Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.107
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473870

RESUMO

Neural stem cells (NSCs) have been recently identified in the neonatal rat medial geniculate body (MGB). NSCs are characterized by three cardinal features: mitotic self-renewal, formation of progenitors, and differentiation into all neuroectodermal cell lineages. NSCs and the molecular factors affecting them are particularly interesting, as they present a potential target for treating neurologically based hearing disorders. It is unclear whether an NSC niche exists in the rat MGB up to the adult stage and which neurogenic factors are essential during maturation. The rat MGB was examined on postnatal days 8, 12, and 16, and at the adult stadium. The cardinal features of NSCs were detected in MGB cells of all age groups examined by neurosphere, passage, and differentiation assays. In addition, real-time quantitative polymerase chain reaction arrays were used to compare the mRNA levels of 84 genes relevant to NSCs and neurogenesis. In summary, cells of the MGB display the cardinal features of NSCs up to the adult stage with a decreasing NSC potential over time. Neurogenic factors with high importance for MGB neurogenesis were identified on the mRNA level. These findings should contribute to a better understanding of MGB neurogenesis and its regenerative capacity.


Assuntos
Corpos Geniculados , Células-Tronco Neurais , Ratos , Animais , Neurogênese , Diferenciação Celular , Tálamo , RNA Mensageiro , Biologia Molecular
2.
Sci Rep ; 14(1): 7078, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528192

RESUMO

Mouse auditory cortex is composed of six sub-fields: primary auditory field (AI), secondary auditory field (AII), anterior auditory field (AAF), insular auditory field (IAF), ultrasonic field (UF) and dorsoposterior field (DP). Previous studies have examined thalamo-cortical connections in the mice auditory system and learned that AI, AAF, and IAF receive inputs from the ventral division of the medial geniculate body (MGB). However, the functional and thalamo-cortical connections between nonprimary auditory cortex (AII, UF, and DP) is unclear. In this study, we examined the locations of neurons projecting to these three cortical sub-fields in the MGB, and addressed the question whether these cortical sub-fields receive inputs from different subsets of MGB neurons or common. To examine the distributions of projecting neurons in the MGB, retrograde tracers were injected into the AII, UF, DP, after identifying these areas by the method of Optical Imaging. Our results indicated that neuron cells which in ventral part of dorsal MGB (MGd) and that of ventral MGB (MGv) projecting to UF and AII with less overlap. And DP only received neuron projecting from MGd. Interestingly, these three cortical areas received input from distinct part of MGd and MGv in an independent manner. Based on our foundings these three auditory cortical sub-fields in mice may independently process auditory information.


Assuntos
Córtex Auditivo , Corpos Geniculados , Camundongos , Animais , Corpos Geniculados/fisiologia , Córtex Auditivo/fisiologia , Neurônios , Neuritos , Vias Auditivas/fisiologia , Tálamo/fisiologia
3.
J Neurosci ; 44(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37945348

RESUMO

The auditory steady-state response (ASSR) is a cortical oscillation induced by trains of 40 Hz acoustic stimuli. While the ASSR has been widely used in clinic measurement, the underlying neural mechanism remains poorly understood. In this study, we investigated the contribution of different stages of auditory thalamocortical pathway-medial geniculate body (MGB), thalamic reticular nucleus (TRN), and auditory cortex (AC)-to the generation and regulation of 40 Hz ASSR in C57BL/6 mice of both sexes. We found that the neural response synchronizing to 40 Hz sound stimuli was most prominent in the GABAergic neurons in the granular layer of AC and the ventral division of MGB (MGBv), which were regulated by optogenetic manipulation of TRN neurons. Behavioral experiments confirmed that disrupting TRN activity has a detrimental effect on the ability of mice to discriminate 40 Hz sounds. These findings revealed a thalamocortical mechanism helpful to interpret the results of clinical ASSR examinations.Significance Statement Our study contributes to clarifying the thalamocortical mechanisms underlying the generation and regulation of the auditory steady-state response (ASSR), which is commonly used in both clinical and neuroscience research to assess the integrity of auditory function. Combining a series of electrophysiological and optogenetic experiments, we demonstrate that the generation of cortical ASSR is dependent on the lemniscal thalamocortical projections originating from the ventral division of medial geniculate body to the GABAergic interneurons in the granule layer of the auditory cortex. Furthermore, the thalamocortical process for ASSR is strictly regulated by the activity of thalamic reticular nucleus (TRN) neurons. Behavioral experiments confirmed that dysfunction of TRN would cause a disruption of mice's behavioral performance in the auditory discrimination task.


Assuntos
Córtex Auditivo , Vigília , Feminino , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Núcleos Talâmicos/fisiologia , Corpos Geniculados/fisiologia , Córtex Auditivo/fisiologia , Estimulação Acústica/métodos , Neurônios GABAérgicos/fisiologia
4.
Glia ; 72(2): 274-288, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37746760

RESUMO

Auditory dysfunction and increased neuronal activity in the auditory pathways have been reported in patients with temporal lobe epilepsy, but the cellular mechanisms involved are unknown. Here, we report that microglia play a role in the disinhibition of auditory pathways after status epilepticus in mice. We found that neuronal activity in the auditory pathways, including the primary auditory cortex and the medial geniculate body (MGB), was increased and auditory discrimination was impaired after status epilepticus. We further demonstrated that microglia reduced inhibitory synapses on MGB relay neurons over an 8-week period after status epilepticus, resulting in auditory pathway hyperactivity. In addition, we found that local removal of microglia from the MGB attenuated the increase in c-Fos+ relay neurons and improved auditory discrimination. These findings reveal that thalamic microglia are involved in auditory dysfunction in epilepsy.


Assuntos
Microglia , Estado Epiléptico , Camundongos , Humanos , Animais , Corpos Geniculados/metabolismo , Tálamo , Vias Auditivas/metabolismo , Estado Epiléptico/metabolismo
5.
Cell Rep ; 42(11): 113378, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37925640

RESUMO

We developed a detailed model of macaque auditory thalamocortical circuits, including primary auditory cortex (A1), medial geniculate body (MGB), and thalamic reticular nucleus, utilizing the NEURON simulator and NetPyNE tool. The A1 model simulates a cortical column with over 12,000 neurons and 25 million synapses, incorporating data on cell-type-specific neuron densities, morphology, and connectivity across six cortical layers. It is reciprocally connected to the MGB thalamus, which includes interneurons and core and matrix-layer-specific projections to A1. The model simulates multiscale measures, including physiological firing rates, local field potentials (LFPs), current source densities (CSDs), and electroencephalography (EEG) signals. Laminar CSD patterns, during spontaneous activity and in response to broadband noise stimulus trains, mirror experimental findings. Physiological oscillations emerge spontaneously across frequency bands comparable to those recorded in vivo. We elucidate population-specific contributions to observed oscillation events and relate them to firing and presynaptic input patterns. The model offers a quantitative theoretical framework to integrate and interpret experimental data and predict its underlying cellular and circuit mechanisms.


Assuntos
Córtex Auditivo , Tálamo , Tálamo/fisiologia , Eletroencefalografia , Corpos Geniculados , Núcleos Talâmicos , Neurônios/fisiologia
6.
Nat Commun ; 14(1): 7278, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949869

RESUMO

In the mammalian visual system, the ventral lateral geniculate nucleus (vLGN) of the thalamus receives salient visual input from the retina and sends prominent GABAergic axons to the superior colliculus (SC). However, whether and how vLGN contributes to fundamental visual information processing remains largely unclear. Here, we report in mice that vLGN facilitates visually-guided approaching behavior mediated by the lateral SC and enhances the sensitivity of visual object detection. This can be attributed to the extremely broad spatial integration of vLGN neurons, as reflected in their much lower preferred spatial frequencies and broader spatial receptive fields than SC neurons. Through GABAergic thalamocollicular projections, vLGN specifically exerts prominent surround suppression of visuospatial processing in SC, leading to a fine tuning of SC preferences to higher spatial frequencies and smaller objects in a context-dependent manner. Thus, as an essential component of the central visual processing pathway, vLGN serves to refine and contextually modulate visuospatial processing in SC-mediated visuomotor behaviors via visually-driven long-range feedforward inhibition.


Assuntos
Corpos Geniculados , Neurônios , Camundongos , Animais , Corpos Geniculados/fisiologia , Neurônios/fisiologia , Tálamo , Vias Visuais/fisiologia , Colículos Superiores/fisiologia , Mamíferos
7.
Elife ; 122023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37791662

RESUMO

The lateral geniculate nucleus (LGN), a retinotopic relay center where visual inputs from the retina are processed and relayed to the visual cortex, has been proposed as a potential target for artificial vision. At present, it is unknown whether optogenetic LGN stimulation is sufficient to elicit behaviorally relevant percepts, and the properties of LGN neural responses relevant for artificial vision have not been thoroughly characterized. Here, we demonstrate that tree shrews pretrained on a visual detection task can detect optogenetic LGN activation using an AAV2-CamKIIα-ChR2 construct and readily generalize from visual to optogenetic detection. Simultaneous recordings of LGN spiking activity and primary visual cortex (V1) local field potentials (LFPs) during optogenetic LGN stimulation show that LGN neurons reliably follow optogenetic stimulation at frequencies up to 60 Hz and uncovered a striking phase locking between the V1 LFP and the evoked spiking activity in LGN. These phase relationships were maintained over a broad range of LGN stimulation frequencies, up to 80 Hz, with spike field coherence values favoring higher frequencies, indicating the ability to relay temporally precise information to V1 using light activation of the LGN. Finally, V1 LFP responses showed sensitivity values to LGN optogenetic activation that were similar to the animal's behavioral performance. Taken together, our findings confirm the LGN as a potential target for visual prosthetics in a highly visual mammal closely related to primates.


Assuntos
Optogenética , Tálamo , Animais , Tálamo/fisiologia , Corpos Geniculados/fisiologia , Visão Ocular , Neurônios/fisiologia , Estimulação Luminosa , Vias Visuais/fisiologia , Mamíferos
8.
Elife ; 122023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37796249

RESUMO

Experience-dependent plasticity in the adult visual system is generally thought of as a cortical process. However, several recent studies have shown that perceptual learning or monocular deprivation can also induce plasticity in the adult dorsolateral geniculate nucleus (dLGN) of the thalamus. How plasticity in the thalamus and cortex interact in the adult visual system is ill-understood. To assess the influence of thalamic plasticity on plasticity in primary visual cortex (V1), we made use of our previous finding that during the critical period ocular dominance (OD) plasticity occurs in dLGN and requires thalamic synaptic inhibition. Using multielectrode recordings we find that this is also true in adult mice, and that in the absence of thalamic inhibition and plasticity, OD plasticity in adult V1 is absent. To study the influence of V1 on thalamic plasticity, we silenced V1 and show that during the critical period, but not in adulthood, the OD shift in dLGN is partially caused by feedback from V1. We conclude that during adulthood the thalamus plays an unexpectedly dominant role in experience-dependent plasticity in V1. Our findings highlight the importance of considering the thalamus as a potential source of plasticity in learning events that are typically thought of as cortical processes.


Assuntos
Dominância Ocular , Córtex Visual , Camundongos , Animais , Tálamo/fisiologia , Córtex Visual/fisiologia , Corpos Geniculados/fisiologia , Inibição Psicológica , Plasticidade Neuronal/fisiologia
10.
Behav Brain Res ; 450: 114498, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37201892

RESUMO

The medial geniculate body (MGB) of the thalamus is an obligatory relay for auditory processing. A breakdown of adaptive filtering and sensory gating at this level may lead to multiple auditory dysfunctions, while high-frequency stimulation (HFS) of the MGB might mitigate aberrant sensory gating. To further investigate the sensory gating functions of the MGB, this study (i) recorded electrophysiological evoked potentials in response to continuous auditory stimulation, and (ii) assessed the effect of MGB HFS on these responses in noise-exposed and control animals. Pure-tone sequences were presented to assess differential sensory gating functions associated with stimulus pitch, grouping (pairing), and temporal regularity. Evoked potentials were recorded from the MGB and acquired before and after HFS (100 Hz). All animals (unexposed and noise-exposed, pre- and post-HFS) showed gating for pitch and grouping. Unexposed animals also showed gating for temporal regularity not found in noise-exposed animals. Moreover, only noise-exposed animals showed restoration comparable to the typical EP amplitude suppression following MGB HFS. The current findings confirm adaptive thalamic sensory gating based on different sound characteristics and provide evidence that temporal regularity affects MGB auditory signaling.


Assuntos
Córtex Auditivo , Tálamo , Ratos , Animais , Tálamo/fisiologia , Corpos Geniculados/fisiologia , Estimulação Acústica , Sensação , Filtro Sensorial , Córtex Auditivo/fisiologia
11.
Neuron ; 111(14): 2247-2257.e7, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37172584

RESUMO

Cortical responses to visual stimuli are believed to rely on the geniculo-striate pathway. However, recent work has challenged this notion by showing that responses in the postrhinal cortex (POR), a visual cortical area, instead depend on the tecto-thalamic pathway, which conveys visual information to the cortex via the superior colliculus (SC). Does POR's SC-dependence point to a wider system of tecto-thalamic cortical visual areas? What information might this system extract from the visual world? We discovered multiple mouse cortical areas whose visual responses rely on SC, with the most lateral showing the strongest SC-dependence. This system is driven by a genetically defined cell type that connects the SC to the pulvinar thalamic nucleus. Finally, we show that SC-dependent cortices distinguish self-generated from externally generated visual motion. Hence, lateral visual areas comprise a system that relies on the tecto-thalamic pathway and contributes to processing visual motion as animals move through the environment.


Assuntos
Pulvinar , Colículos Superiores , Camundongos , Animais , Colículos Superiores/fisiologia , Vias Visuais/fisiologia , Tálamo , Núcleos Talâmicos , Corpos Geniculados/fisiologia
12.
Neurobiol Dis ; 183: 106164, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37217103

RESUMO

Phototherapy is an emerging non-pharmacological treatment for depression, circadian rhythm disruptions, and neurodegeneration, as well as pain conditions including migraine and fibromyalgia. However, the mechanism of phototherapy-induced antinociception is not well understood. Here, using fiber photometry recordings of population-level neural activity combined with chemogenetics, we found that phototherapy elicits antinociception via regulation of the ventral lateral geniculate body (vLGN) located in the visual system. Specifically, both green and red lights caused an increase of c-fos in vLGN, with red light increased more. In vLGN, green light causes a large increase in glutamatergic neurons, whereas red light causes a large increase in GABAergic neurons. Green light preconditioning increases the sensitivity of glutamatergic neurons to noxious stimuli in vLGN of PSL mice. Green light produces antinociception by activating glutamatergic neurons in vLGN, and red light promotes nociception by activating GABAergic neurons in vLGN. Together, these results demonstrate that different colors of light exert different pain modulation effects by regulating glutamatergic and GABAergic subpopulations in the vLGN. This may provide potential new therapeutic strategies and new therapeutic targets for the precise clinical treatment of neuropathic pain.


Assuntos
Neuralgia , Nociceptividade , Camundongos , Animais , Nociceptividade/fisiologia , Neurônios GABAérgicos , Corpos Geniculados/fisiologia , Fototerapia , Neuralgia/terapia
13.
J Neurosci ; 43(19): 3495-3508, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-37028934

RESUMO

Selectivity for direction of motion is a key feature of primary visual cortical neurons. Visual experience is required for direction selectivity in carnivore and primate visual cortex, but the circuit mechanisms of its formation remain incompletely understood. Here, we examined how developing lateral geniculate nucleus (LGN) neurons may contribute to cortical direction selectivity. Using in vivo electrophysiology techniques, we examined LGN receptive field properties of visually naive female ferrets before and after exposure to 6 h of motion stimuli to assess the effect of acute visual experience on LGN cell development. We found that acute experience with motion stimuli did not significantly affect the weak orientation or direction selectivity of LGN neurons. In addition, we found that neither latency nor sustainedness or transience of LGN neurons significantly changed with acute experience. These results suggest that the direction selectivity that emerges in cortex after acute experience is computed in cortex and cannot be explained by changes in LGN cells.SIGNIFICANCE STATEMENT The development of typical neural circuitry requires experience-independent and experience-dependent factors. In the visual cortex of carnivores and primates, selectivity for motion arises as a result of experience, but we do not understand whether the major brain area that sits between the retina and the visual cortex-the lateral geniculate nucleus of the thalamus-also participates. Here, we found that lateral geniculate neurons do not exhibit changes as a result of several hours of visual experience with moving stimuli at a time when visual cortical neurons undergo a rapid change. We conclude that lateral geniculate neurons do not participate in this plasticity and that changes in cortex are likely responsible for the development of direction selectivity in carnivores and primates.


Assuntos
Corpos Geniculados , Córtex Visual , Animais , Feminino , Corpos Geniculados/fisiologia , Furões , Tálamo , Neurônios/fisiologia , Córtex Visual/fisiologia , Estimulação Luminosa/métodos , Vias Visuais/fisiologia
14.
Biochem Biophys Res Commun ; 659: 72-79, 2023 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-37054505

RESUMO

Itch and pain are two closely related sensations that receiving similar encodings at multiple levels. Accumulated evidences suggest that activation of the ventral lateral geniculate nucleus and intergeniculate leaflet (vLGN/IGL)-to-lateral and ventrolateral periaqueductal gray (l/vlPAG) projections mediates the antinociceptive effects of bright light therapy. Clinical study showed that bright light therapy may ameliorate cholestasis-induced pruritus. However, the underlying mechanism and whether this circuit participates in itch modulation remains unclear. In this study, chloroquine and histamine were utilized to induce acute itch models in mice. Neuronal activities in vLGN/IGL nucleus were evaluated with c-fos immunostaining as well as fiber photometry. Optogenetic manipulations were performed to activate or inhibit GABAergic neurons in the vLGN/IGL nucleus. Our results showed that the expressions of c-fos in vLGN/IGL were significantly increased upon both chloroquine- and histamine-induced acute itch stimuli. GABAergic neurons in vLGN/IGL were activated during histamine and chloroquine-induced scratching. Optogenetic activation of the vLGN/IGL GABAergic neurons exerts antipruritic effect, while inhibiting these neurons exerts pruritic effect. Our results provide evidence that GABAergic neurons in vLGN/IGL nucleus might play a crucial role in modulating itch, which may provide clue for application of bright light as an antipruritic treatment in clinic.


Assuntos
Corpos Geniculados , Histamina , Camundongos , Animais , Corpos Geniculados/metabolismo , Histamina/metabolismo , Antipruriginosos/metabolismo , Neurônios GABAérgicos/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Prurido/terapia , Prurido/metabolismo
15.
Brain Behav Evol ; 98(4): 183-193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36972575

RESUMO

Local circuit neurons are present in the thalamus of all vertebrates where they are considered inhibitory. They play an important role in computation and influence the transmission of information from the thalamus to the telencephalon. In mammals, the percentage of local circuit neurons in the dorsal lateral geniculate nucleus remains relatively constant across a variety of species. In contrast, the numbers of local circuit neurons in the ventral division of the medial geniculate body in mammals vary significantly depending on the species examined. To explain these observations, the numbers of local circuit neurons were investigated by reviewing the literature on this subject in these two nuclei in mammals and their respective homologs in sauropsids and by providing additional data on a crocodilian. Local circuit neurons are present in the dorsal geniculate nucleus of sauropsids just as is the case for this nucleus in mammals. However, sauropsids lack local circuits neurons in the auditory thalamic nuclei homologous to the ventral division of the medial geniculate body. A cladistic analysis of these results suggests that differences in the numbers of local circuit neurons in the dorsal lateral geniculate nucleus of amniotes reflect an elaboration of these local circuit neurons as a result of evolution from a common ancestor. In contrast, the numbers of local circuit neurons in the ventral division of the medial geniculate body changed independently in several mammalian lineages.


Assuntos
Núcleos Talâmicos , Tálamo , Animais , Corpos Geniculados , Mamíferos , Neurônios
16.
Cell ; 186(7): 1352-1368.e18, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001500

RESUMO

Resilience enables mental elasticity in individuals when rebounding from adversity. In this study, we identified a microcircuit and relevant molecular adaptations that play a role in natural resilience. We found that activation of parvalbumin (PV) interneurons in the primary auditory cortex (A1) by thalamic inputs from the ipsilateral medial geniculate body (MG) is essential for resilience in mice exposed to chronic social defeat stress. Early attacks during chronic social defeat stress induced short-term hyperpolarizations of MG neurons projecting to the A1 (MGA1 neurons) in resilient mice. In addition, this temporal neural plasticity of MGA1 neurons initiated synaptogenesis onto thalamic PV neurons via presynaptic BDNF-TrkB signaling in subsequent stress responses. Moreover, optogenetic mimicking of the short-term hyperpolarization of MGA1 neurons, rather than merely activating MGA1 neurons, elicited innate resilience mechanisms in response to stress and achieved sustained antidepressant-like effects in multiple animal models, representing a new strategy for targeted neuromodulation.


Assuntos
Córtex Auditivo , Camundongos , Animais , Córtex Auditivo/metabolismo , Tálamo/fisiologia , Neurônios/metabolismo , Corpos Geniculados , Interneurônios/fisiologia , Parvalbuminas/metabolismo
17.
J Neurosci ; 43(9): 1540-1554, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36653192

RESUMO

The behavioral state of a mammal impacts how the brain responds to visual stimuli as early as in the dorsolateral geniculate nucleus of the thalamus (dLGN), the primary relay of visual information to the cortex. A clear example of this is the markedly stronger response of dLGN neurons to higher temporal frequencies of the visual stimulus in alert as compared with quiescent animals. The dLGN receives strong feedback from the visual cortex, yet whether this feedback contributes to these state-dependent responses to visual stimuli is poorly understood. Here, we show that in male and female mice, silencing cortico-thalamic feedback profoundly reduces state-dependent differences in the response of dLGN neurons to visual stimuli. This holds true for dLGN responses to both temporal and spatial features of the visual stimulus. These results reveal that the state-dependent shift of the response to visual stimuli in an early stage of visual processing depends on cortico-thalamic feedback.SIGNIFICANCE STATEMENT Brain state affects even the earliest stages of sensory processing. A clear example of this phenomenon is the change in thalamic responses to visual stimuli depending on whether the animal's brain is in an alert or quiescent state. Despite the radical impact that brain state has on sensory processing, the underlying circuits are still poorly understood. Here, we show that both the temporal and spatial response properties of thalamic neurons to visual stimuli depend on the state of the animal and, crucially, that this state-dependent shift relies on the feedback projection from visual cortex to thalamus.


Assuntos
Tálamo , Córtex Visual , Masculino , Feminino , Animais , Camundongos , Retroalimentação , Tálamo/fisiologia , Percepção Visual , Corpos Geniculados/fisiologia , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Mamíferos
18.
eNeuro ; 10(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36609305

RESUMO

The ventral lateral geniculate nucleus (vLGN) is a retinorecipient region of thalamus that contributes to a number of complex visual behaviors. Retinal axons that target vLGN terminate exclusively in the external subdivision (vLGNe), which is also transcriptionally and cytoarchitectonically distinct from the internal subdivision (vLGNi). While recent studies shed light on the cell types and efferent projections of vLGNe and vLGNi, we have a crude understanding of the source and nature of the excitatory inputs driving postsynaptic activity in these regions. Here, we address this by conducting in vitro whole-cell recordings in acutely prepared thalamic slices and using electrical and optical stimulation techniques to examine the postsynaptic excitatory activity evoked by the activation of retinal or cortical layer V input onto neurons in vLGNe and vLGNi. Activation of retinal afferents by electrical stimulation of optic tract or optical stimulation of retinal terminals resulted in robust driver-like excitatory activity in vLGNe. Optical activation of corticothalamic terminals from layer V resulted in similar driver-like activity in both vLGNe and vLGNi. Using a dual-color optogenetic approach, we found that many vLGNe neurons received convergent input from these two sources. Both individual pathways displayed similar driver-like properties, with corticothalamic stimulation leading to a stronger form of synaptic depression than retinogeniculate stimulation. We found no evidence of convergence in vLGNi, with neurons only responding to corticothalamic stimulation. These data provide insight into the influence of excitatory inputs to vLGN and reveal that only neurons in vLGNe receive convergent input from both sources.


Assuntos
Corpos Geniculados , Neurônios , Camundongos , Animais , Corpos Geniculados/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia , Axônios , Formação Reticular
19.
Hum Brain Mapp ; 44(5): 2039-2049, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36661404

RESUMO

Cross-modal plasticity in blind individuals has been reported over the past decades showing that nonvisual information is carried and processed by "visual" brain structures. However, despite multiple efforts, the structural underpinnings of cross-modal plasticity in congenitally blind individuals remain unclear. We mapped thalamocortical connectivity and assessed the integrity of white matter of 10 congenitally blind individuals and 10 sighted controls. We hypothesized an aberrant thalamocortical pattern of connectivity taking place in the absence of visual stimuli from birth as a potential mechanism of cross-modal plasticity. In addition to the impaired microstructure of visual white matter bundles, we observed structural connectivity changes between the thalamus and occipital and temporal cortices. Specifically, the thalamic territory dedicated to connections with the occipital cortex was smaller and displayed weaker connectivity in congenitally blind individuals, whereas those connecting with the temporal cortex showed greater volume and increased connectivity. The abnormal pattern of thalamocortical connectivity included the lateral and medial geniculate nuclei and the pulvinar nucleus. For the first time in humans, a remapping of structural thalamocortical connections involving both unimodal and multimodal thalamic nuclei has been demonstrated, shedding light on the possible mechanisms of cross-modal plasticity in humans. The present findings may help understand the functional adaptations commonly observed in congenitally blind individuals.


Assuntos
Cegueira , Lobo Occipital , Humanos , Cegueira/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Lobo Temporal , Corpos Geniculados
20.
Neuron ; 111(5): 711-726.e11, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584680

RESUMO

Retinal ganglion cell (RGC) types relay parallel streams of visual feature information. We hypothesized that neuromodulators might efficiently control which visual information streams reach the cortex by selectively gating transmission from specific RGC axons in the thalamus. Using fiber photometry recordings, we found that optogenetic stimulation of serotonergic axons in primary visual thalamus of awake mice suppressed ongoing and visually evoked calcium activity and glutamate release from RGC boutons. Two-photon calcium imaging revealed that serotonin axon stimulation suppressed RGC boutons that responded strongly to global changes in luminance more than those responding only to local visual stimuli, while the converse was true for suppression induced by increases in arousal. Converging evidence suggests that differential expression of the 5-HT1B receptor on RGC presynaptic terminals, but not differential density of nearby serotonin axons, may contribute to the selective serotonergic gating of specific visual information streams before they can activate thalamocortical neurons.


Assuntos
Corpos Geniculados , Receptor 5-HT1B de Serotonina , Serotonina , Tálamo , Animais , Camundongos , Axônios/fisiologia , Cálcio , Corpos Geniculados/fisiologia , Receptor 5-HT1B de Serotonina/metabolismo , Células Ganglionares da Retina/fisiologia , Serotonina/metabolismo , Tálamo/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA