Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 120(10): 2865-2879, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37260114

RESUMO

Microalgae biofilms have been demonstrated to recover nutrients from wastewater and serve as biomass feedstock for bioproducts. However, there is a need to develop a platform to quantitatively describe microalgae biofilm production, which can provide guidance and insights for improving biomass areal productivity and nutrient uptake efficiency. This paper proposes a unified experimental and theoretical framework to investigate algae biofilm growth on a rotating algae biofilm reactor (RABR). Experimental laboratory setups are used to conduct controlled experiments on testing environmental and operational factors for RABRs. We propose a differential-integral equation-based mathematical model for microalgae biofilm cultivation guided by laboratory experimental findings. The predictive mathematical model development is coordinated with laboratory experiments of biofilm areal productivity associated with ammonia and inorganic phosphorus uptake by RABRs. The unified experimental and theoretical tool is used to investigate the effects of RABR rotating velocity, duty cycle (DC), and light intensity on algae biofilm growth, areal productivity, nutrient uptake efficiency, and energy efficiency in wastewater treatment. Our framework indicates that maintaining a reasonable light intensity range improves biomass areal productivity and nutrient uptake efficiency. Our framework also indicates that faster RABR rotation benefits biomass areal productivity. However, maximizing the nutrient uptake efficiency requires a reasonably low RABR rotating speed. Energy efficiency is strongly correlated with RABR rotating speed and DC.


Assuntos
Conservação de Recursos Energéticos , Microalgas , Águas Residuárias , Biofilmes , Nutrientes , Biomassa , Nitrogênio , Fósforo
2.
Molecules ; 28(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36771031

RESUMO

The recovery of bioactive compounds from crop byproducts leads to a new perspective way of waste reutilization as a part of the circular economy. The present study aimed at an exhaustive metabolite profile characterization of globe artichoke and cauliflower byproducts (leaves, stalks, and florets for cauliflower only) as a prerequisite for their valorization and future implementations. The metabolite profile of aqueous and organic extracts of byproducts was analyzed using the NMR-based metabolomics approach. Free amino acids, organic acids, sugars, polyols, polyphenols, amines, glucosinolates, fatty acids, phospho- and galactolipids, sterols, and sesquiterpene lactones were identified and quantified. In particular, globe artichoke byproducts are a source of health-beneficial compounds including chiro-inositol (up to 10.1 mg/g), scyllo-inositol (up to 1.8 mg/g), sesquiterpene lactones (cynaropicrin, grosheimin, dehydrocynaropicrin, up to 45.5 mg/g in total), inulins, and chlorogenic acid (up to 7.5 mg/g), whereas cauliflower byproducts enclose bioactive sulfur-containing compounds S-methyl-L-cysteine S-oxide (methiin, up to 20.7 mg/g) and glucosinolates. A variable content of all metabolites was observed depending on the crop type (globe artichoke vs. cauliflower) and the plant part (leaves vs. stalks). The results here reported can be potentially used in different ways, including the formulation of new plant biostimulants and food supplements.


Assuntos
Cynara scolymus , Sesquiterpenos , Cynara scolymus/química , Fenóis/química , Conservação de Recursos Energéticos , Glucosinolatos/metabolismo , Lactonas/química , Sesquiterpenos/química , Extratos Vegetais/química
3.
Hepatology ; 77(4): 1303-1318, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35788956

RESUMO

BACKGROUND AND AIM: Injury to hepatocyte mitochondria is common in metabolic dysfunction-associated fatty liver disease. Here, we investigated whether changes in the content of essential fatty acid-derived lipid autacoids affect hepatocyte mitochondrial bioenergetics and metabolic efficiency. APPROACH AND RESULTS: The study was performed in transgenic mice for the fat-1 gene, which allows the endogenous replacement of the membrane omega-6-polyunsaturated fatty acid (PUFA) composition by omega-3-PUFA. Transmission electron microscopy revealed that hepatocyte mitochondria of fat-1 mice had more abundant intact cristae and higher mitochondrial aspect ratio. Fat-1 mice had increased expression of oxidative phosphorylation complexes I and II and translocases of both inner (translocase of inner mitochondrial membrane 44) and outer (translocase of the outer membrane 20) mitochondrial membranes. Fat-1 mice also showed increased mitofusin-2 and reduced dynamin-like protein 1 phosphorylation, which mediate mitochondrial fusion and fission, respectively. Mitochondria of fat-1 mice exhibited enhanced oxygen consumption rate, fatty acid ß-oxidation, and energy substrate utilization as determined by high-resolution respirometry, [1- 14 C]-oleate oxidation and nicotinamide adenine dinucleotide hydride/dihydroflavine-adenine dinucleotide production, respectively. Untargeted lipidomics identified a rich hepatic omega-3-PUFA composition and a specific docosahexaenoic acid (DHA)-enriched lipid fingerprint in fat-1 mice. Targeted lipidomics uncovered a higher content of DHA-derived lipid autacoids, namely resolvin D1 and maresin 1, which rescued hepatocytes from TNFα-induced mitochondrial dysfunction, and unblocked the tricarboxylic acid cycle flux and metabolic utilization of long-chain acyl-carnitines, amino acids, and carbohydrates. Importantly, fat-1 mice were protected against mitochondrial injury induced by obesogenic and fibrogenic insults. CONCLUSION: Our data uncover the importance of a lipid membrane composition rich in DHA and its lipid autacoid derivatives to have optimal hepatic mitochondrial and metabolic efficiency.


Assuntos
Ácidos Graxos Ômega-3 , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Conservação de Recursos Energéticos , Ácidos Graxos Ômega-3/química , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Mitocôndrias/metabolismo , Ácidos Graxos Ômega-6/química , Ácidos Graxos Ômega-6/metabolismo , Ácidos Graxos Ômega-6/farmacologia , Camundongos Transgênicos , Ácidos Graxos/metabolismo
4.
J Colloid Interface Sci ; 630(Pt B): 844-854, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36356450

RESUMO

Seawater electrolysis is considered to be very challenging owing to competitive reaction kinetics in between oxygen evolution reaction and corrosive chlorine evolution reaction mechanism at anode, especially towards higher current density. The present work, proposes a promising and energy efficient strategy by coupling seawater splitting with urea decomposition lowering oxidation potential and thereby avoiding hypochlorite formation even at high current density. The rational design of Mott-Schottky heterojunction of Se/NiSe2 as electrocatalyst is considered to be highly effective in this regard. The developed Se/NiSe2 exhibits extraordinary energy saving for alkaline seawater splitting in presence of urea. The Se/NiSe2/NF || Se/NiSe2/NF electrolyser configuration achieved 10 and 50 mAcm-2 current densities with cell voltage of 1.59 and 1.70 V along with outstanding operational durability over 50 h. The large number of carrier density generates by synergistic self-driven electron transfer from Se to NiSe2 at the heterojunction, unique metallic properties of selenium (Se), and also abundance accessible reactive edges on the porous channel of Ni foam are believed to be the reason behind such enhanced electrocatalytic activities towards urea oxidation reaction and hydrogen evolution reaction offering unique and much energy saving approach for alkaline-urea-seawater electrolysis avoiding hypochlorite formation.


Assuntos
Selênio , Ureia , Ácido Hipocloroso , Conservação de Recursos Energéticos , Eletrólise , Água do Mar , Hidrogênio
5.
Biomed Phys Eng Express ; 8(6)2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36001921

RESUMO

Power efficiency in electrical stimulator circuits is crucial for developing large-scale multichannel applications like bidirectional brain-computer interfaces and neuroprosthetic devices. Many state-of-the-art papers have suggested that some non-rectangular pulse shapes are more energy-efficient for exciting neural excitation than the conventional rectangular shape. However, additional losses in the stimulator circuit, which arise from employing such pulses, were not considered. In this work, we analyze the total energy efficiency of a stimulation system featuring non-rectangular stimuli, taking into account the losses in the stimulator circuit. To this end, activation current thresholds for different pulse shapes and durations in cortical neurons are modeled, and the energy required to generate the pulses from a constant voltage supply is calculated. The proposed calculation reveals an energy increase of 14%-51% for non-rectangular pulses compared to the conventional rectangular stimuli, instead of the decrease claimed in previous literature. This result indicates that a rectangular stimulation pulse is more power-efficient than the tested alternative shapes in large-scale multichannel electrical stimulation systems.


Assuntos
Conservação de Recursos Energéticos , Terapia por Estimulação Elétrica , Biofísica , Estimulação Elétrica , Neurônios/fisiologia
6.
J Biosci Bioeng ; 133(5): 414-424, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35151536

RESUMO

Palm oil is a representative and important biomass, not only as the most edible vegetable oil consumed worldwide, but also as a material for chemicals and biofuels. Despite the potential sustainability of the palm oil industry, it has conventionally emitted excess greenhouse gases, waste materials, and wastewater, brought land use change, thus affecting the natural environment. Therefore, the successful development of a sustainable palm oil industry is a touchstone for promoting the bioeconomy. Here, we first review the concept of the bioeconomy and the positive and negative aspects of the palm oil industry. Then, we consider solutions for introducing a green economy into the palm oil industry, such that it may coexist with biodiversity and environmental conservation toward the Sustainable Development Goals.


Assuntos
Biodiversidade , Conservação de Recursos Energéticos , Biocombustíveis , Biomassa , Conservação dos Recursos Naturais , Óleo de Palmeira
7.
Artigo em Inglês | MEDLINE | ID: mdl-33466940

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has magnified the insufficient readiness of humans in dealing with such an unexpected occurrence. During the pandemic, sustainable development goals have been hindered severely. Various observations and lessons have been highlighted to emphasise local impacts on a single region or single sector, whilst the holistic and coupling impacts are rarely investigated. This study overviews the structural changes and spatial heterogeneities of changes in healthcare, energy and environment, and offers perspectives for the in-depth understanding of the COVID-19 impacts on the three sectors, in particular the cross-sections of them. Practical observations are summarised through the broad overview. A novel concept of the healthcare-energy-environment nexus under climate change constraints is proposed and discussed, to illustrate the relationships amongst the three sectors and further analyse the dynamics of the attention to healthcare, energy and environment in view of decision-makers. The society is still on the way to understanding the impacts of the whole episode of COVID-19 on healthcare, energy, environment and beyond. The raised nexus thinking could contribute to understanding the complicated COVID-19 impacts and guiding sustainable future planning.


Assuntos
COVID-19 , Mudança Climática , Atenção à Saúde , Pandemias , Conservação de Recursos Energéticos , Meio Ambiente , Humanos , Desenvolvimento Sustentável
8.
Crit Rev Biotechnol ; 40(4): 459-474, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32166983

RESUMO

Heavy oil accounts for around one-third of total global oil and gas resources. The progressive depletion of conventional energy reserves has led to an increased emphasis on the efficient exploitation of heavy oil and bitumen reserves in order to meet energy demand. Therefore, it is imperative to develop new technologies for heavy oil upgrading and recovery. Biologically-based technology that involves using microorganisms or their metabolites to mobilize heavy oil trapped in reservoir rocks can make a significant contribution to the recovery of heavy oils. Here, the results of laboratory experiments and field trials applying microbial enhanced oil recovery (MEOR) technologies are summarized. This review provides an overview of the basic concepts, mechanisms, advantages, problems, and trends in MEOR, and demonstrates the credibility of MEOR methods for applications in enhanced heavy oil recovery and the petroleum refining processes. This technology is cost-effective and environmentally-friendly. The feasibility of MEOR technologies for heavier oil has not yet been fully realized due to the perceived process complexity and a lack of sufficient laboratory research and field test data. However, novel developments such as enzyme-enhanced oil recovery continues to improve MEOR methods.HighlightsHeavy oil represents the largest known potentially-recoverable petroleum energy resource.Novel biotechnological processes are needed to recover or upgrade heavy oil.Microbial technologies have great potential for heavy oil recovery.Microorganisms can produce metabolic byproducts to mobilize oil trapped in reservoirs.More technological research is needed to develop microbial enhanced oil recovery.


Assuntos
Conservação de Recursos Energéticos , Microbiologia Industrial/métodos , Petróleo , Bactérias/metabolismo
10.
Nature ; 563(7732): 493-500, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30464269

RESUMO

Lighting based on light-emitting diodes (LEDs) not only is more energy efficient than traditional lighting, but also enables improved performance and control. The colour, intensity and distribution of light can now be controlled with unprecedented precision, enabling light to be used both as a signal for specific physiological responses in humans and plants, and as an efficient fuel for fresh food production. Here we show how a broad and improved understanding of the physiological responses to light will facilitate greater energy savings and provide health and productivity benefits that have not previously been associated with lighting.


Assuntos
Agricultura/instrumentação , Alimentos , Saúde , Iluminação/instrumentação , Iluminação/métodos , Fótons , Agricultura/métodos , Animais , Encéfalo/fisiologia , Encéfalo/efeitos da radiação , Ritmo Circadiano/efeitos da radiação , Conservação de Recursos Energéticos , Eficiência/fisiologia , Eficiência/efeitos da radiação , Olho/efeitos da radiação , História do Século XIX , História do Século XX , História do Século XXI , Humanos , Iluminação/economia , Iluminação/história , Células Fotorreceptoras de Vertebrados/fisiologia , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Fototerapia
11.
PLoS One ; 13(6): e0199100, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29928039

RESUMO

In this paper, we investigate how crude oil price and volume traded affected the profitability of oil and gas companies in the United Kingdom (UK) since the financial crisis started in 2008. The study benefit from insights of the financial statements, to develop a model that focuses on how changes in oil price impact corporate performance. In order to observe the financial indicators that influence the performance, as well as the effects that changes in oil prices and demand of crude oil have on the profitability of oil and gas companies, we apply comparative regression analysis, including the generalised method of moments estimation technique for panel data set. The sample is consisting of 31 oil and gas companies in the UK, and the period analysed is 2006-2014. Results show that profitable oil and gas companies managed to face the drop in oil price and recover, characterized by significant cash flows and stock turnover, efficient use of assets, and high solvency rates. Although the oil price and volume traded do not significantly affect profitability and other financial ratios, if the oil price continues to decrease, it would permanently alter both the UK economy and oil and gas companies. In order to survive, companies make drastic cuts and defer essential investments, often at the long-term expense of asset performance. This study is important in a world where the energy consumption steadily grew over time. However, the renewable energy is cheaper and more environmentally friendly, and thus, countries where oil and gas industry is one of the most popular sectors face an economic decline. These results could be useful for investors, managers or decision makers, reclaiming strategic decisions in the current uncertain and volatile environment.


Assuntos
Comércio/economia , Indústria de Petróleo e Gás/economia , Petróleo/economia , Conservação de Recursos Energéticos/economia , Humanos , Energia Renovável/economia , Reino Unido
12.
Water Sci Technol ; 77(9-10): 2369-2376, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29893725

RESUMO

The goal of making nutrient removal wastewater treatment energy self-sufficient or even energy producing has become a worldwide accepted goal of technology development. The latest upgrade of the Vienna Main Wastewater Treatment Plant (VMWWTP) with a design capacity of 4 million (M) population equivalent (PE) will produce about 20% more energy on a yearly basis than needed for operation due to a special process scheme. It consists of primary sedimentation, a special 2-stage activated sludge (AS) process configuration where excess sludge is only withdrawn from the first stage AS plant. Raw sludge is subject to mechanical thickening to ∼8% digested sludge (DS) for digestion at high solids concentration. The reject water after nitritation is used for denitritation in the first stage AS plant. This results in markedly reducing the energy requirement for aeration. The design of this last upgrade for energy optimization of sludge treatment is based on the long-term full-scale data from the existing plant, results of mid-term pilot investigations, sound theoretical mass balance calculations and an adapted dynamic model development. All this is presented in this paper. The full-scale upgrade is under construction and will start operating in 2020.


Assuntos
Conservação de Recursos Energéticos , Instalações de Eliminação de Resíduos/economia , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Áustria , Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos/economia
13.
Environ Geochem Health ; 40(6): 2635-2655, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29808248

RESUMO

The objectives of this research are to review existing methods used for assessing mining sustainability, analyze the limited prior research that has evaluated the methods, and identify key characteristics that would constitute an enhanced sustainability framework that would serve to improve sustainability reporting in the mining industry. Five of the most relevant frameworks were selected for comparison in this analysis, and the results show that there are many commonalities among the five, as well as some disparities. In addition, relevant components are missing from all five. An enhanced evaluation system and framework were created to provide a more holistic, comprehensive method for sustainability assessment and reporting. The proposed framework has five components that build from and encompass the twelve evaluation characteristics used in the analysis. The components include Foundation, Focus, Breadth, Quality Assurance, and Relevance. The enhanced framework promotes a comprehensive, location-specific reporting approach with a concise set of well-defined indicators. Built into the framework is quality assurance, as well as a defined method to use information from sustainability reports to inform decisions. The framework incorporates human health and socioeconomic aspects via initiatives such as community-engaged research, economic valuations, and community-initiated environmental monitoring.


Assuntos
Conservação de Recursos Energéticos , Meio Ambiente , Mineração/métodos
14.
Sci Rep ; 8(1): 4099, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29511276

RESUMO

The global loss of biodiversity threatens unique biota and the functioning and services of ecosystems essential for human wellbeing. To safeguard biodiversity and ecosystem services, designating protected areas is crucial; yet the extent to which the existing placement of protection is aligned to meet these conservation priorities is questionable, especially in the oceans. Here we investigate and compare global patterns of multiple biodiversity components (taxonomic, phylogenetic and functional), ecosystem services and human impacts, with the coverage of marine protected areas across a nested spatial scale. We demonstrate a pronounced spatial mismatch between the existing degree of protection and all the conservation priorities above, highlighting that neither the world's most diverse, nor the most productive ecosystems are currently the most protected ecosystems. Furthermore, we show that global patterns of biodiversity, ecosystem services and human impacts are poorly correlated, hence complicating the identification of generally applicable spatial prioritization schemes. However, a hypothetical "consensus approach" would have been able to address all these conservation priorities far more effectively than the existing degree of protection, which at best is only marginally better than a random expectation. Therefore, a holistic perspective is needed when designating an appropriate degree of protection of marine conservation priorities worldwide.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Biodiversidade , Conservação de Recursos Energéticos/métodos , Conservação dos Recursos Naturais/métodos , Política Ambiental , Saúde Global
15.
Indoor Air ; 28(3): 459-468, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29280511

RESUMO

Residential energy efficiency and ventilation retrofits (eg, building weatherization, local exhaust ventilation, HVAC filtration) can influence indoor air quality (IAQ) and occupant health, but these measures' impact varies by occupant activity. In this study, we used the multizone airflow and IAQ analysis program CONTAM to simulate the impacts of energy retrofits on indoor concentrations of PM2.5 and NO2 in a low-income multifamily housing complex in Boston, Massachusetts (USA). We evaluated the differential impact of residential activities, such as low- and high-emission cooking, cigarette smoking, and window opening, on IAQ across two seasons. We found that a comprehensive package of energy and ventilation retrofits was resilient to a range of occupant activities, while less holistic approaches without ventilation improvements led to increases in indoor PM2.5 or NO2 for some populations. In general, homes with simulated concentration increases included those with heavy cooking and no local exhaust ventilation, and smoking homes without HVAC filtration. Our analytical framework can be used to identify energy-efficient home interventions with indoor retrofit resiliency (ie, those that provide IAQ benefits regardless of occupant activity), as well as less resilient retrofits that can be coupled with behavioral interventions (eg, smoking cessation) to provide cost-effective, widespread benefits.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Conservação de Recursos Energéticos/métodos , Exposição Ambiental/análise , Ventilação/métodos , Boston , Culinária , Habitação , Humanos , Dióxido de Nitrogênio/análise , Material Particulado/análise , Pobreza , Tempo (Meteorologia)
16.
Water Res ; 123: 290-300, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28672213

RESUMO

The production of liquid fuels from crude oil requires water. There has been limited focus on the assessment of life cycle water demand footprints for crude oil production and refining. The overall aim of this paper is address this gap. The objective of this research is to develop water demand coefficients over the life cycle of fuels produced from crude oil pathways. Five crude oil fields were selected in the three North American countries to reflect the impact of different spatial locations and technologies on water demand. These include the Alaska North Slope, California's Kern County heavy oil, and Mars in the U.S.; Maya in Mexico; and Bow River heavy oil in Alberta, Canada. A boundary for an assessment of the life cycle water footprint was set to cover the unit operations related to exploration, drilling, extraction, and refining. The recovery technology used to extract crude oil is one of the key determining factors for water demand. The amount of produced water that is re-injected to recover the oil is essential in determining the amount of fresh water that will be required. During the complete life cycle of one barrel of conventional crude oil, 1.71-8.25 barrels of fresh water are consumed and 2.4-9.51 barrels of fresh water are withdrawn. The lowest coefficients are for Bow River heavy oil and the highest coefficients are for Maya crude oil. Of all the unit operations, exploration and drilling require the least fresh water (less than 0.015 barrel of water per barrel of oil produced). A sensitivity analysis was conducted and uncertainty in the estimates was determined.


Assuntos
Petróleo , Alberta , Animais , Conservação de Recursos Energéticos , México , Tecnologia , Estados Unidos , Água
17.
Bioresour Technol ; 209: 166-71, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26967340

RESUMO

Methyl or ethyl esters of long chain fatty acids are called biodiesel. Biodiesel is synthesized by the alcoholysis of oils/fats. In this work, lipase from Thermomyces lanuginosus was precipitated over the clusters of Fe3O4 nanoparticles. This biocatalyst preparation was used for obtaining biodiesel from soybean oil. After optimization of both immobilization conditions and process parameters, complete conversion to biodiesel was obtained in 3h and on lowering the enzyme amount, as little as 1.7U of lipase gave 96% conversion in 7h. The solvent free media with oil:ethanol (w/w) of 1:4 and 40°C with 2% (w/w) water along with 20% (w/w) silica (for facilitating acyl migration) were employed for reaching this high % of conversion. The biocatalyst design enables one to use a rather small amount of lipase. This should help in switching over to a biobased production of biodiesel.


Assuntos
Biocombustíveis , Compostos Férricos/química , Lipase/química , Nanopartículas , Ascomicetos/enzimologia , Biocatálise , Conservação de Recursos Energéticos , Enzimas Imobilizadas , Ésteres , Etanol , Ácidos Graxos , Óleo de Soja/química
18.
Ying Yong Sheng Tai Xue Bao ; 26(8): 2482-92, 2015 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-26685613

RESUMO

Sewage treatment, treated water treatment and sludge treatment are three basic units of an integrated sewage treatment system. This work assessed the influence of reusing or discharge of treated water and sludge landfill or compost on the sustainability of an integrated sewage treatment system using emergy analysis and newly proposed emergy indicators. This system's value included its environmental benefits and the products. Environmental benefits were the differences of the environmental service values before and after sewage treatment. Due to unavailability of data of the exchanged substance and energy in the internal system, products' values were attained by newly proposed substitution values. The results showed that the combination of sewage treatment, treated water reuse and sludge landfill had the strongest competitiveness, while the combination of sewage treatment, treated water reuse and earthworm compost was the most sustainable. Moreover, treated water reuse and earthworm compost were helpful for improving the sustainability of the integrated sewage treatment system. The quality of treated water and local conditions should be also considered when implementing the treated water reuse or discharge. The resources efficiency of earthworm compost unit needed to be further improved. Improved emergy indices were more suitable for integrated sewage treatment systems.


Assuntos
Conservação de Recursos Energéticos , Esgotos , Eliminação de Resíduos Líquidos/economia , Meio Ambiente , Solo
19.
Proc Natl Acad Sci U S A ; 112(48): E6707-16, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627262

RESUMO

The growing geographic disconnect between consumption of goods, the extraction and processing of resources, and the environmental impacts associated with production activities makes it crucial to factor global trade into sustainability assessments. Using an empirically validated environmentally extended global trade model, we examine the relationship between two key resources underpinning economies and human well--being-energy and freshwater. A comparison of three energy sectors (petroleum, gas, and electricity) reveals that freshwater consumption associated with gas and electricity production is largely confined within the territorial boundaries where demand originates. This finding contrasts with petroleum, which exhibits a varying ratio of territorial to international freshwater consumption, depending on the origin of demand. For example, although the United States and China have similar demand associated with the petroleum sector, international freshwater consumption is three times higher for the former than the latter. Based on mapping patterns of freshwater consumption associated with energy sectors at subnational scales, our analysis also reveals concordance between pressure on freshwater resources associated with energy production and freshwater scarcity in a number of river basins globally. These energy-driven pressures on freshwater resources in areas distant from the origin of energy demand complicate the design of policy to ensure security of fresh water and energy supply. Although much of the debate around energy is focused on greenhouse gas emissions, our findings highlight the need to consider the full range of consequences of energy production when designing policy.


Assuntos
Conservação dos Recursos Naturais , Água Doce , Conservação de Recursos Energéticos , Meio Ambiente , Geografia , Efeito Estufa , Indústrias , Petróleo , Política Pública , Rios , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA