Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Total Environ ; 919: 170801, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340858

RESUMO

Addressing soil salinization and implementing sustainable practices for cultivating cash crops on saline-alkali land is a prominent global challenge. Cynomorium songaricum is an important salt-alkali tolerant medicinal plant capable of adapting to saline-alkali environments. In this study, two typical ecotypes of C. songaricum from the desert-steppe (DS) and saline-alkali land (SAL) habitats were selected. Through the integration of multi-omics with machine learning, the rhizosphere microbial communities, genetic maps, and metabolic profiles of two ecotypes were created and the crucial factors for the adaptation of C. songaricum to saline-alkali stress were identified, including 7 keystone OTUs (i.e. Novosphingobium sp., Sinorhizobium meliloti, and Glycomyces sp.), 5 core genes (cell wall-related genes), and 10 most important metabolites (i.e. cucurbitacin D and 3-Hydroxybutyrate) were identified. Our results indicated that under saline-alkali environments, the microbial competition might become more intense, and the microbial community network had the simple but stable structure, accompanied by the changes in the gene expression related to cell wall for adaptation. However, this regulation led to the reduction in active ingredients, such as the accumulation of flavonoids and organic acid, and enhanced the synthesis of bitter substances (cucurbitacin D), resulting in the decrease in the quality of C. songaricum. Therefore, compared to the SAL ecotype, the DS was more suitable for the subsequent development of medicinal and edible products of C. songaricum. Furthermore, to explore the reasons for this quality variation, we constructed a comprehensive microbial-genetic-metabolic regulatory network, revealing that the metabolism of C. songaricum was primarily influenced by genetic factors. These findings not only offer new insights for future research into plant salt-alkali tolerance strategies but also provide a crucial understanding for cultivating high-quality medicinal plants.


Assuntos
Cynomorium , Microbiota , Triterpenos , Transcriptoma , Cynomorium/química , Cynomorium/fisiologia , Álcalis , Metaboloma
2.
Molecules ; 27(1)2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-35011276

RESUMO

Cynomorium songaricum is a root holoparasitic herb that is mainly hosted in the roots of Nitraria roborowskii and Nitraria sibirica distributed in the arid desert and saline-alkaline regions. The stem of C. songaricum is widely used as a traditional Chinese medicine and applied in anti-viral, anti-obesity and anti-diabetes, which largely rely on the bioactive components including: polysaccharides, flavonoids and triterpenes. Although the differences in growth characteristics of C. songaricum between N. roborowskii and N. sibirica have been reported, the difference of the two hosts on growth and polysaccharides biosynthesis in C. songaricum as well as regulation mechanism are not limited. Here, the physiological characteristics and transcriptome of C. songaricum host in N. roborowskii (CR) and N. sibirica (CS) were conducted. The results showed that the fresh weight, soluble sugar content and antioxidant capacity on a per stem basis exhibited a 3.3-, 3.0- and 2.1-fold increase in CR compared to CS. A total of 16,921 differentially expressed genes (DEGs) were observed in CR versus CS, with 2573 characterized genes, 1725 up-regulated and 848 down-regulated. Based on biological functions, 50 DEGs were associated with polysaccharides and starch metabolism as well as their transport. The expression levels of the selected 37 genes were validated by qRT-PCR and almost consistent with their Reads Per kb per Million values. These findings would provide useful references for improving the yield and quality of C. songaricum.


Assuntos
Cynomorium/fisiologia , Polissacarídeos/biossíntese , Transcriptoma , Antioxidantes/metabolismo , Transporte Biológico , Metabolismo dos Carboidratos , Perfilação da Expressão Gênica , Amido/metabolismo , Açúcares/metabolismo
3.
Zhongguo Zhong Yao Za Zhi ; 38(20): 3432-7, 2013 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-24490548

RESUMO

In natural conditions, fully ripe Cynomorium songaricum seeds parasitize in Nitraria tangutorum or N. sphaerocarpa or N. sibirica or Zygophyllum xanthoxylom and Peganum harmala, were used in this study to research the morphological characteristics, embryo rate, seed viability, 1 000-grain weight, purity, water content and the seeds of different host parasitic relationship with each other. The results showed that the morphology, color and surface characteristics of the C. songaricum seeds are very similar in different hosts. According to the seed morphology can not be judged on its host. For the host to N. tangutorum or Peganum harmala or N. sibirica, we should choose the round hole screen less than 0.923 1 mm and larger than 1.066 2 mm to cleaning seeds. For the C. songaricum seeds parasitic in N. sphaerocarpa, the choice of slightly less than 0.926 1 mm and larger than 0.985 3 mm round hole screen to cleaning. For the parasitic seeds in Z. xanthoxylom, less than 0.751 3 mm and slightly larger than 1.035 3 mm round hole screen could be used. Highy significant correlation was found among the morphological indexes in C. songaricum seeds (P < 0.01). Morphological indexes and 1 000-grain weight were significantly correlated (0.01 < P < 0.05), but with the seed viability and the embryo rate were not found significant correlation. Grain weight is not related with the seed viability and the Fully mature C. songaricum seed viability is high and water content is low. The difference of the habitats and the host plants should be considered in the seed quality assessment and classification. The C. songaricum seeds on host plants are not selective, and the C. songaricum seeds from the host plants could be parasitized in other host plants.


Assuntos
Cynomorium/fisiologia , Especificidade de Hospedeiro , Magnoliopsida/fisiologia , China , Cynomorium/química , Cynomorium/crescimento & desenvolvimento , Ecossistema , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/fisiologia
4.
Zhongguo Zhong Yao Za Zhi ; 36(23): 3244-6, 2011 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-22393728

RESUMO

OBJECTIVE: To investigate the distribution and host plants of Cynomorium songaricum, and provide a scientific basis for the artificial cultivation of C. songaricum and protect the ecological environment in the sandy area. METHOD: Specimens of C. songaricum in growing area was collected and accessed according to relevant literature and identified. RESULT: The results showed that a new host plant of C. songaricum-Peganum multisectum was found. CONCLUSION: A new host plant of C. songaricum, Peganum multisectum was reported, and it is provide the necessary nutrition for normal growth of C. songaricum.


Assuntos
Cynomorium/fisiologia , Peganum/fisiologia , China , Cynomorium/anatomia & histologia , Ecossistema , Peganum/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA