fish. Films of arrowroot starch added with different concentrations of grape pomace extract (GPE) were flexible to handle, reddish and presented a high content of anthocyanins. The water vapor permeability increased by 17 %, while the tensile strength of arrowroot starch film decreased by 79 % with the addition of 40 % GPE. The addition of GPE increased the solubility of the starch film in aqueous and lipid food simulants by 121 and 119 %. The GPE pigment preferentially migrated to the aqueous simulant due to the hydrophilic nature of anthocyanins and starch. The GPE film showed distinguishable color changes in different pH buffer solutions from pink at pH 2 to light blue at pH 7 and slightly yellowish green at pH 10. When the composite films were monitored for fish meat freshness, the change in color of the film from reddish pink to slightly green after 96 h of storage at 25 °C was evident.


Assuntos
Marantaceae , Vitis , Animais , Antocianinas/química , Vitis/química , Concentração de Íons de Hidrogênio , Amido/química , Carne , Embalagem de Alimentos , Extratos Vegetais/química
16.
Mar Environ Res ; 196: 106441, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484650

RESUMO

Scyphozoan jellyfish, known for their evolutionary position and ecological significance, are thought to exhibit relatively notable resilience to ocean acidification. However, knowledge regarding the molecular mechanisms underlying the scyphozoan jellyfish response to acidified seawater conditions is currently lacking. In this study, two independent experiments were conducted to determine the physiological and molecular responses of moon jellyfish (Aurelia coerulea) polyps to within- and trans-generational exposure to two reduced pH treatments (pH 7.8 and pH 7.6). The results revealed that the asexual reproduction of A. coerulea polyps significantly declined under acute exposure to pH 7.6 compared with that of polyps at ambient pH conditions. Transcriptomics revealed a notable upregulation of genes involved in immunity and cytoskeleton components. In contrast, genes associated with metabolism were downregulated in response to reduced pH treatments after 6 weeks of within-generational acidified conditions. However, reduced pH treatments had no significant influence on the asexual reproduction of A. coerulea polyps after exposure to acidified conditions over a total of five generations, suggesting that A. coerulea polyps may acclimate to low pH levels. Transcriptomics revealed distinct gene expression profiles between within- and trans-generational exposure groups to two reduced pH treatments. The offspring polyps of A. coerulea subjected to trans-generational acidified conditions exhibited both upregulated and downregulated expression of genes associated with metabolism. These physiological and transcriptomic characteristics of A. coerulea polyps in response to elevated CO2 levels suggest that polyps produced asexually under acidified conditions may be resilient to such conditions in the future.


Assuntos
Cnidários , Cifozoários , Animais , Água do Mar , Transcriptoma , Concentração de Íons de Hidrogênio , Cifozoários/fisiologia , Perfilação da Expressão Gênica
17.
J Drug Target ; 32(4): 444-455, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38445558

RESUMO

In this study, a novel selenium@zeolitic imidazolate framework core/shell nanocomposite stabilised with alginate was used to improve the anti-tumour activity of curcumin. The developed alginate-stabilised curcumin-loaded selenium@zeolitic imidazolate framework (Alg@Cur@Se@ZIF-8) had a mean diameter of 159.6 nm and polydispersity index < 0.25. The release of curcumin from the nanocarrier at pH 5.4 was 2.69 folds as high as at pH 7.4. The bare nanoparticles showed haemolytic activity of about 12.16% at a concentration of 500 µg/mL while covering their surface with alginate reduced this value to 5.2%. By investigating cell viability, it was found that Alg@Cur@Se@ZIF-8 caused more cell death than pure curcumin. Additionally, in vivo studies showed that Alg@Cur@Se@ZIF-8 dramatically reduced tumour growth compared to free curcumin in 4T1 tumour-bearing mice. More importantly, the histological study confirmed that the developed drug delivery system successfully inhibited lung and liver metastasis while causing negligible toxicity in vital organs. Overall, due to the excellent inhibitory activity on cancerous cell lines and tumour-bearing animals, Alg@Cur@Se@ZIF-8 can be considered promising for breast cancer therapy.


Assuntos
Curcumina , Nanocompostos , Nanopartículas , Neoplasias , Selênio , Camundongos , Animais , Portadores de Fármacos , Alginatos , Neoplasias/tratamento farmacológico , Concentração de Íons de Hidrogênio
18.
Carbohydr Polym ; 332: 121931, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431421

RESUMO

Lumpectomy plus radiation is a treatment option offering better survival than conventional mastectomy for patients with early-stage breast cancer. However, successive radioactive therapy remains tedious and unsafe with severe adverse reactions and secondary injury. Herein, a composite hydrogel with pH- and photothermal double-sensitive activity is developed via physical crosslinking. The composite hydrogel incorporated with tempo-oxidized cellulose nanofiber (TOCN), polyvinyl alcohol (PVA) and a polydopamine (PDA) coating for photothermal therapy (PTT) triggered in situ release of doxorubicin (DOX) drug was utilized to optimize postoperative strategies of malignant tumors inhibition. The incorporation of TOCN significantly affects the performance of composite hydrogels. The best-performing TOCN/PVA7 was selected for drug loading and polydopamine coating by rational design. In vitro studies have demonstrated that the composite hydrogel exhibited high NIR photothermal conversion efficiency, benign cytotoxicity to L929 cells, pH-dependent release profiles, and strong MCF-7 cell inhibitory effects. Then the TOCN/PVA7-PDA@DOX hydrogel is implanted into the tumor resection cavity for local in vivo chemo-photothermal synergistical therapy to ablate residue tumor tissues. Overall, this work suggests that such a chemo-photothermal hydrogel delivery system has great potential as a promising tool for the postsurgical management of breast cancer.


Assuntos
Neoplasias da Mama , Celulose Oxidada , Hipertermia Induzida , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Terapia Fototérmica , Hidrogéis/química , Fototerapia , Mastectomia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Concentração de Íons de Hidrogênio
19.
PeerJ ; 12: e17031, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464755

RESUMO

Background: In a context of long-term highly intensive grazing in grassland ecosystems, a better understanding of how quickly belowground biodiversity responds to grazing is required, especially for soil microbial diversity. Methods: In this study, we conducted a grazing experiment which included the CK (no grazing with a fenced enclosure undisturbed by livestock), light and heavy grazing treatments in a desert steppe in Inner Mongolia, China. Microbial diversity and soil chemical properties (i.e., pH value, organic carbon, inorganic nitrogen (IN, NH4+-N and NO3--N), total carbon, nitrogen, phosphorus, and available phosphorus content) both in rhizosphere and non-rhizosphere soils were analyzed to explore the responses of microbial diversity to grazing intensity and the underlying mechanisms. Results: The results showed that heavy grazing only deceased bacterial diversity in the non-rhizosphere soil, but had no any significant effects on fungal diversity regardless of rhizosphere or non-rhizosphere soils. Bacterial diversity in the rhizosphere soil was higher than that of non-rhizosphere soil only in the heavy grazing treatment. Also, heavy grazing significantly increased soil pH value but deceased NH4+-N and available phosphorus in the non-rhizosphere soil. Spearman correlation analysis showed that soil pH value was significantly negatively correlated with the bacterial diversity in the non-rhizosphere soil. Combined, our results suggest that heavy grazing decreased soil bacterial diversity in the non-rhizosphere soil by increasing soil pH value, which may be due to the accumulation of dung and urine from livestock. Our results highlight that soil pH value may be the main factor driving soil microbial diversity in grazing ecosystems, and these results can provide scientific basis for grassland management and ecological restoration in arid and semi-arid area.


Assuntos
Ecossistema , Solo , Animais , Solo/química , Pradaria , Bactérias , Carbono/análise , Nitrogênio/análise , Gado , Fósforo , Concentração de Íons de Hidrogênio
20.
Molecules ; 29(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474665

RESUMO

Vitamin D3 deficiency is a global phenomenon, which can be managed with supplementation and food fortification. However, vitamin D3 bioaccessibility may depend on factors such as matrix composition and interactions throughout the gastrointestinal (GI) tract. This research focused on the effect of different matrices on vitamin D3 content during digestion, as well as the effect of pH on its bioaccessibility. The INFOGEST protocol was employed to simulate digestion. Three different types of commercial supplements, two foods naturally rich in vitamin D3, and three fortified foods were investigated. High-Performance Liquid Chromatography was used to determine the initial vitamin D3 content in the supplements and foods, as well as after each digestion stage. The results indicate that the foods exhibited higher bioaccessibility indices compared to the supplements and a higher percentage retention at the end of the gastric phase. The pH study revealed a positive correlation between an increased gastric pH and the corresponding content of vitamin D3. Interestingly, exposing the matrix to a low pH during the gastric phase resulted in an increased intestinal content of D3. Vitamin D3 is more bioaccessible from foods than supplements, and its bioaccessibility is susceptible to changes in gastric pH. Fasting conditions (i.e., gastric pH = 1) enhance the vitamin's bioaccessibility.


Assuntos
Colecalciferol , Suplementos Nutricionais , Colecalciferol/química , Suplementos Nutricionais/análise , Alimentos Fortificados/análise , Trato Gastrointestinal/metabolismo , Concentração de Íons de Hidrogênio , Digestão , Disponibilidade Biológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA