Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 12809, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28993626

RESUMO

For DNA replication in vivo, DNA primase uses a complementary single-stranded DNA template to synthesize RNA primers ranging from 4 to 20 nucleotides in length, which are then elongated by DNA polymerase. Here, we report that, in the presence of double-stranded DNA, the thermophilic DNA primase TtDnaG2 synthesizes RNA primers of around 100 nucleotides with low initiation specificity at 70 °C. Analysing the structure of TtDnaG2, we identified that it adopts a compact conformation. The conserved sites in its zinc binding domain are sequestered away from its RNA polymerase domain, which might give rise to the low initiation specificity and synthesis of long RNA segments by TtDnaG2. Based on these unique features of TtDnaG2, a DNA amplification method has been developed. We utilized TtDnaG2 to synthesize RNA primers at 70 °C after 95 °C denaturation, followed by isothermal amplification with the DNA polymerase Bst3.0 or phi29. Using this method, we successfully amplified genomic DNA of a virus with 100% coverage and low copy number variation. Our data also demonstrate that this method can efficiently amplify circular DNA from a mixture of circular DNA and linear DNA, thus providing a tool to amplify low-copy-number circular DNA such as plasmids.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Primase/metabolismo , Técnicas de Amplificação de Ácido Nucleico , Temperatura , Thermoanaerobacter/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/química , DNA/metabolismo , DNA Primase/química , DNA Circular/metabolismo , Genoma Viral , Desnaturação de Ácido Nucleico , RNA/metabolismo , RNA Bacteriano/biossíntese , Moldes Genéticos
2.
Nature ; 478(7367): 132-5, 2011 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-21927003

RESUMO

Helicases are vital enzymes that carry out strand separation of duplex nucleic acids during replication, repair and recombination. Bacteriophage T7 gene product 4 is a model hexameric helicase that has been observed to use dTTP, but not ATP, to unwind double-stranded (ds)DNA as it translocates from 5' to 3' along single-stranded (ss)DNA. Whether and how different subunits of the helicase coordinate their chemo-mechanical activities and DNA binding during translocation is still under debate. Here we address this question using a single-molecule approach to monitor helicase unwinding. We found that T7 helicase does in fact unwind dsDNA in the presence of ATP and that the unwinding rate is even faster than that with dTTP. However, unwinding traces showed a remarkable sawtooth pattern where processive unwinding was repeatedly interrupted by sudden slippage events, ultimately preventing unwinding over a substantial distance. This behaviour was not observed with dTTP alone and was greatly reduced when ATP solution was supplemented with a small amount of dTTP. These findings presented an opportunity to use nucleotide mixtures to investigate helicase subunit coordination. We found that T7 helicase binds and hydrolyses ATP and dTTP by competitive kinetics such that the unwinding rate is dictated simply by their respective maximum rates V(max), Michaelis constants K(M) and concentrations. In contrast, processivity does not follow a simple competitive behaviour and shows a cooperative dependence on nucleotide concentrations. This does not agree with an uncoordinated mechanism where each subunit functions independently, but supports a model where nearly all subunits coordinate their chemo-mechanical activities and DNA binding. Our data indicate that only one subunit at a time can accept a nucleotide while other subunits are nucleotide-ligated and thus they interact with the DNA to ensure processivity. Such subunit coordination may be general to many ring-shaped helicases and reveals a potential mechanism for regulation of DNA unwinding during replication.


Assuntos
Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Bacteriófago T7/enzimologia , Biocatálise/efeitos dos fármacos , DNA Helicases/química , DNA Helicases/metabolismo , Subunidades Proteicas/metabolismo , Pareamento de Bases/efeitos dos fármacos , Ligação Competitiva , DNA/química , DNA/metabolismo , DNA Primase/química , DNA Primase/metabolismo , Replicação do DNA , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Hidrólise/efeitos dos fármacos , Cinética , Modelos Biológicos , Desnaturação de Ácido Nucleico/efeitos dos fármacos , Subunidades Proteicas/química , Termodinâmica , Nucleotídeos de Timina/metabolismo , Nucleotídeos de Timina/farmacologia
3.
Proc Natl Acad Sci U S A ; 106(19): 7810-5, 2009 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-19416864

RESUMO

For the initiation of DNA replication, dsDNA is unwound by helicases. Primases then recognize specific sequences on the template DNA strands and synthesize complementary oligonucleotide primers that are elongated by DNA polymerases in leading- and lagging-strand mode. The bacterial plasmid RSF1010 provides a model for the initiation of DNA replication, because it encodes the smallest known primase RepB' (35.9 kDa), features only 1 single-stranded primase initiation site on each strand (ssiA and ssiB, each 40 nt long with 5'- and 3'-terminal 6 and 13 single-stranded nucleotides, respectively, and nucleotides 7-27 forming a hairpin), and is replicated exclusively in leading strand mode. We present the crystal structure of full-length dumbbell-shaped RepB' consisting of an N-terminal catalytic domain separated by a long alpha-helix and tether from the C-terminal helix-bundle domain and the structure of the catalytic domain in a specific complex with the 6 5'-terminal single-stranded nucleotides and the C7-G27 base pair of ssiA, its single-stranded 3'-terminus being deleted. The catalytic domains of RepB' and the archaeal/eukaryotic family of Pri-type primases share a common fold with conserved catalytic amino acids, but RepB' lacks the zinc-binding motif typical of the Pri-type primases. According to complementation studies the catalytic domain shows primase activity only in the presence of the helix-bundle domain. Primases that are highly homologous to RepB' are encoded by broad-host-range IncQ and IncQ-like plasmids that share primase initiation sites ssiA and ssiB and high sequence identity with RSF1010.


Assuntos
DNA Helicases/química , Plasmídeos/metabolismo , Motivos de Aminoácidos , Sequência de Bases , Domínio Catalítico , Cristalografia por Raios X/métodos , DNA Helicases/metabolismo , DNA Primase/química , Primers do DNA/química , Replicação do DNA , Modelos Biológicos , Conformação Molecular , Dados de Sequência Molecular , Mutagênese , Relação Estrutura-Atividade
4.
Nucleic Acids Res ; 35(17): 5635-45, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17709343

RESUMO

Primases are specialized DNA-dependent RNA polymerases that synthesize a short oligoribonucleotide complementary to single-stranded template DNA. In the context of cellular DNA replication, primases are indispensable since DNA polymerases are not able to start DNA polymerization de novo. The primase activity of the replication protein from the archaeal plasmid pRN1 synthesizes a rather unusual mixed primer consisting of a single ribonucleotide at the 5' end followed by seven deoxynucleotides. Ribonucleotides and deoxynucleotides are strictly required at the respective positions within the primer. Furthermore, in contrast to other archaeo-eukaryotic primases, the primase activity is highly sequence-specific and requires the trinucleotide motif GTG in the template. Primer synthesis starts outside of the recognition motif, immediately 5' to the recognition motif. The fidelity of the primase synthesis is high, as non-complementary bases are not incorporated into the primer.


Assuntos
Proteínas Arqueais/metabolismo , DNA Primase/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/genética , Sequência de Bases , DNA/biossíntese , DNA/química , DNA Primase/química , DNA Primase/genética , Primers do DNA/biossíntese , Primers do DNA/química , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/metabolismo , Plasmídeos/genética , Estrutura Terciária de Proteína , Ribonucleotídeos/química , Ribonucleotídeos/metabolismo , Especificidade por Substrato , Sulfolobus/enzimologia , Moldes Genéticos
5.
Nat Struct Biol ; 8(1): 57-61, 2001 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11135672

RESUMO

Primases are essential components of the DNA replication apparatus in every organism. They catalyze the synthesis of oligoribonucleotides on single-stranded DNA, which subsequently serve as primers for the replicative DNA polymerases. In contrast to bacterial primases, the archaeal enzymes are closely related to their eukaryotic counterparts. We have solved the crystal structure of the catalytic primase subunit from the hyperthermophilic archaeon Pyrococcus furiosus at 2.3 A resolution by multiwavelength anomalous dispersion methods. The structure shows a two-domain arrangement with a novel zinc knuckle motif located in the primase (prim) domain. In this first structure of a complete protein of the archaeal/eukaryotic primase family, the arrangement of the catalytically active residues resembles the active sites of various DNA polymerases that are unrelated in fold.


Assuntos
DNA Primase/química , Pyrococcus furiosus/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , DNA Primase/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas , Selênio/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA