Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Evol Dev ; 11(1): 13-26, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19196330

RESUMO

One of the major goals of evo-developmentalists is to understand how the genetic mechanisms controlling embryonic development have evolved to create the current diversity of bodyplans that we encounter in the animal kingdom. Tyrosine kinase receptors (RTKs) are transmembrane receptors present in all metazoans known to control several developmental processes. They act via the activation of various cytoplasmic signaling cascades, including the mitogen-activated protein kinase (MAPK), the PI3K/Akt, and the phospholipase C-gamma (PLCgamma)/protein kinase C (PKC) pathways. In order to address the evolution of these three pathways and their involvement during embryogenesis in chordates, we took advantage of the complete genome sequencing of a key evolutionarily positioned species, the cephalochordate amphioxus, and searched for the complete gene set of the three signaling pathways. We found that the amphioxus genome contains all of the most important modules of the RTK-activated cascades, and looked at the embryonic expression of two genes selected from each cascade. Our data suggest that although the PI3K/Akt pathway may have ubiquitous functions, the MAPK and the PLCgamma/PKC cascades may play specific roles in amphioxus development. Together with data known in vertebrates, the expression pattern of PKC in amphioxus suggests that the PLCgamma/PKC cascade was implicated in neural development in the ancestor of all chordates.


Assuntos
Evolução Biológica , Cordados não Vertebrados/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Genes Controladores do Desenvolvimento/genética , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais/genética , Animais , Sequência de Bases , Cordados não Vertebrados/genética , Clonagem Molecular , Análise por Conglomerados , Biologia Computacional , Primers do DNA/genética , DNA Complementar/genética , França , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Filogenia , Análise de Sequência de DNA
2.
Yi Chuan ; 27(1): 143-9, 2005 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-15730974

RESUMO

The union of the two complementary disciplines, developmental biology and evolutionary biology resulted in a new division of evolutionary developmental biology, namely "Evo-Devo". Recently, the research on this field has been fruitful in understanding the origin and development of vertebrates. The cephalochordate amphioxus, which remains in relatively invariant morphology since the divergence from the vertebrate lineage, is the closest living relative to vertebrates. The vertebrate-like simple body plan and preduplicative genome provide amphioxus genes the privilege to serve as key landmark to understand morphological evolution. However, the amphioxus genome has not escaped evolution. In this paper several examples of independent gene (Hox; Evx; HNF-3 and Calmodulin-like) duplications in the cephalochordate lineage were summarized. These particularities and oddities remind the fact that amphioxus is not an immediate ancestor of the vertebrates but 'only' the closest living relative to the ancestor, with a mix of prototypical and amphioxus-specific features in its genome.


Assuntos
Cordados não Vertebrados/genética , Fatores de Transcrição Forkhead/genética , Duplicação Gênica , Genes Homeobox , Fatores Nucleares de Hepatócito/genética , Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/genética , Animais , Calmodulina/genética , Cordados não Vertebrados/classificação , Cordados não Vertebrados/embriologia , Biologia do Desenvolvimento , Evolução Molecular , Genoma , Filogenia
3.
Evol Dev ; 4(5): 366-74, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12356266

RESUMO

The segmental patterning of the vertebrate hindbrain has been intensely investigated, yet the evolutionary origin of hindbrain segmentation remains unclear. In the vertebrate sister group, amphioxus (Cephalochordata), the embryonic neural tube lacks obvious morphological segmentation, but comparative Hox gene expression analysis has suggested the presence of a region homologous to the vertebrate hindbrain. Does this region contain ancient segmental features shared with the vertebrate hindbrain? To help address this question we cloned the paired-like amphioxus homeodomain gene shox and found that its expression is segmental in the amphioxus neural tube. We also uncovered a previously uncharacterized iterated neural tube expression pattern of the zinc-finger gene AmphiKrox. We propose that these genes, along with amphioxus islet and AmphiMnx, share a one-somite width periodicity of expression in the neural tube, the coincidence of which may reflect an underlying segmental organization. We hypothesize that the segmental patterning of neurons in the neural tube was present in the amphioxus/vertebrate ancestor, but the establishment of a bona fide segmented hindbrain may indeed have arisen in the vertebrate lineage.


Assuntos
Sistema Nervoso Central/metabolismo , Cordados não Vertebrados/genética , Regulação da Expressão Gênica no Desenvolvimento , Sequência de Aminoácidos , Animais , Sequência de Bases , Sistema Nervoso Central/embriologia , Cordados não Vertebrados/embriologia , Clonagem Molecular , Primers do DNA , DNA Complementar , Evolução Molecular , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos
4.
Development ; 129(12): 2905-16, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12050138

RESUMO

Amphioxus, the closest living invertebrate relative of the vertebrates, has a notochord, segmental axial musculature, pharyngeal gill slits and dorsal hollow nerve cord, but lacks neural crest. In amphioxus, as in vertebrates, exogenous retinoic acid (RA) posteriorizes the embryo. The mouth and gill slits never form, AmphiPax1, which is normally downregulated where gill slits form, remains upregulated and AmphiHox1 expression shifts anteriorly in the nerve cord. To dissect the role of RA signaling in patterning chordate embryos, we have cloned the single retinoic acid receptor (AmphiRAR), retinoid X receptor (AmphiRXR) and an orphan receptor (AmphiTR2/4) from amphioxus. AmphiTR2/4 inhibits AmphiRAR-AmphiRXR-mediated transactivation in the presence of RA by competing for DR5 or IR7 retinoic acid response elements (RAREs). The 5' untranslated region of AmphiTR2/4 contains an IR7 element, suggesting possible auto- and RA-regulation. The patterns of AmphiTR2/4 and AmphiRAR expression during embryogenesis are largely complementary: AmphiTR2/4 is strongly expressed in the cerebral vesicle (homologous to the diencephalon plus anterior midbrain), while AmphiRAR expression is high in the equivalent of the hindbrain and spinal cord. Similarly, while AmphiTR2/4 is expressed most strongly in the anterior and posterior thirds of the endoderm, the highest AmphiRAR expression is in the middle third. Expression of AmphiRAR is upregulated by exogenous RA and completely downregulated by the RA antagonist BMS009. Moreover, BMS009 expands the pharynx posteriorly; the first three gill slit primordia are elongated and shifted posteriorly, but do not penetrate, and additional, non-penetrating gill slit primordia are induced. Thus, in an organism without neural crest, initiation and penetration of gill slits appear to be separate events mediated by distinct levels of RA signaling in the pharyngeal endoderm. Although these compounds have little effect on levels of AmphiTR2/4 expression, RA shifts pharyngeal expression of AmphiTR2/4 anteriorly, while BMS009 extends it posteriorly. Collectively, our results suggest a model for anteroposterior patterning of the amphioxus nerve cord and pharynx, which is probably applicable to vertebrates as well, in which a low anterior level of AmphiRAR (caused, at least in part, by competitive inhibition by AmphiTR2/4) is necessary for patterning the forebrain and formation of gill slits, the posterior extent of both being set by a sharp increase in the level of AmphiRAR. Supplemental data available on-line


Assuntos
Padronização Corporal , Cordados não Vertebrados/embriologia , Crista Neural/metabolismo , Faringe/embriologia , Tretinoína/metabolismo , Animais , Cordados não Vertebrados/genética , Cordados não Vertebrados/metabolismo , Clonagem Molecular , Embrião não Mamífero/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Brânquias/embriologia , Boca/embriologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Membro 1 do Grupo C da Subfamília 2 de Receptores Nucleares , Faringe/metabolismo , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Receptores X de Retinoides , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA