Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 16(20): 9770-9780, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38597919

RESUMO

Prussian blue nanoparticles exhibit the potential to be employed in bioanalytical applications due to their robust stability, peroxidase-like catalytic functionality, straightforward synthesis, and biocompatibility. An efficient approach is presented for the synthesis of nucleic acid-modified Prussian blue nanoparticles (DNA-PBNPs), utilizing nanoparticle porosity to adsorb nucleic acids (polyT). This strategic adsorption leads to the exposure of nucleic acid sequences on the particle surface while retaining catalytic activity. DNA-PBNPs further couple with functional nucleic acid sequences and aptamers through complementary base pairing to act as transducers in biosensors and amplify signal acquisition. Subsequently, we integrated a copper ion-dependent DNAzyme (Cu2+-DNAzyme) and a vascular endothelial growth factor aptamer (VEGF aptamer) onto screen-printed electrodes to serve as recognition elements for analytes. Significantly, our approach leverages DNA-PBNPs as a superior alternative to traditional enzyme-linked antibodies in electrochemical biosensors, thereby enhancing both the efficiency and adaptability of these devices. Our study conclusively demonstrates the application of DNA-PBNPs in two different biosensing paradigms: the sensitive detection of copper ions and vascular endothelial growth factor (VEGF). These results indicate the promising potential of DNA-modified Prussian blue nanoparticles in advancing bioanalytical sensing technologies.


Assuntos
Técnicas Biossensoriais , Cobre , DNA Catalítico , DNA , Técnicas Eletroquímicas , Ferrocianetos , Fator A de Crescimento do Endotélio Vascular , Ferrocianetos/química , Técnicas Biossensoriais/métodos , DNA Catalítico/química , Fator A de Crescimento do Endotélio Vascular/análise , Cobre/química , DNA/química , Aptâmeros de Nucleotídeos/química , Nanopartículas/química , Humanos , Eletrodos
2.
ACS Appl Mater Interfaces ; 16(8): 10580-10589, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38364286

RESUMO

The identification of Chinese medicinal herbs occupies a crucial part in the development of the food and drug market. Although molecular identification based on real-time PCR offers good versatility and uniform digital standards compared with traditional methods, such as morphology, the dependence on large-scale equipment hinders spot detection and marketable applications. In this study, we developed a DNA nanoclaw for colorimetric detection and visible on-site identification of Chinese medicines. When specific miRNA is present, the DNAzyme is activated and cleaves the substrate strand, triggering the catalytic hairpin assembly (CHA) reaction and forming branched DNA junctions on AuNP-I. This can then capture AuNP-II through hybridization and facilitate their aggregation, resulting in a noticeable color change that is observable to the naked eye. By harnessing the dual amplification of DNAzyme and CHA, this highly sensitive nanoprobe successfully achieved specific identification of Chinese medicines. This offers a new perspective for on-site testing in the herbal market.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , MicroRNAs , DNA Catalítico/química , Técnicas Biossensoriais/métodos , DNA , MicroRNAs/análise , Hibridização de Ácido Nucleico
3.
Analyst ; 149(2): 537-545, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38088097

RESUMO

8-oxo guanine DNA glycosylase (8-oxoG DNA glycosylase), a crucial DNA repair enzyme, is essential for maintaining genome integrity and preventing diseases caused by DNA oxidative damage. Imaging 8-oxoG DNA glycosylase in living cells requires a dependable technique. In this study, we designed a DNAzyme-modified DNA tetrahedral nanomachine (DTDN) powered by 8-oxoG restoration. Incorporating a molecular beacon probe (MB), the constructed platform was used for amplified in situ monitoring of 8-oxoG DNA glycosylase. Under normal conditions, duplexing with a complementary strand modified with two 8-oxoG sites inhibited the activity of DNAzyme. The restoration of DNAzyme activity by the repair of intracellular 8-oxoG DNA glycosylase on 8-oxoG bases can initiate a signal amplification reaction. This detection system can detect 8-oxoG DNA glycosylase activity linearly between 0 and 20 U mL-1, with a detection limit as low as 0.52 U mL-1. Using this method, we were able to screen 14 natural compounds and identify 6 of them as 8-oxoG DNA glycosylase inhibitors. In addition, a novel approach was utilized to assess the activity of 8-oxoG DNA glycosylase in living cells. In conclusion, this method provides a universal tool for monitoring the activity of 8-oxoG DNA glycosylase in vitro and in living cells, which holds great promise for elucidating the enzyme's functionality and facilitating drug screening endeavors.


Assuntos
DNA Glicosilases , DNA Catalítico , Reparo do DNA , Guanina , Avaliação Pré-Clínica de Medicamentos , DNA , DNA-Formamidopirimidina Glicosilase
4.
Nat Commun ; 14(1): 6905, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903795

RESUMO

Multicomponent deoxyribozymes (MNAzymes) have great potential in gene therapy, but their ability to recognize disease tissue and further achieve synergistic gene regulation has rarely been studied. Herein, Arginylglycylaspartic acid (RGD)-modified Distearyl acylphosphatidyl ethanolamine (DSPE)-polyethylene glycol (PEG) (DSPE-PEG-RGD) micelle is prepared with a DSPE hydrophobic core to load the photothermal therapy (PTT) dye IR780 and the calcium efflux pump inhibitor curcumin. Then, the MNAzyme is distributed into the hydrophilic PEG layer and sealed with calcium phosphate through biomineralization. Moreover, RGD is attached to the outer tail of PEG for tumor targeting. The constructed nanomachine can release MNAzyme and the cofactor Ca2+ under acidic conditions and self-assemble into an active mode to cleave heat shock protein (HSP) mRNA by consuming the oncogene miRNA-21. Silencing miRNA-21 enhances the expression of the tumor suppressor gene PTEN, leading to PTT sensitization. Meanwhile, curcumin maintains high intracellular Ca2+ to further suppress HSP-chaperone ATP by disrupting mitochondrial Ca2+ homeostasis. Therefore, pancreatic cancer is triple-sensitized to IR780-mediated PTT. The in vitro and in vivo results show that the MNAzyme-based nanomachine can strongly regulate HSP and PTEN expression and lead to significant pancreatic tumor inhibition under laser irradiation.


Assuntos
Curcumina , DNA Catalítico , MicroRNAs , Nanopartículas , Neoplasias , Neoplasias Pancreáticas , Humanos , Terapia Fototérmica , Curcumina/farmacologia , Polietilenoglicóis/química , Neoplasias Pancreáticas/terapia , MicroRNAs/genética , Oligopeptídeos , Linhagem Celular Tumoral , Nanopartículas/química , Fototerapia/métodos , Neoplasias Pancreáticas
5.
ACS Sens ; 8(9): 3538-3546, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37672644

RESUMO

Telomerase, as a specialized reverse transcriptase, plays a vital role in early cancer diagnostics and prognosis; thus, developing efficient sensing technologies is of vital importance. Herein, an innovative "signal-on-off" photoelectrochemical (PEC) sensing platform was developed for ultrasensitive evaluation of telomerase activity based on an electron-transfer tunneling distance regulation strategy and DNAzyme-triggerable biocatalytic precipitation. Concretely, cascade internal electric fields between CuInS2 quantum dots (QDs), graphitic carbon nitride nanosheets (g-C3N4 NSs), and TiO2 nanorod arrays (NRAs) were developed to realize cascade electron extraction and hole transfer. Enabled by such a design, an effective "signal-on" state to gain a progressively enhanced PEC output was designed by suppressing the photogenerated electron-hole pair recombination. With the introduction of hairpin probe H2 and the subsequent extension of the primer sequence driven by the target telomerase, the CuInS2 QDs labeled with hairpin probe H1 were programmatically unfolded, resulting in CuInS2 QDs' close proximity to the working electrode away from the cascade interface, accompanied by the formation of G-quadruplex/hemin complexes. The gradual undermining of tunneling distance and implantation of DNAzyme-initiating biocatalytic precipitation tremendously induced the sluggish migration kinetics of the photoinduced charge, accompanied by the photocurrent intensity decrement, leading to the "signal-off" state. Under optimized conditions, the as-prepared PEC biosensor realizes ultrasensitive detection of telomerase activity from 10 to 105 cell·mL-1 with a detection limitation of 3 cells·mL-1. As a proof of concept, this well-designed method provides new insights into signal amplification for telomerase activity evaluation and also presents promising potential for further development in drug screening, healthcare diagnostics, and biological assays.


Assuntos
DNA Catalítico , Telomerase , Biocatálise , Bioensaio , Avaliação Pré-Clínica de Medicamentos
6.
Anal Biochem ; 679: 115298, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619904

RESUMO

Panax ginseng and Panax quinquefolium are two valuable Chinese herbal medicines that should not be mixed because they differ in drug properties and efficacy. The traditional identification method is easily affected by subjective factors and cannot effectively distinguish between ginseng products. This study aimed to develop a new chemical analysis method to visually identify P. ginseng and P. quinquefolium. In this method, a large number of sequences containing G-quadruplex were generated by loop-mediated isothermal amplification, and the combination of G-quadruplex and hemin was used to form deoxyribozyme, which catalyzed the color change of H2O2. Artificial simulation of adulteration experiments revealed that this method could detect more than 20% adulterated P. quinquefolium. Compared with the traditional identification methods, this technology was simpler and more efficient, providing a reference for developing rapid visual identification methods and reagents for P. ginseng and P. quinquefolium.


Assuntos
DNA Catalítico , Panax , Peróxido de Hidrogênio , Cromatografia Gasosa , Simulação por Computador
7.
Adv Healthc Mater ; 12(28): e2301437, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37379009

RESUMO

Apoptosis has gained increasing attention in cancer therapy as an intrinsic signaling pathway, which leads to minimal leakage of waste products from a dying cell to neighboring normal cells. Among various stimuli to trigger apoptosis, mild hyperthermia is attractive but confronts limitations of non-specific heating and acquired resistance from elevated expression of heat shock proteins. Here, a dual-stimulation activated turn-on T1 imaging-based nanoparticulate system (DAS) is developed for mild photothermia (≈43 °C)-mediated precise apoptotic cancer therapy. In the DAS, a superparamagnetic quencher (ferroferric oxide nanoparticles, Fe3 O4 NPs) and a paramagnetic enhancer (Gd-DOTA complexes) are connected via the N6-methyladenine (m6 A)-caged, Zn2+ -dependent DNAzyme molecular device. The substrate strand of the DNAzyme contains one segment of Gd-DOTA complex-labeled sequence and another one of HSP70 antisense oligonucleotide. When the DAS is taken up by cancer cells, overexpressed fat mass and obesity-associated protein (FTO) specifically demethylates the m6 A group, thereby activating DNAzymes to cleave the substrate strand and simultaneously releasing Gd-DOTA complex-labeled oligonucleotides. The restored T1 signal from the liberated Gd-DOTA complexes lights up the tumor to guide the location and time of deploying 808 nm laser irradiation. Afterward, locally generated mild photothermia works in concert with HSP70 antisense oligonucleotides to promote apoptosis of tumor cells. This highly integrated design provides an alternative strategy for mild hyperthermia-mediated precise apoptotic cancer therapy.


Assuntos
DNA Catalítico , Compostos Heterocíclicos , Nanopartículas , Neoplasias , Compostos Organometálicos , DNA Catalítico/química , Fototerapia , Nanopartículas/química , Oligonucleotídeos , Oligonucleotídeos Antissenso , Linhagem Celular Tumoral , Neoplasias/diagnóstico por imagem , Neoplasias/terapia
8.
Anal Chem ; 95(18): 7387-7395, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37104032

RESUMO

In this work, a dual-aptamer functionalized magnetic silicon composite was prepared and used to construct a chemiluminescence (CL) sensor for the detection of α-fetoprotein (AFP) and carcinoembryonic antigen (CEA). First, SiO2@Fe3O4 was prepared, and polydiallyl dimethylammonium chloride (PDDA) and AuNPs were sequentially loaded on SiO2@Fe3O4. Subsequently, the complementary strand of CEA aptamer (cDNA2) and the aptamer of AFP (Apt1) were attached to AuNPs/PDDA-SiO2@Fe3O4. Then, the aptamer of CEA (Apt2) and G quadruplex peroxide-mimicking enzyme (G-DNAzyme) were sequentially connected to cDNA2, leading to the final composite. Then, the composite was used to construct a CL sensor. When AFP is present, it will combine with Apt1 on the composite to hinder the catalytic ability of AuNPs to luminol-H2O2, achieving AFP detection. When CEA is present, it will recognize and bind with Apt2, so G-DNAzyme is released to solution and catalyzes the reaction of luminol-H2O2 to achieve CEA determination. After the application of the prepared composite, AFP and CEA were detected in the magnetic medium and supernatant, respectively, after simple magnetic separation. Therefore, the detection of multiple liver cancer markers is realized through the CL technology without additional instruments or technology, which broadens the application range of CL technology. The sensor for detecting AFP and CEA shows wide linear ranges of 1.0 × 10-4 to 1.0 ng·mL-1 and 0.0001-0.5 ng·mL-1 and low detection limits of 6.7 × 10-5 ng·mL-1 and 3.2 × 10-5 ng·mL-1, respectively. Finally, the sensor was successfully used to detect CEA and AFP in serum samples and provides great potential for detection of multiple liver cancer markers in early clinical diagnosis.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA Catalítico , Nanopartículas Metálicas , Antígeno Carcinoembrionário , Silício , alfa-Fetoproteínas , Dióxido de Silício , Peróxido de Hidrogênio , Luminescência , DNA Catalítico/metabolismo , DNA Complementar , Ouro , Luminol
9.
Anal Chem ; 95(10): 4703-4711, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36856710

RESUMO

Nanozymes are nanomaterials with enzyme-mimetic activity. It is known that DNA can interact with various nanozymes in different ways, enhancing or inhibiting the activity of nanozymes, which can be used to develop various biosensors. In this work, we synthesized a photosensitive covalent-organic framework (Tph-BT) as a nanozyme, and its oxidase and peroxidase activities could be reversely regulated by surface modification of single-stranded DNA (ssDNA) for the colorimetric detection of UO22+. Tph-BT exhibits excellent oxidase activity and weak peroxidase activity, and it is surprising to find that the UO22+-specific DNA aptamer can significantly inhibit the oxidase activity while greatly enhancing the peroxidase activity. The present UO22+ interacts with the DNA aptamer to form secondary structures and detaches from the surface of Tph-BT, thereby restoring the enzymatic activity of Tph-BT. Based on the reversed regulation effects of the DNA aptamer on the two types of enzymatic activities of Tph-BT, a novel "off-on" and "on-off" sensing platform can be constructed for the colorimetric analysis of UO22+. This research demonstrates that ssDNA can effectively regulate the different types of enzymatic activities of single COFs and achieve the sensitive and selective colorimetric analysis of radionuclides by the naked eye.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA Catalítico , Estruturas Metalorgânicas , Urânio , DNA Catalítico/química , Urânio/análise , Aptâmeros de Nucleotídeos/química , Colorimetria , Estruturas Metalorgânicas/química , Oxirredutases , DNA de Cadeia Simples , Peroxidases
10.
J Nanobiotechnology ; 20(1): 410, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109814

RESUMO

Photodynamic therapy (PDT) has emerged as a promising tumor treatment method via light-triggered generation of reactive oxygen species (ROS) to kill tumor cells. However, the efficacy of PDT is usually restricted by several biological limitations, including hypoxia, excess glutathione (GSH) neutralization, as well as tumor resistance. To tackle these issues, herein we developed a new kind of DNA nanozyme to realize enhanced PDT and synergistic tumor ferroptosis. The DNA nanozyme was constructed via rolling circle amplification, which contained repeat AS1411 G quadruplex (G4) units to form multiple G4/hemin DNAzymes with catalase-mimic activity. Both hemin, an iron-containing porphyrin cofactor, and chlorine e6 (Ce6), a photosensitizer, were facilely inserted into G4 structure with high efficiency, achieving in-situ catalytic oxygenation and photodynamic ROS production. Compared to other self-oxygen-supplying tools, such DNA nanozyme is advantageous for high biological stability and compatibility. Moreover, the nanostructure could achieve tumor cells targeting internalization and intranuclear transport of Ce6 by virtue of specific nucleolin binding of AS1411. The nanozyme could catalyze the decomposition of intracellular H2O2 into oxygen for hypoxia relief as evidenced by the suppression of hypoxia-inducible factor-1α (HIF-1α), and moreover, GSH depletion and cell ferroptosis were also achieved for synergistic tumor therapy. Upon intravenous injection, the nanostructure could effectively accumulate into tumor, and impose multi-modal tumor therapy with excellent biocompatibility. Therefore, by integrating the capabilities of O2 generation and GSH depletion, such DNA nanozyme is a promising nanoplatform for tumor PDT/ferroptosis combination therapy.


Assuntos
DNA Catalítico , Ferroptose , Fotoquimioterapia , Porfirinas , Catalase , DNA , Glutationa/metabolismo , Hemina , Humanos , Peróxido de Hidrogênio , Hipóxia/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia , Ferro , Oxigênio , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Porfirinas/química , Porfirinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
11.
Anal Chim Acta ; 1221: 340143, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35934375

RESUMO

Damaging the structure of the G-quadruplex (G4) to prevent the formation of the G4/hemin complex is presently the only available method to inhibit the activity of the peroxidase-mimic DNAzyme. In this study, a unique intramolecular inhibitory effect of the adjacent base-pair (InE(N:N)), by installing a rationally adjacent base-pair of the G4 core sequence, is proposed for the inhibition of the DNAzyme activity, which eliminates the need to damage the entire G4 structure. Various base pairs show different abilities to inhibit DNAzyme activity. The adjacent adenine: thymine pair possesses the best inhibitory efficiency (17 times). Through detailed investigations of the InE(N:N), it was revealed that the adjacent adenine: thymine pair downregulated the formation of compound I in the catalytic process, thus inhibiting the G4 DNAzyme activity. The mechanism of inhibition indicated that the carbonyl group on the hexatomic ring of the complementary base played an important role. To further reflect the advantages of the proposed strategy, two InE(N:N)-based biosensors were developed for DNA analysis and Uracil-DNA glycosylase (UDG) detection. Compared with existing DNAzyme-based methods, the application of InE(N: N) facilitates the real-time assay and simplifies the design difficulty. Therefore, InE(N:N) provides new insights into the regulation of the DNAzyme activity and offers an efficient approach for the future application of DNAzyme.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Quadruplex G , Adenina , Técnicas Biossensoriais/métodos , Corantes , DNA Catalítico/química , Hemina/química , Peroxidase/metabolismo , Peroxidases/química , Timina
12.
Anal Chem ; 94(33): 11538-11548, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35960864

RESUMO

A versatile drug delivery system (DDS) enabling highly effective and targeting oncotherapy has always been of great significance in medical research. In the development of a stimuli-responsive DDS, compared with a single-factor stimulation DDS, a multifactor activation DDS has higher therapeutic specificity between diseased and normal tissue, but there are challenges in drug-release efficiency and united targeting cancer therapy. Herein, a novel dual-microRNA (dual-miRNA)-mediated 1:N-amplified DDS is fabricated. The gold nanocage (AuNC) was synthesized and used as a carrier. A DNA bridge motif as a nanolock (DNA bridge nanolock) was designed and modified on the surface of AuNCs, which could seal the holes of AuNCs. Using the dual-miRNAs as a pair of master keys, through DNA strand migration and DNAzyme self-assembly, a cell endogenous substance Mg2+-dependent DNAzyme cyclic shear reaction could perform the function of the master keys to open multiple locks for the enhanced release of doxorubicin from the AuNCs. In addition, under near-infrared irradiation, via absorption of light and heat release, the AuNC is activated to perform the function of photothermal therapy. Thereby, the system achieves precise chemo-photothermal therapy. Using the in vitro and in vivo anti-tumor analysis, the DDS could be proved to present a novel design of enhanced and targeted drug-release system for highly effective cancer therapy.


Assuntos
DNA Catalítico , Hipertermia Induzida , Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fototerapia , Terapia Fototérmica
13.
Angew Chem Int Ed Engl ; 61(6): e202113619, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866297

RESUMO

Sequential control of exogenous chemical events inside cells is a promising way to regulate cell functions and fate. Herein we report a DNA nanocomplex containing cascade DNAzymes and promoter-like Zn-Mn-Ferrite (ZMF), achieving combined gene/chemo-dynamic therapy. The promoter-like ZMF decomposed in response to intratumoral glutathione to release a sufficient quantity of metal ions, thus promoting cascade DNA/RNA cleavage and free radical generation. Two kinds of DNAzymes were designed for sequential cascade enzymatic reaction, in which metal ions functioned as cofactors. The primary DNAzyme self-cleaved the DNA chain with Zn2+ as cofactor, and produced the secondary DNAzyme; the secondary DNAzyme afterwards cleaved the EGR-1 mRNA, and thus downregulated the expression of target EGR-1 protein, achieving DNAzyme-based gene therapy. Meanwhile, the released Zn2+ , Mn2+ and Fe2+ induced Fenton/Fenton-like reactions, during which free radicals were catalytically generated and efficient chemo-dynamic therapy was achieved. In a breast cancer mouse model, the administration of DNA nanocomplex led to a significant therapeutic efficacy of tumor growth suppression.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Fototerapia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , DNA/química , DNA/metabolismo , DNA Catalítico/química , DNA Catalítico/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Compostos Férricos/química , Compostos Férricos/metabolismo , Terapia Genética , Humanos , Células MCF-7 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Manganês/química , Manganês/metabolismo , Camundongos , Nanopartículas/química , Nanopartículas/metabolismo , Zinco/química , Zinco/metabolismo
14.
Small ; 17(51): e2105439, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34802181

RESUMO

DNAzyme-nanomaterial bioconjugates are a popular hybrid and have received major attention for diverse biomedical applications, such as bioimaging, biosensor development, cancer therapy, and drug delivery. Therefore, significant efforts are made to develop different strategies for the preparation of inorganic and organic nanoparticles (NPs) with specific morphologies and properties. DNAzymes functionalized with metal-organic frameworks (MOFs), gold nanoparticles (AuNPs), graphene oxide (GO), and molybdenum disulfide (MoS2 ) are introduced and summarized in detail in this review. Moreover, the focus is on representative examples of applications of DNAzyme-nanomaterials over recent years, especially in bioimaging, biosensing, phototherapy, and stimulation response delivery in living systems, with their several advantages and drawbacks. Finally, the perspective regarding the future directions of research addressing these challenges is also discussed and highlighted.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Nanopartículas Metálicas , Nanoestruturas , Ouro
15.
Biosensors (Basel) ; 11(7)2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34356693

RESUMO

A microRNA (miRNA) detection platform composed of a rolling circle amplification (RCA) system and an allosteric deoxyribozyme system is proposed, which can detect miRNA-21 rapidly and efficiently. Padlock probe hybridization with the target miRNA is achieved through complementary base pairing and the padlock probe forms a closed circular template under the action of ligase; this circular template results in RCA. In the presence of DNA polymerase, RCA proceeds and a long chain with numerous repeating units is formed. In the presence of single-stranded DNA (H1 and H2), multi-component nucleic acid enzymes (MNAzymes) are formed that have the ability to cleave substrates. Finally, substrates containing fluorescent and quenching groups and magnesium ions are added to the system to activate the MNAzyme and the substrate cleavage reaction, thus achieving fluorescence intensity amplification. The RCA-MNAzyme system has dual signal amplification and presents a sensing platform that demonstrates broad prospects in the analysis and detection of nucleic acids.


Assuntos
MicroRNAs/análise , DNA Catalítico , DNA Polimerase Dirigida por DNA , Humanos , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico , Espectrometria de Fluorescência
16.
Talanta ; 233: 122505, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34215120

RESUMO

Colorimetric sensors are recognized as a promising means for target molecule detection as they provide rapid, cost-effective, and facile sensing visible to the naked eye. Challenges remain though in terms of their detection sensitivity and specificity for short-length target genes. Herein, we demonstrate the successful combination of the catalytic hairpin DNA assembly (CHA) approach with enzyme-linked immunosorbent assay (ELISA)-mimicking techniques for a simple, sensitive, and sequence-specific colorimetric assay to detect short SARS-CoV-2 target cDNA. In the developed CHA-based chemiluminescent assay, a low concentration of target cDNA is continuously recycled to amplify dimeric DNA probes from two biotinylated hairpin DNA until the hairpin DNA is completely consumed. The dimeric DNA probes are effectively immobilized in a neutravidin-coated microplate well and then capture neutravidin-conjugated horseradish peroxidase via biotin-neutravidin interactions, resulting in a sensitive and selective colorless-to-blue color change. The developed sensing system exhibits a high sensitivity with a detection limit of ~1 nM for target cDNA as well as the ability to precisely distinguish a single-base mismatched mutant gene within 2 h. As the proposed system does not require complex protocols or expensive equipment to amplify target cDNA, it has the potential to be utilized as a powerful tool to improve the detection sensitivity of target genes for clinical diagnostics with colorimetric detection.


Assuntos
Técnicas Biossensoriais , COVID-19 , DNA Catalítico , Colorimetria , DNA/genética , DNA Complementar , Humanos , Limite de Detecção , Medições Luminescentes , SARS-CoV-2
17.
Nano Lett ; 21(12): 5377-5385, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34100622

RESUMO

DNAzyme is emerging for gene therapy. The administration of the in vivo catalytic activity of DNAzyme has proven important but challenging for clinical applications. Herein, we report a synergistic DNA-polydopamine-MnO2 nanocomplex, which enables near-infrared (NIR)-light-powered catalytic activity of DNAzyme in vivo. The nanocomplex has a hierarchical structure: a DNA nanoframework as the scaffold and polydopamine-MnO2 (PM) as the coating layer. The DNA nanoframework contains repeated DNAzyme sequences. PM assembles on the surface of the DNA nanoframework. When the nanocomplex accumulates at tumor sites, upon NIR-light radiation, polydopamine induces a temperature elevation at tumor sites via photothermal conversion; meanwhile, glutathione triggers decomposition of PM to release Mn2+ to activate DNAzyme in the cytoplasm for gene regulation. In vitro and in vivo experiments show that the PM-induced temperature elevation enhances the Egr-1 mRNA cleavage activity of DNAzyme, promoting downregulation of the Egr-1 protein in tumor cells. In addition, the temperature elevation induces heat stress, achieving a synergistic tumor ablation effect.


Assuntos
DNA Catalítico , DNA Catalítico/genética , Terapia Genética , Indóis , Fototerapia , Polímeros
18.
ACS Appl Mater Interfaces ; 13(13): 15031-15039, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33764744

RESUMO

Enrichment of rare cancer cells from various cell mixtures for subsequent analysis or culture is essential for understanding cancer formation and progression. In particular, maintaining the viability of captured cancer cells and gently releasing them for relevant applications remain challenging for many reported methods. Here, a physically cross-linked deoxyribozyme (DNAzyme)-based hydrogel strategy was developed for the specific envelopment and release of targeted cancer cells, allowing the aptamer-guided capture, 3D envelopment, and Zn2+-dependent release of viable cancer cells. The DNAzyme hydrogel is constructed through the intertwinement and hybridization of two complementary DNAzyme strands located on two rolling circle amplification-synthesized ultralong DNA chains. The enveloping and separation of target cells were achieved during the formation of the DNAzyme hydrogel (sol-gel transition). Triggered by Zn2+, the encapsulated cells can be gently released from the dissociated DNAzyme hydrogel with high viability (gel-sol transition). Successful isolations of target cells from cancer cell mixtures and peripheral blood mononuclear cells (PBMC) were demonstrated. This method offers an attractive approach for the separation of target cancer cells for various downstream applications that require viable cells.


Assuntos
Células Imobilizadas/citologia , DNA Catalítico/química , Hidrogéis/química , Transição de Fase , Aptâmeros de Nucleotídeos/química , Linhagem Celular Tumoral , Células Imobilizadas/química , Humanos , Neoplasias/patologia , Zinco/química
19.
J Hazard Mater ; 413: 125383, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33609877

RESUMO

Uranium pollution in environment and food chain is a serious threat to public security and human health. Herein, we proposed a temperature-robust, ratiometric, and label-free bioassay based on G-quadruplex proximate DNAzyme (G4DNAzyme), accommodating us to precisely monitor uranium pollution and biosorption. The proximity of split G-quadruplex probes was proposed to sense UO22+-activated DNAzyme activity, thus eliminating the use of chemically labeled nucleic acid probes. And the simultaneous monitoring of G-quadruplex and double-stranded structures of DNAzyme probes contributed to a ratiometric and robust detection of UO22+. Particularly, the separation of enzymatic digestion and fluorescence monitoring endued a robust and highly responsive detection of UO22+ upon the temperature of enzymatic digestion process ranged from 18° to 41 °C. Consequently, G4DNAzyme assay allowed a robust, label-free and ratiometric quantification of uranium. We demonstrated the feasibility of G4DNAzyme assay for estimating uranium pollution in water and aquatic product samples. Ultimately, G4DNAzyme assay was adopted to serve as the platform to screen bacterial species and conditions for uranium biosorption, promising its roles in uranium associated biosafety control.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Quadruplex G , Urânio , Bioensaio , Hemina , Humanos , Limite de Detecção , Temperatura
20.
J Hazard Mater ; 411: 124784, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-33450635

RESUMO

Malathion is one of the most commonly used organophosphorus pesticides that can cause serious harm to the ecological environment and human health. Herein, we demonstrated a label-free chemiluminescent aptasensor for the sensitive detection of malathion based on exonuclease-assisted dual signal amplification and G-quadruplex/hemin DNAzyme. Upon the addition of malathion, the aptamer probe specifically bound to the target to form a complex malathion-S3, leaving a duplex S1-S2. The complex malathion-S3 was digested by exonuclease I and the target was released. The released target was recycled to perform exonuclease I-assisted signal amplification. Furthermore, after treatment with exonuclease III, the duplex S1-S2 was converted into the secondary target ST. The secondary target ST interacted with the hairpin H1 to form a complex H1-ST, which was further digested by exonuclease III and released the secondary target. The released secondary target was recycled to perform exonuclease III-assisted signal amplification. After complete amplification, large numbers of G-quadruplex/hemin DNAzymes were generated. Under the optimal experimental conditions, the prepared aptasensor showed an excellent linear response to malathion with a detection limit of 0.47 pM. The relative standard deviations were in the range of 4.2-6.9%. Moreover, the aptasensor was successfully applied to detect malathion in spiked food and traditional Chinese medicine samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA Catalítico , Quadruplex G , Hemina , Humanos , Limite de Detecção , Luminescência , Malation
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA