Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 464
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Nanomedicine ; 18: 5591-5606, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808455

RESUMO

Background: Loss of normal function is an inevitable effect of aging. Several factors contribute to the aging process, including cellular senescence and oxidative stress. Methods: We investigate how Arthrospira platensis Nanoparticles (NSP) protect against aging injury induced by d-galactose (D-gal) in the rat. So, we subcutaneously (S/C) injected D-gal at 200 mg/kg BW to see if Arthrospira platensis Nanoparticles (NSP) might protect against the oxidative changes generated by D-gal. NSP (0.5 mg/kg body weight once daily by gastric gavage) was given to all groups apart from the control and D-gal groups. The d-gal + NSP group was supplemented with 200 mg of D-gal per kg BW once a day and NSP 0.5 mg/kg BW given orally for 45 days. Biochemical, mRNA expression, and histological investigations of brain tissues were used to evaluate the oxidative alterations caused by d-gal and the protective role of NSP. Results: Our data demonstrated that d-gal was causing significant reductions in relative brain and body weight with increased malondialdehyde (MDA) and redox oxygen species (ROS) levels and increases in serum creatine phosphokinase (CPK) and creatine phosphokinase isoenzyme BB (CPK-BB) with marked decreases in the level of antioxidant enzyme activity in the brain and acetylcholinesterase activity augmented with a phosphorylated H2A histone family member X (γ-H2AX) level increased. The D-gal group had considerably higher phosphorylated p38 mitogen-activated protein kinases (P38MAPK) and C-Jun N-terminal (JNK) kinases. The d-gal administration stimulates the apoptotic gene expression by downregulating the brain superoxide dismutase (SOD), catalase (CAT), and nuclear factor erythroid 2-related factor 2 (Nrf2). The NSP administration saved these parameters in the direction of the control. The brain histopathologic and immunohistochemistry analysis findings support our findings on NSP's protective role. Conclusion: The NSP may be a promising natural protective compound that can prevent aging and preserve health.


Assuntos
Antioxidantes , Galactose , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Acetilcolinesterase/metabolismo , Envelhecimento , Estresse Oxidativo , Anti-Inflamatórios/farmacologia , Encéfalo/metabolismo , Oxirredução , Peso Corporal , Creatina Quinase/metabolismo
2.
Eur J Clin Nutr ; 77(8): 767-783, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36513777

RESUMO

BACKGROUND: It is unknown whether dietary protein consumption can attenuate resistance exercise-induced muscle damage (EIMD). Managing EIMD may accelerate muscle recovery and allow frequent, high-quality exercise to promote muscle adaptations. This systematic review and meta-analysis examined the impact of peri-exercise protein supplementation on resistance EIMD. METHODS: A literature search was conducted on PubMed, SPORTDiscus, and Web of Science up to March 2021 for relevant articles. PEDro criteria were used to assess bias within included studies. A Hedges' g effect size (ES) was calculated for indirect markers of EIMD at h post-exercise. Weighted ESs were included in a random effects model to determine overall ESs over time. RESULTS: Twenty-nine studies were included in the systematic review and 40 trials were included in ≥1 meta-analyses (16 total). There were significant overall effects of protein for preserving isometric maximal voluntary contraction (MVC) at 96 h (0.563 [0.232, 0.894]) and isokinetic MVC at 24 h (0.639 [0.116, 1.162]), 48 h (0.447 [0.104, 0.790]), and 72 h (0.569 [0.136, 1.002]). Overall ESs were large in favour of protein for attenuating creatine kinase concentration at 48 h (0.836 [-0.001, 1.673]) and 72 h (1.335 [0.294, 2.376]). Protein supplementation had no effect on muscle soreness compared with the control. CONCLUSION: Peri-exercise protein consumption could help maintain maximal strength and lower creatine kinase concentration following resistance exercise but not reduce muscle soreness. Conflicting data may be due to methodological divergencies between studies. Standardised methods and data reporting for EIMD research are needed.


Assuntos
Mialgia , Treinamento Resistido , Humanos , Mialgia/prevenção & controle , Mialgia/metabolismo , Músculo Esquelético/fisiologia , Proteínas Alimentares/metabolismo , Suplementos Nutricionais , Creatina Quinase/metabolismo
3.
Nutrients ; 14(20)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36297014

RESUMO

BCAAs supplementation has been widely used for post-exercise recovery. However, no evidence is currently available to answer the question of whether BCAAs supplementation can attenuate muscle damage and ameliorate recovery after a bout of change of direction (COD) sprinting, which is an exercise motion frequently used during team sport actions. This study aimed to assess the effect of BCAAs supplementation on muscle damage markers, subjective muscle soreness, neuromuscular performance, and the vascular health of collegiate basketball players during a 72 h recovery period after a standardized COD protocol. Participants orally received either BCAAs (0.17 g/kg BCAAs + 0.17 g/kg glucose) or placebo (0.34 g/kg glucose) supplementation before and immediately after a COD exercise protocol in a randomized, crossover, double-blind, and placebo-controlled manner. Creatine kinase increased immediately after exercise and peaked at 24 h, muscle soreness remained elevated until 72 h, whilst arterial stiffness decreased after exercise for both supplemented conditions. A negligibly lower level of interleukin-6 was found in the BCAAs supplemented condition. In conclusion, the results of this study do not support the benefits of BCAAs supplementation on mitigating muscle damage and soreness, neuromuscular performance, and arterial stiffness after COD for basketball players.


Assuntos
Aminoácidos de Cadeia Ramificada , Mialgia , Humanos , Creatina Quinase/metabolismo , Suplementos Nutricionais , Método Duplo-Cego , Glucose/metabolismo , Interleucina-6/metabolismo , Músculo Esquelético/metabolismo , Mialgia/prevenção & controle , Mialgia/tratamento farmacológico , Estudos Cross-Over
4.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36142831

RESUMO

The purpose of this study was to investigate the anti-fatigue effect of natural Lycium barbarum polysaccharide (LBP) during exercise, develop a functional anti-fatigue effervescent tablet by applying LBP to practical products, and help patients who have difficulty swallowing conventional tablets or capsules. LBP was extracted with water, and DEAE-52 cellulose was used for purification. The chemical structure and monosaccharide composition of LBP by Fourier transform infrared spectroscopy (FI-IR) and ion chromatography (IC). Lycium barbarum polysaccharide effervescent tablets (LBPT) were prepared by mixing LBP and an excipient. Animal experiments showed that LBP and LBPT significantly increased the exhaustive swimming time in rats. LBP and LBPT improved biochemical markers in rat serum, such as lactic acid and creatine kinase, enhanced the antioxidant capacity of rat muscle, and reversed the decrease in serum glucose, ATP and glycogen content caused by exercise. Transmission electron microscopy showed that LBP and LBPT increased the density of mitochondria in rat liver. In addition, molecular experiments showed that LBP and LBPT could improve oxidative stress caused by exercise by regulating the Nrf2/HO-1 signaling pathway and regulating energy metabolism via the AMPK/PGC-1α signaling pathway.


Assuntos
Medicamentos de Ervas Chinesas , Lycium , Proteínas Quinases Ativadas por AMP/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/farmacologia , Celulose/metabolismo , Creatina Quinase/metabolismo , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Metabolismo Energético , Excipientes/farmacologia , Glucose/metabolismo , Glicogênio/metabolismo , Ácido Láctico/farmacologia , Lycium/metabolismo , Monossacarídeos/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Ratos , Comprimidos/farmacologia , Água/farmacologia
5.
Poult Sci ; 101(10): 102061, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36055018

RESUMO

The objective of the current study was to investigate the effect of dietary tributyrin (TB) intervention on carcass traits, visceral and immune organ indices, and blood biomarker profiles in Arbor Acres (AA) broilers under the isocaloric diets administration. A total of 432-day-old healthy AA broiler chickens were assigned to 4 treatments, with 12 replicates per treatment and 9 birds per cage, for 42 d. The dietary treatments were a basal diet (control) and the basal diet supplemented with a TB product (Eucalorie) at doses of 0.50 g/kg (TB1), 1.0 g/kg (TB2), and 2.0 g/kg (TB3). The results showed that dietary TB treatment quadratically improved the average daily gain and average daily feed intake in the second (22-42 d) and overall (0-42 d) feeding periods (P < 0.05) while decreasing the feed conversion ratio in the second feeding period (P < 0.05). Dietary TB treatment improved the carcass traits, as evidenced by a higher eviscerated carcass rate and lower abdominal fat yield than those in the control group (P < 0.05). The breast meat yield rate was quadratically improved in response to dietary TB administration (P < 0.05). Dietary TB treatment improved the kidney, spleen, thymus, and bursa indices (P < 0.05) and reduced the lung indices compared with those in the control group (P < 0.05). In particular, the spleen and thymus indices were improved quadratically in response to dietary TB administration (P < 0.05). Dietary TB treatment improved the white and red blood cell counts, platelet count, hemoglobin and hematocrit at d 21, and platelet count at d 42 (P < 0.05), with those in the TB3 group being most affected. Dietary TB administration quadratically decreased the plasma content of uric acid at both d 21 and d 42 as well as that of creatine kinase at d 42 (P < 0.05), while it quadratically increased the plasma albumin/globulin ratio at both d 21 and d 42 (P < 0.05). Collectively, these results demonstrated that dietary TB intervention improved the growth performance, carcass traits, selected visceral and immune organ indices, and some blood biochemical markers under the isocaloric diets administration, which may facilitate better economic profit returns in poultry industry application.


Assuntos
Galinhas , Globulinas , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Biomarcadores/metabolismo , Galinhas/fisiologia , Creatina Quinase/metabolismo , Dieta/veterinária , Suplementos Nutricionais , Globulinas/metabolismo , Carne/análise , Albumina Sérica , Triglicerídeos , Ácido Úrico/metabolismo
6.
Biomed Pharmacother ; 154: 113583, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35994819

RESUMO

The prevalence of cardiovascular complications in diabetes has become one of the major cause of diabetes related morbidity/mortality. The onset and progression of diabetic cardiomyopathy (DCM) has been majorly linked to lipid alterations, oxidative stress, inflammation and apoptosis. This present study investigated the cardioprotective role of Lycium chinense leaf extract (LCME) in fructose/streptozotocin induced diabetic rats. Diabetic animals were orally gavaged with LCME (100 and 400 mg/kg) for five weeks. The results indicated that diabetic rats showed increased blood glucose concentration, serum cardiac function markers (troponin T, creatine kinase-MB, aspartate aminotransferase and lactate dehydrogenase) and lipid profile (triglycerides and cholesterol). In addition, the cardiac tissues of diabetic rats showed increased levels of nuclear factor-κB (NF-κB), tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL 1ß), interleukin 6 (IL-6), caspase-3 and malondialdehyde as well as significantly reduced activities of catalase, superoxide dismutase, reduced glutathione and glutathione peroxidase. LCME significantly ameliorated hyperglycemia and markedly decreased serum concentrations of troponin T, creatine kinase-MB, aspartate aminotransferase and lactate dehydrogenase, triglycerides and cholesterol. Furthermore, LCME notably suppressed cardiac oxido-inflammatory mediators and boosted cardiac antioxidant defense. Histopathologically, LCME restored cardiac structural alterations and also suppressed the immunohistochemical expression of collagen IV, smooth muscle alpha-actin (α-SMA) and p53, while Bcl2 expression was significantly increased. In conclusion, our result indicated that LCME protected against diabetic cardiomyopathy suppressing oxidative stress, inflammation, apoptosis and fibrosis.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Lycium , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose , Aspartato Aminotransferases/metabolismo , Biomarcadores/metabolismo , Creatina Quinase/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Cardiomiopatias Diabéticas/complicações , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/prevenção & controle , Inflamação/patologia , Lactato Desidrogenases/metabolismo , Lipídeos , Lycium/química , Estresse Oxidativo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos , Triglicerídeos , Troponina T/metabolismo
7.
Eur J Nutr ; 61(8): 3835-3855, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35831667

RESUMO

Curcumin, a natural polyphenol extracted from turmeric, is a potent antioxidant and anti-inflammatory agent. In the past few decades, curcumin's ability to impact chronic inflammatory conditions such as metabolic syndrome, arthritis, and cancer has been widely researched, along with growing interest in understanding its role in exercise-induced muscle damage (EIMD). EIMD impacts individuals differently depending on the type (resistance exercise, high-intensity interval training, and running), intensity, and duration of the exercise. Exercise disrupts the muscles' ultrastructure, raises inflammatory cytokine levels, and can cause swelling in the affected limb, a reduction in range of motion (ROM), and a reduction in muscular force-producing capacity. This review focuses on the metabolism, pharmacokinetics of various brands of curcumin supplements, and the effect of curcumin supplementation on EIMD regarding muscle soreness, activity of creatine kinase (CK), and production of inflammatory markers. Curcumin supplementation in the dose range of 90-5000 mg/day can decrease the subjective perception of muscle pain intensity, increase antioxidant capacity, and reduce CK activity, which reduces muscle damage when consumed close to exercise. Consumption of curcumin also improves muscle performance and has an anti-inflammatory effect, downregulating the production of pro-inflammatory cytokines, including TNF-α, IL-6, and IL-8. Curcumin may also improve oxidative capacity without hampering training adaptations in untrained and recreationally active individuals. The optimal curcumin dose to ameliorate EIMD is challenging to assess as its effect depends on the curcumin concentration in the supplement and its bioavailability.


Assuntos
Curcumina , Suplementos Nutricionais , Exercício Físico , Mialgia , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Creatina Quinase/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Citocinas/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Músculo Esquelético/metabolismo , Mialgia/tratamento farmacológico , Mialgia/etiologia , Polifenóis/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Exercício Físico/efeitos adversos
8.
Redox Rep ; 27(1): 92-99, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35435141

RESUMO

Background: The cardiovascular crisis is advancing rapidly throughout the world. A large number of studies have shown that plant polyphenols affect major mechanisms involved in cardiovascular events through their action on the antioxidant system, signaling, and transcription pathways. D-limonene, a monocyclic monoterpene obtained from citrus fruits, is reported to possess many pharmacological activities.Methods: The experiment was designed to determine the protective effect of D-limonene against cardiac injury induced by CCl4 in Wistar rats. Rats were treated with two doses of D-limonene against cardiac injury induced by CCl4. Serum toxicity markers, cardiac toxicity biomarker enzymes, inflammatory mediators, anti-oxidant armory, lipid peroxidation, lipid profile, and histology were done.Results: CCl4 intoxication resulted in a substantial rise in FFA, TC, TG, PL, LDL, VLDL, and a reduction in HDL, restoring these changes with the administration of D-limonene at a dosage of 200 mg/kg. CCl4 administration also resulted in lipid oxidation and decreased antioxidant activity. At the same time, D-limonene at a dosage of 200 mg/kg body weight inhibited LPO and restored in vivo antioxidant components to normal. CCl4 intoxication also resulted in a significant increase in inflammatory markers like IL-6, TNF-α, high sensitivity Corticotropin Releasing Factor (Hs-CRF), and biomarkers of cardiac toxicity like alanine aminotransferase (ALT), lactate dehydrogenase (LDH), creatine kinase (CK), creatine kinase MB (CKMB), and Troponin I & troponin-t activities. D-limonene reversed all these changes to normal. Histology further confirmed our obtained results.Conclusion: These findings indicate that D-limonene can ameliorate cardiac injury at a 200 mg/kg body weight dosage. Henceforth, D-Limonene intervenes in mediating CCl4 induced toxicity by various signaling pathways.


Assuntos
Antioxidantes , Cardiotoxicidade , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Peso Corporal , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Creatina Quinase/metabolismo , Creatina Quinase/farmacologia , Cicloexanos , Limoneno/metabolismo , Limoneno/farmacologia , Limoneno/uso terapêutico , Peroxidação de Lipídeos , Lipídeos , Fígado , Estresse Oxidativo , Extratos Vegetais/farmacologia , Ratos , Ratos Wistar
9.
J Healthc Eng ; 2022: 5961267, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35345656

RESUMO

During the training process, the aerobics athletes gradually increase their technical movements, the appreciation of the movements has been gradually improved, and the injuries of the athletes themselves have also gradually become serious. Based on CT image analysis, we study the protective effect of amino acids on aerobics athletes' muscle injury after endurance exercise. There are three major substance metabolism disorders in patients with muscle sclerosis, which are mainly manifested as decreased glucose tolerance and insulin resistance. Some patients develop muscle-derived diabetes. At the same time, the synthesis of lipids such as cholesterol and apolipoproteins decreases, the production of ketone bodies increases and the body uses more ketones for energy. The BCAA/AAA factor refers to the branched-chain amino acid/aromatic amino acid (BCAA/AAA) value. In amino acid metabolism, plasma albumin decreased significantly, the ratio of amino acids was unbalanced, and BCAA/AAA decreased, which was more likely to induce muscular encephalopathy. Using computer tomography (CT) to study the protective effect of amino acids on muscle injury, 32 aerobics athletes were randomly divided into an intervention group (Ig) and a control group (CG), each with 16 people. After 64-slice spiral CT scanning of muscles and three-dimensional reconstruction, the intervention group and the control group participated in aerobic endurance training 3 weeks in advance to establish a muscle microinjury model. The intervention group took the preprepared BCAA, while the control group did not take it. After three weeks of training, there will be one hour and three hours of aerobics competition. We need to detect changes in blood glucose (BS), creatine kinase (SCK), lactate dehydrogenase (LD), alanine (ALA), and alanine aminotransferase (AA) before and after exercise and 1 hour after exercise and record AVS athletes' pain analysis table. We successfully established the muscle injury model, letting all athletes' VAS score in 6-8 points; after 1 hour of exercise, the measurement results were the same as those of 2 hours. Therefore, after endurance training, the blood glucose content of the intervention group gradually decreased and returned to the original level after 2 hours of exercise, while the control group was lower than the level of exercise after 2 hours of exercise; the content of alanine in the two groups decreased more after 2 hours of exercise; the results of serum creatine kinase in the intervention group were higher than those in the control group after exercise. In the intervention group, lactate dehydrogenase increased rapidly at 2 hours after exercise; the alanine aminotransferase in the intervention group increased after exercise, but there was no significant change in the control group. It is also concluded that the longer the exercise time and the more energy consumption, the more effective the branched-chain amino acids supplement will be. The obtained imaging data can provide a more intuitive and accurate basis for the scientific selection of athletes, and amino acids can promote the synthesis of hormones, accelerate the synthesis of proteins and other products, reduce the content of creatine kinase in the blood, and protect the rapid recovery of muscle damage.


Assuntos
Aminoácidos , Glicemia , Alanina/metabolismo , Alanina/farmacologia , Alanina Transaminase , Aminoácidos/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Aminoácidos de Cadeia Ramificada/farmacologia , Atletas , Computadores , Creatina Quinase/metabolismo , Creatina Quinase/farmacologia , Humanos , Lactato Desidrogenases/metabolismo , Músculo Esquelético/diagnóstico por imagem , Músculos/metabolismo , Tomografia , Tomografia Computadorizada por Raios X
10.
Drug Chem Toxicol ; 45(6): 2664-2677, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34587847

RESUMO

The aim of this study was to investigate the protective efficacy of chrysin against propetamphos exposure. For this purpose, 2 to 3-month-old 40 male Wistar Albino rats were used. These animals were randomly assigned to four groups. The animals in the control group received the vehicle substance (corn oil) alone. Groups 2, 3 and 4 were administered with 50 mg/kg.bw/day of chrysin (in corn oil), 10 mg/kg.bw/day of propetamphos (in corn oil), and 10 mg/kg.bw/day of propetamphos plus 50 mg/kg.bw/day of chrysin, respectively, for 28 days. Some oxidative stress/lipid peroxidation parameters (MDA, SOD, CAT, GSH-Px, NO, glutathione) and serum biochemical parameters (triglyceride, cholesterol, creatinine, BUN, creatine phosphokinase, ALT, ALP and pseudocholinesterase) were analyzed in tissue/blood samples. Also, histopathological findings were observed. According to the data obtained, no significant alteration had occurred in these parameters and the histological findings in the group given chrysin alone, when compared to the control group. Significant unfavorable alterations were detected in the oxidative stress/lipid peroxidation/antioxidant status parameters, all biochemical parameters and histopathological findings of the group that received propetamphos alone. In the group that was given both chrysin and propetamphos, remedial/recovery alterations were observed in the oxidative stress/lipid peroxidation/antioxidant status values, serum biochemical parameters and histopathological findings, such that the values and histopathological findings showed partly similarity to those of the control group. In result, it is suggested that chrysin may provide protection against propetamphos exposure and propetamphos-induced organ damage in rats at a certain level.


Assuntos
Antioxidantes , Óleo de Milho , Animais , Masculino , Ratos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Butirilcolinesterase/metabolismo , Óleo de Milho/metabolismo , Óleo de Milho/farmacologia , Creatina Quinase/metabolismo , Creatina Quinase/farmacologia , Creatinina/metabolismo , Glutationa/metabolismo , Peroxidação de Lipídeos , Fígado , Estresse Oxidativo , Ratos Wistar , Superóxido Dismutase/metabolismo , Triglicerídeos
11.
Nutrients ; 13(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34444681

RESUMO

Creatine (Cr) and phosphocreatine (PCr) are physiologically essential molecules for life, given they serve as rapid and localized support of energy- and mechanical-dependent processes. This evolutionary advantage is based on the action of creatine kinase (CK) isozymes that connect places of ATP synthesis with sites of ATP consumption (the CK/PCr system). Supplementation with creatine monohydrate (CrM) can enhance this system, resulting in well-known ergogenic effects and potential health or therapeutic benefits. In spite of our vast knowledge about these molecules, no integrative analysis of molecular mechanisms under a systems biology approach has been performed to date; thus, we aimed to perform for the first time a convergent functional genomics analysis to identify biological regulators mediating the effects of Cr supplementation in health and disease. A total of 35 differentially expressed genes were analyzed. We identified top-ranked pathways and biological processes mediating the effects of Cr supplementation. The impact of CrM on miRNAs merits more research. We also cautiously suggest two dose-response functional pathways (kinase- and ubiquitin-driven) for the regulation of the Cr uptake. Our functional enrichment analysis, the knowledge-based pathway reconstruction, and the identification of hub nodes provide meaningful information for future studies. This work contributes to a better understanding of the well-reported benefits of Cr in sports and its potential in health and disease conditions, although further clinical research is needed to validate the proposed mechanisms.


Assuntos
Creatina/administração & dosagem , Perfilação da Expressão Gênica , Genômica/métodos , Desempenho Físico Funcional , Animais , Creatina/metabolismo , Creatina Quinase/metabolismo , Suplementos Nutricionais , Metabolismo Energético , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Proteínas Quinases Ativadas por Mitógeno , Proteínas de Transporte de Neurotransmissores , Fosfocreatina/metabolismo , Transdução de Sinais
12.
Methods Mol Biol ; 2275: 173-186, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34118038

RESUMO

Creatine kinase (CK) enzyme overexpression has been suggested to play a role in the process of tumorigenesis and metastasis. Cyclocreatine (CCR) is a substrate analog of creatine kinase (CK), where its phosphorylated form is a poor phosphate donor in comparison with native bioenergetic molecule, creatine phosphate (Cr-P). The compound CCR has been shown to markedly inhibit the growth of a broad spectrum of cancers, both in vitro and in vivo. Intracellularly, CCR is phosphorylated by CK to yield a synthetic phosphagen [(N-phosphorylcyclocreatine (CCR ~P)], with thermodynamic and kinetic properties distinct from those of creatine phosphate (Cr-P). Distinct inhibition of tumor growth and metastasis has been attributed to CCR accumulation as CCR ~P in tumor cells, especially in those expressing a high level of CK protein, with minimal adverse effects. Unfortunately, the clinical use of CCR against malignancies is quite limited due to its amphoteric nature, which accounts for most of its extremely low membrane permeability, as well as limited oral bioavailability (BA) and poor systemic pharmacokinetics (PK).Our current work describes the encapsulation of CCR , utilizing freeze and thaw vesicles (FTV )-composed mostly of saturated PC, DOPE, and Chol-into stealth™ liposomes , postcoated with 4.5 M% PEG-PE. Following physicochemical characterization, in vitro release and cellular uptake kinetics confirmed efficient delivery of liposomal CCR (CCR-Lip), leading to intracellular accumulation of its CC-P metabolic product. Successful delivery of CCR to cancer cell effectively depleted low energetic cancer cells of ATP significantly mediating myc-induced metabolic changes. CCR-Lip showed significant antimetastatic and anticancer effectiveness against both MCF-7 and PC-3 human carcinoma models (p < 0.05-0.01), with 4- to 6-fold lower IC50 values vs. closest drug control. Such shift in bioenergetics was coupled via AMPK and phospho-p53 to the mitochondrial apoptosis effector Bak , thus inducing a cell-intrinsic mechanism to counteract uncontrolled neoplastic proliferation, in target cancer cells. Our novel liposomal delivery system of the CCR substrate analog demonstrated strong inhibition of malignant cell bioenergetics, leading to significant antineoplastic and proapoptotic actions, against different cancers.


Assuntos
Neoplasias da Mama/metabolismo , Creatina Quinase/metabolismo , Creatinina/análogos & derivados , Neoplasias da Próstata/metabolismo , Animais , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Creatinina/química , Creatinina/farmacologia , Composição de Medicamentos , Metabolismo Energético/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lipossomos , Células MCF-7 , Masculino , Células PC-3 , Fosforilação , Neoplasias da Próstata/tratamento farmacológico
13.
J Ethnopharmacol ; 274: 114004, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33727109

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chromolaena odorata (L) King and Robinson and Tridax procumbens Linn are used in traditional medicine in the treatment of diabetes mellitus and hypertension. AIM OF THE STUDY: This study investigated the potential protective role of aqueous leaf-extracts of Chromolaena odorata and Tridax procumbens against cardiotoxicity induced by doxorubicin. MATERIALS AND METHODS: To this end, their impact on plasma markers of cardiac integrity, cardiac markers of oxidative stress, cardiac lipids and electrolyte profiles, and activities of cardiac ATPases, lactate dehydrogenase and creatine kinase, were monitored in doxorubicin treated rats. Metformin (250 mg/kg body weight, orally) and both extracts (50, 75 and 100 mg/kg, orally) were daily administered for 14 days; while cardiotoxicity was induced with doxorubicin (15 mg/kg, intra-peritioneally, once on the 12th day of study). RESULTS: The plasma activities of creatine kinase, lactate dehydrogenase and AST of Test control were significantly (p < 0.05) higher than those of the other groups. Also, the cardiac malondialdehyde, calcium, chloride, sodium, cholesterol and triglyceride concentrations of Test control were significantly (p < 0.05) higher than those of the others. However, the cardiac concentrations of ascorbic acid, reduced glutathione, magnesium and potassium, and cardiac activities of catalase, glutathione peroxidase, superoxide dismutase, Ca2+-ATPase, Mg2+-ATPase, Na+,K+-ATPase, creatine kinase and lactate dehydrogenase of Test control were significantly (p < 0.05) lower than those of the others. CONCLUSIONS: Pre-treatment with the extracts and metformin elicited a cardioprotective effect, as indicated by the prevention of doxorubicin-induced cardiac oxidative stress and prevention of adverse alterations in plasma cardiac markers, cardiac lipids and electrolyte profiles, as well as improvement of the activities of cardiac ATPases, creatine kinase and lactate dehydrogenase.


Assuntos
Antioxidantes/farmacologia , Cardiotônicos/farmacologia , Chromolaena/química , Extratos Vegetais/farmacologia , Adenosina Trifosfatases/metabolismo , Animais , Antioxidantes/uso terapêutico , Cardiotônicos/uso terapêutico , Cardiotoxicidade/prevenção & controle , Colesterol/metabolismo , Creatina Quinase/metabolismo , Doxorrubicina/toxicidade , Eletrólitos/metabolismo , Coração/efeitos dos fármacos , Ácido Láctico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Ratos Wistar , Triglicerídeos/metabolismo
14.
Int J Sport Nutr Exerc Metab ; 31(3): 276-291, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33631721

RESUMO

This systematic review and meta-analysis examined the effects of creatine supplementation on recovery from exercise-induced muscle damage, and is reported according to the PRISMA guidelines. MEDLINE and SPORTDiscus were searched for articles from inception until April 2020. Inclusion criteria were adult participants (≥18 years); creatine provided before and/or after exercise versus a noncreatine comparator; measurement of muscle function recovery, muscle soreness, inflammation, myocellular protein efflux, oxidative stress; range of motion; randomized controlled trials in humans. Thirteen studies (totaling 278 participants; 235 males and 43 females; age range 20-60 years) were deemed eligible for analysis. Data extraction was performed independently by both authors. The Cochrane Collaboration Risk of Bias Tool was used to critically appraise the studies; forest plots were generated with random-effects model and standardized mean differences. Creatine supplementation did not alter muscle strength, muscle soreness, range of motion, or inflammation at each of the five follow-up times after exercise (<30 min, 24, 48, 72, and 96 hr; p > .05). Creatine attenuated creatine kinase activity at 48-hr postexercise (standardized mean difference: -1.06; 95% confidence interval [-1.97, -0.14]; p = .02) but at no other time points. High (I2; >75%) and significant (Chi2; p < .01) heterogeneity was identified for all outcome measures at various follow-up times. In conclusion, creatine supplementation does not accelerate recovery following exercise-induced muscle damage; however, well-controlled studies with higher sample sizes are warranted to verify these conclusions. Systematic review registration (PROSPERO CRD42020178735).


Assuntos
Creatina/farmacologia , Suplementos Nutricionais , Exercício Físico , Substâncias para Melhoria do Desempenho/farmacologia , Adulto , Biomarcadores , Distribuição de Qui-Quadrado , Intervalos de Confiança , Creatina/administração & dosagem , Creatina Quinase/metabolismo , Feminino , Humanos , L-Lactato Desidrogenase/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/metabolismo , Força Muscular/efeitos dos fármacos , Mialgia/etiologia , Mialgia/prevenção & controle , Miosite , Estresse Oxidativo/efeitos dos fármacos , Substâncias para Melhoria do Desempenho/administração & dosagem , Viés de Publicação , Ensaios Clínicos Controlados Aleatórios como Assunto , Amplitude de Movimento Articular/efeitos dos fármacos , Amplitude de Movimento Articular/fisiologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Fatores de Tempo , Adulto Jovem
15.
Anal Chem ; 93(4): 1944-1950, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33399445

RESUMO

Carboxyl-group specific chemical cross-linking is gaining an increased interest as a structural mass spectrometry/structural proteomics technique that is complementary to the more commonly used amine-specific chemistry using succinimide esters. One of these protocols uses a combination of dihydrazide linkers and the coupling reagent DMTMM [4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium] chloride, which allows performing the reaction at neutral pH. The reaction yields two types of products, carboxyl-carboxyl cross-links that incorporate the dihydrazide linker and zero-length carboxyl-amine cross-links induced by DMTMM alone. Until now, it has not been systematically investigated how the balance between the two products is affected by experimental conditions. Here, we studied the role of the ratios of the two reagents (using pimelic dihydrazide and DMTMM) and demonstrate that the concentration of the two reagents can be systematically adjusted to favor one reaction product over the other. Using a set of five model proteins, we observed that the number of identified cross-linked peptides could be more than doubled by a combination of three different reaction conditions. We also applied this strategy to the bovine 20S proteasome and the Escherichia coli 70S ribosome, again demonstrating complementarity and increased cross-link coverage.


Assuntos
Reagentes de Ligações Cruzadas/química , Proteínas/química , Proteômica , Animais , Catalase/química , Catalase/metabolismo , Conalbumina/química , Conalbumina/metabolismo , Creatina Quinase/química , Creatina Quinase/metabolismo , Espectrometria de Massas/métodos , Proteínas/metabolismo , Albumina Sérica/química , Albumina Sérica/metabolismo , Transferrina/química , Transferrina/metabolismo
16.
J Sci Food Agric ; 101(4): 1411-1418, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32835411

RESUMO

BACKGROUND: Embryo chicken egg is a nutritional supplement that has been used to enhance physical fitness and promote wound healing according to traditional Chinese medicine for many years. In this study, we evaluated the effects of embryo chicken egg extract (ECE) on the exercise performance and fatigue in mice and the underlying mechanisms. RESULTS: The results indicated that ECE can prolong the exhaustive swimming time, decrease lactic acid, blood urea nitrogen, creatine kinase, and malondialdehyde levels, and increase superoxide dismutase, glutathione peroxidase, and glycogen levels. Additionally, ECE can also regulate the balance of oxidative stress via the adenosine monophosphate activated protein kinase/mammalian target of rapamycin signalling pathway. CONCLUSION: Taken together, these results showed that ECE can improve exercise performance and reduce physical fatigue in mice, which indicates that ECE can be used as a potential supplement to reduce physical fatigue. © 2020 Society of Chemical Industry.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ovos/análise , Fadiga/dietoterapia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Embrião de Galinha , Galinhas , Creatina Quinase/metabolismo , Fadiga/genética , Fadiga/metabolismo , Feminino , Humanos , Ácido Láctico/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos ICR , Músculo Esquelético/metabolismo , Estresse Oxidativo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética
17.
J Pharmacokinet Pharmacodyn ; 48(1): 69-82, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32996046

RESUMO

Cellular response to insults may result in the initiation of different cell death processes. For many cases the cell death process will result in an acute release of cellular material that in some circumstances provides valuable information about the process (i.e. may represent a biomarker). The characteristics of the biomarker release is often informative and plays critical roles in clinical practice and toxicology research. The aim of this study is to develop a general, semi-mechanistic model to describe cell turnover and biomarker release by injured tissue that can be used for estimation in pharmacokinetic and (toxicokinetic)-pharmacodynamic studies. The model included three components: (1) natural tissue turnover, (2) biomarker release from cell death and its movement from the cell through the tissue into the blood, (3) different target insult mechanisms of cell death. We applied the general model to biomarker release profiles for four different cell insult causes. Our model simulations showed good agreements with reported data under both delayed release and rapid release cases. Additionally, we illustrate the use of the model to provide different biomarker profiles. We also provided details on interpreting parameters and their values for other researchers to customize its use. In conclusion, our general model provides a basic structure to study the kinetic behaviour of biomarker release and disposition after cellular insult.


Assuntos
Morte Celular/fisiologia , Modelos Biológicos , Acetaminofen/intoxicação , Adulto , Idoso , Idoso de 80 Anos ou mais , Alanina Transaminase/metabolismo , Animais , Aspartato Aminotransferases/metabolismo , Biomarcadores/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Senescência Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Criança , Simulação por Computador , Creatina Quinase/metabolismo , Venenos de Crotalídeos/toxicidade , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Toxicologia/métodos
18.
J Photochem Photobiol B ; 214: 112087, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33234463

RESUMO

Bothrops leucurus is the major causative agent of snakebites in Brazil's Northeast. The systemic effects of its venom are effectively neutralized by antivenom therapy, preventing bitten patients' death. However, antivenom fails in neutralizing local effects that include intense pain, edema, bleeding, and myonecrosis. Such effects can lead to irreversible sequels, representing a clinically relevant issue for which there is no current effective treatment. Herein, the effects of photobiomodulation therapy (PBMT) were tested in the local actions induced by B. leucurus venom (BLV) in mice (n = 123 animals in 20 experimental groups). A continuous emission AlGaAs semiconductor diode laser was used in two wavelengths (660 or 780 nm). Mechanical nociceptive thresholds were assessed with the electronic von Frey apparatus. Local edema was determined by measuring the increase in paw thickness. Hemorrhage was quantified by digital measurement of the bleeding area. Myotoxicity was evaluated by serum creatine kinase (CK) activity and histopathological analysis. PBMT promoted anti-hypernociception in BLV-injected mice; irradiation with the 660 nm laser resulted in faster effect onset than the 780 nm laser. Both laser protocols reduced paw edema formation, whether irradiation was performed immediately or half an hour after venom injection. BLV-induced hemorrhage was not altered by PBMT. Laser irradiation delayed, but did not prevent myotoxicity caused by BLV, as shown by a late increase in CK activity and histopathological alterations. PBMT was effective in the control of some of the major local effects of BLV refractory to antivenom. It is a potential complementary therapy that could be used in bothropic envenoming, minimizing the morbidity of these snakebite accidents.


Assuntos
Antivenenos/química , Edema/radioterapia , Terapia com Luz de Baixa Intensidade/métodos , Mordeduras de Serpentes/radioterapia , Animais , Antivenenos/metabolismo , Bothrops , Creatina Quinase/sangue , Creatina Quinase/metabolismo , Edema/induzido quimicamente , Hemorragia/metabolismo , Hemorragia/radioterapia , Humanos , Lasers Semicondutores , Masculino , Camundongos , Músculo Esquelético/efeitos da radiação , Necrose/radioterapia
19.
Ecotoxicol Environ Saf ; 205: 111127, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32846293

RESUMO

Trichlorfon is an organophosphate insecticide that is widely used on fish farms to control parasitic infections. It has been detected in freshwater ecosystems as well as in fishery products. There is a growing body of evidence to suggest that certain feed additives may reduce or prevent pesticide-induced toxicity in fish. The aim of the present study was to determine whether acute exposure to trichlorfon would alter bioenergetic homeostasis and alter fatty acid profiles in muscles of silver catfish (Rhamdia quelen). We also sought to determine whether rutin prevents or reduces these effects. Cytosolic and mitochondrial creatine kinase (CK) and activities of complexes II-III and IV in muscle were significantly inhibited by exposure to 11 mg/L trichlorfon for 48 h compared to effects in the unexposed group. Total content of polyunsaturated fatty acids (omega-3 and omega-6) were significantly lower in muscle of silver catfish exposed to 11 mg/L trichlorfon for 48 h than in the unexposed group. Addition of 3 mg rutin/kg feed increased CK activity and prevented inhibition of complex IV activity, as well as preventing all alterations of muscle fatty acid profiles elicited by exposure to trichlorfon. No significant differences were observed between groups with respect to muscle adenylate kinase or pyruvate kinase activities, as well as total content of saturated and monounsaturated fatty acids. Our findings suggest that exposure (48 h) to 11 mg trichlorfon/L water inhibits cytosolic and mitochondrial CK activity in muscle. Trichlorfon also affects activities of complexes II-III and IV in respiratory chain, with important consequences for adenosine triphosphate production. The pesticide alters fatty acid profiles in the fish and endangers human consumers of the product. The most important finding of the present study is that inclusion of rutin improves bioenergetic homeostasis and muscle fatty acid profiles, suggesting that it reduces trichlorfon-induced muscle damage.


Assuntos
Peixes-Gato/metabolismo , Metabolismo Energético/efeitos dos fármacos , Ácidos Graxos/metabolismo , Inseticidas/toxicidade , Músculos/efeitos dos fármacos , Rutina/farmacologia , Triclorfon/toxicidade , Trifosfato de Adenosina/metabolismo , Adenilato Quinase/metabolismo , Ração Animal , Animais , Peixes-Gato/crescimento & desenvolvimento , Creatina Quinase/metabolismo , Dieta , Aditivos Alimentares , Homeostase , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Músculos/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-32777469

RESUMO

The toxic effects of copper (Cu) are linked to dysfunction of metabolism and depletion of adenosine triphosphate (ATP). Nevertheless, the effects related to phosphoryl transfer network, a network of enzymes to precise coupling of the ATP-production and ATP-consuming process for maintenance of bioenergetic, remain unknown. Therefore, the aim of this study was to determine whether the phosphoryl transfer network could be one pathway involved in the bioenergetic imbalance of Cichlasoma amazonarum exposed for 96 h to environmentally relevant concentrations of Cu found in Amazonia water around mines. Branchial mitochondrial creatine kinase (CK) activity was significantly lower in fish exposed to 1500 µg/L Cu than in the control group, while branchial cytosolic CK activity was significantly greater. Branchial (exposed to 750 and 1500 µg/L Cu) and hepatic (exposed to 1500 µg/L Cu) pyruvate kinase (PK) activity was significantly lower in fish exposed to Cu than in the control group. Branchial and hepatic ATP levels were significantly lower in fish exposed to 1500 µg/L than in the control group. Branchial reactive oxygen species (ROS) and lipid peroxidation (LPO) levels were significantly higher in fish exposed to 750 and 1500 µg/L Cu compared to control. Hepatic ROS and LPO levels were significantly higher in fish exposed to 1500 µg/L than in the control group. Branchial and hepatic Cu levels were significantly higher in fish exposed to 1500 µg/L compared to other groups. Exposure to 750 and 1500 µg/L Cu impairs bioenergetics homeostasis, which appears to be mediated by ROS overproduction and lipid peroxidation.


Assuntos
Ciclídeos/metabolismo , Cobre/toxicidade , Brânquias/efeitos dos fármacos , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Trifosfato de Adenosina/metabolismo , Animais , Ciclídeos/crescimento & desenvolvimento , Creatina Quinase/metabolismo , Metabolismo Energético/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Brânquias/crescimento & desenvolvimento , Brânquias/metabolismo , Glicólise , Homeostase , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA