Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 164: 1715-1728, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32758605

RESUMO

The knowledge of protein-nanoparticle interplay is of crucial importance to predict the fate of nanomaterials in biological environments. Indeed, protein corona on nanomaterials is responsible for the physiological response of the organism, influencing cell processes, from transport to accumulation and toxicity. Herein, a comparison using four different proteins reveals the existence of patterned regions of carboxylic groups acting as recognition sites for naked iron oxide nanoparticles. Readily interacting proteins display a distinctive surface distribution of carboxylic groups, recalling the geometric shape of an ellipse. This is morphologically complementary to nanoparticles curvature and compatible with the topography of exposed FeIII sites laying on the nanomaterial surface. The recognition site, absent in non-interacting proteins, promotes the nanoparticle harboring and allows the formation of functional protein coronas. The present work envisages the possibility of predicting the composition and the biological properties of protein corona on metal oxide nanoparticles.


Assuntos
Nanopartículas Magnéticas de Óxido de Ferro/química , Coroa de Proteína/química , Compostos Férricos/química , Proteínas de Membrana/metabolismo , Nanopartículas Metálicas/química , Nanopartículas/metabolismo , Ligação Proteica/fisiologia , Propriedades de Superfície
2.
Nanoscale ; 12(3): 1742-1748, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31895379

RESUMO

Black phosphorus nanosheets (BPNSs) have substantially promoted biomedical nanotechnology due to their unique photothermal and chemotherapeutic properties. However, there is still a limited molecular understanding of the effects of bio-nano interfaces on BPNSs and the subsequent impacts on physiological systems. Here, it is shown that black phosphorus-corona complexes (BPCCs) could function as immune modulators to promote the polarization of macrophages. Mechanistically, BPCCs could interact with calmodulin to activate stromal interaction molecule 2 and facilitate Ca2+ influx in macrophages, which induced the activation of p38 and NF-κB and polarized M0 macrophages to the M1 phenotype. As a result, BPCC-activated macrophages show greater migration towards cancer cells, 1.3-1.9 times higher cellular cytotoxicity and effective phagocytosis of cancer cells. These findings offer insights into the development of potential and unique applications of corona on BPNSs in nanomedicine.


Assuntos
Sinalização do Cálcio , Movimento Celular , Sistema de Sinalização das MAP Quinases , Ativação de Macrófagos , Macrófagos/metabolismo , Nanoestruturas/química , Coroa de Proteína/química , Animais , Linhagem Celular Tumoral , Camundongos , Fósforo/química , Células RAW 264.7
3.
ACS Appl Mater Interfaces ; 11(46): 42904-42916, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31657540

RESUMO

Potentiating systemic immunity against breast cancer is in the most urgent demand as breast cancer is less sensitive to immune checkpoint blockade. Although phototherapy and some chemotherapy can trigger immunogenic cell death (ICD) for T cell-mediated antitumor immune response, their immunotherapy efficacy is severely restricted by insufficient phototherapeutic capability and severe multidrug resistance (MDR). Inspired by both the hypersensitivity to phototherapy and the key role of MDR for mitochondria, a rationally engineered immunity amplifier via mitochondria-targeted photochemotherapeutic nanoparticles was, for the first time, achieved to fight against low-immunogenic breast cancer without additional immune agents. The newly synthesized task-specific mitochondria-targeted IR780 derivative (T780) was integrated with chemotherapeutic doxorubicin (DOX) to form multifunctional nanoparticles via an assembling strategy along with bovine serum albumin (BSA) as a biomimetic corona (BSA@T780/DOX NPs). The in situ enhancement in both phototherapy and MDR reversal by targeting mitochondria with BSA@T780/DOX NPs boosted highly efficient ICD toward excellent antitumor immune response. The newly developed strategy not only eradicated the primary tumor but also eliminated the bilateral tumors efficiently, as well as preventing metastasis and postsurgical recurrence, demonstrating great interest for fighting against low-immunogenic breast cancer.


Assuntos
Materiais Biomiméticos , Doxorrubicina , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Imunoterapia , Indóis , Neoplasias Mamárias Experimentais , Nanopartículas , Animais , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Bovinos , Linhagem Celular , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/imunologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/imunologia , Feminino , Indóis/química , Indóis/farmacologia , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/terapia , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/uso terapêutico , Coroa de Proteína/química , Soroalbumina Bovina/química , Soroalbumina Bovina/farmacologia
4.
Mater Sci Eng C Mater Biol Appl ; 99: 805-815, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30889755

RESUMO

In this work, a multifunctional magnetic Bio-Metal-Organic Framework (Fe3O4@Bio-MOF) coated with folic acid-chitosan conjugate (FC) was successfully prepared for tumor-targeted delivery of curcumin (CUR) and 5-fluorouracil (5-FU) simultaneously. Bio-MOF nanocomposite based on CUR as organic linker and zinc as metal ion was prepared by hydrothermal method in the presence of amine-functionalized Fe3O4 magnetic nanoparticles (Fe3O4@NH2 MNPs). 5-FU was loaded in the magnetic Bio-MOF and the obtained nanocarrier was then coated with FC network. The prepared nanocomposite (NC) was fully characterized by high resolution-transmission electron microscope (HR-TEM), field emission scanning electron microscopy (FE-SEM), Dynamic light scattering (DLS), X-ray diffraction analysis (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), nuclear magnetic resonance (NMR), and UV-vis analyses. In vitro release study showed controlled release of CUR and 5-FU in acidic pH confirming high selectivity and performance of the carrier in cancerous microenvironments. The selective uptake of 5-FU-loaded Fe3O4@Bio-MOF-FC by folate receptor-positive MDA-MB-231 cells was investigated and verified. The ultimate nanocarrier exhibited no significant toxicity, while drug loaded nanocarrier showed selective and higher toxicity against the cancerous cells than normal cells. SDS PAGE was also utilized to determine the protein pattern attached on the surface of the nanocarriers. In vitro and in vivo MRI studies showed negative signal enhancement in tumor confirming the ability of the nanocarrier to be applied as diagnostic agent. Owing to the selective anticancer release and cellular uptake, acceptable blood compatibility as well as suitable T2 MRI contrast performance, the target nanocarrier could be considered as favorable theranostic in breast cancer.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Ácido Fólico/química , Magnetismo , Estruturas Metalorgânicas/química , Nanocompostos/química , Neoplasias/terapia , Nanomedicina Teranóstica , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Curcumina/farmacologia , Liberação Controlada de Fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Compostos Férricos/química , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Hemólise/efeitos dos fármacos , Humanos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Células NIH 3T3 , Nanocompostos/ultraestrutura , Neoplasias/tratamento farmacológico , Imagens de Fantasmas , Coroa de Proteína/química , Difração de Raios X
5.
ACS Nano ; 12(5): 4761-4774, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29664607

RESUMO

Serotonin-based nanoparticles represent a class of previously unexplored multifunctional nanoplatforms with potential biomedical applications. Serotonin, under basic conditions, self-assembles into monodisperse nanoparticles via autoxidation of serotonin monomers. To demonstrate potential applications of polyserotonin nanoparticles for cancer therapeutics, we show that these particles are biocompatible, exhibit photothermal effects when exposed to near-infrared radiation, and load the chemotherapeutic drug doxorubicin, releasing it contextually and responsively in specific microenvironments. Quantum mechanical and molecular dynamics simulations were performed to interrogate the interactions between surface-adsorbed drug molecules and polyserotonin nanoparticles. To investigate the potential of polyserotonin nanoparticles for in vivo targeting, we explored their nano-bio interfaces by conducting protein corona experiments. Polyserotonin nanoparticles had reduced surface-protein interactions under biological conditions compared to polydopamine nanoparticles, a similar polymer material widely investigated for related applications. These findings suggest that serotonin-based nanoparticles have advantages as drug-delivery platforms for synergistic chemo- and photothermal therapy associated with limited nonspecific interactions.


Assuntos
Materiais Biocompatíveis/química , Portadores de Fármacos/química , Nanopartículas/química , Serotonina/química , Antineoplásicos/química , Terapia Combinada , Doxorrubicina/química , Humanos , Hipertermia Induzida , Indóis/química , Raios Infravermelhos , Simulação de Dinâmica Molecular , Nanopartículas/efeitos da radiação , Fototerapia/métodos , Polímeros/química , Coroa de Proteína/química , Células-Tronco/citologia , Microambiente Tumoral
6.
Sci Rep ; 8(1): 5289, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29588488

RESUMO

Due to their outstanding properties, quantum dots (QDs) received a growing interest in the biomedical field, but it is of major importance to investigate and to understand their interaction with the biomolecules. We examined the stability of silicon QDs and the time evolution of QDs - protein corona formation in various biological media (bovine serum albumin, cell culture medium without or supplemented with 10% fetal bovine serum-FBS). Changes in the secondary structure of BSA were also investigated over time. Hydrodynamic size and zeta potential measurements showed an evolution in time indicating the nanoparticle-protein interaction. The protein corona formation was also dependent on time, albumin adsorption reaching the peak level after 1 hour. The silicon QDs adsorbed an important amount of FBS proteins from the first 5 minutes of incubation that was maintained for the next 8 hours, and diminished afterwards. Under protein-free conditions the QDs induced cell membrane damage in a time-dependent manner, however the presence of serum proteins attenuated their hemolytic activity and maintained the integrity of phosphatidylcholine layer. This study provides useful insights regarding the dynamics of BSA adsorption and interaction of silicon QDs with proteins and lipids, in order to understand the role of QDs biocorona.


Assuntos
Pontos Quânticos/metabolismo , Dióxido de Silício/metabolismo , Silício/metabolismo , Adsorção , Animais , Bovinos , Hemólise/efeitos dos fármacos , Humanos , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Estrutura Secundária de Proteína/efeitos dos fármacos , Pontos Quânticos/efeitos adversos , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Silício/efeitos adversos , Dióxido de Silício/efeitos adversos
7.
Adv Healthc Mater ; 7(4)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29193848

RESUMO

Predetermining the physico-chemical properties, biosafety, and stimuli-responsiveness of nanomaterials in biological environments is essential for safe and effective biomedical applications. At the forefront of biomedical research, mesoporous silica nanoparticles and mesoporous organosilica nanoparticles are increasingly investigated to predict their biological outcome by materials design. In this review, it is first chronicled that how the nanomaterial design of pure silica, partially hybridized organosilica, and fully hybridized organosilica (periodic mesoporous organosilicas) governs not only the physico-chemical properties but also the biosafety of the nanoparticles. The impact of the hybridization on the biocompatibility, protein corona, biodistribution, biodegradability, and clearance of the silica-based particles is described. Then, the influence of the surface engineering, the framework hybridization, as well as the morphology of the particles, on the ability to load and controllably deliver drugs under internal biological stimuli (e.g., pH, redox, enzymes) and external noninvasive stimuli (e.g., light, magnetic, ultrasound) are presented. To conclude, trends in the biomedical applications of silica and organosilica nanovectors are delineated, such as unconventional bioimaging techniques, large cargo delivery, combination therapy, gaseous molecule delivery, antimicrobial protection, and Alzheimer's disease therapy.


Assuntos
Nanomedicina , Nanopartículas/química , Dióxido de Silício/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Materiais Biocompatíveis/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Hemólise/efeitos dos fármacos , Humanos , Porosidade , Coroa de Proteína/química , Distribuição Tecidual
8.
J Appl Biomater Funct Mater ; 13(2): e145-55, 2015 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-26045225

RESUMO

PURPOSE: Wear of ceramic orthopedic devices generates nanoparticles in vivo that may present a different biological character from the monolithic ceramic from which they are formed. The current work investigated protein adsorption from human plasma on alumina nanoparticles and monolithic samples representative of both wear particles and the ceramic components as implanted. MATERIALS AND METHODS: A physicochemical characterization of the particles and their dispersion state was carried out, and the protein adsorption profiles were analyzed using 1D SDS-PAGE and mass spectrometry. RESULTS: Significant differences in protein-binding profiles were identified where the nanoparticles selectively bound known transporter proteins rather than the more highly abundant serum proteins that were observed on the monoliths. CONCLUSIONS: Proteins associated with opsonization of particles were seen to be present in the protein corona of the nanoparticles, which raises questions regarding the role of wear particles in periprosthetic tissue inflammation and aseptic loosening.


Assuntos
Óxido de Alumínio/química , Materiais Biocompatíveis/química , Proteínas Sanguíneas/química , Cerâmica/química , Prótese Articular , Nanopartículas/química , Coroa de Proteína/química , Adsorção , Proteínas Sanguíneas/metabolismo , Humanos , Coroa de Proteína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA