Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Mol Biol Rep ; 48(9): 6259-6267, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34392450

RESUMO

BACKGROUND: Crossostephium chinense is a traditional Chinese medicinal herb and it is often cultivated as an ornamental plant. Previous studies on this species mainly focused on its chemical composition and it was rarely represented in genetic studies, and thus genomic resources remain scarce. METHODS AND RESULTS: Both chloroplast and nuclear polymorphic microsatellites of C. chinense were screened from genome skimming data of two individuals. 64 and 63 cpSSR markers were identified from two chloroplast genomes of C. chinense. A total of 133 polymorphic nSSRs were developed. Ten nSSRs were randomly selected to test their transferability across 35 individuals from three populations of C. chinense, and 20 individuals each of Artemisia stolonifera and A. argyi. Cross-amplifications were successfully done for C. chinense and were partially amplified for both Artemisia species. The number of alleles varied from two to nine. The observed heterozygosity and expected heterozygosity per locus ranged from 0.000 to 0.286 and from 0.029 to 0.755, respectively. CONCLUSIONS: In this study, we developed polymorphic cpSSRs and nSSRs markers for C. chinense based on genome skimming sequencing. These genomic resources will be valuable for population genetics and conservation studies in C. chinense and Artemisia.


Assuntos
Artemisia/genética , Núcleo Celular/genética , Cloroplastos/genética , Genoma de Cloroplastos , Repetições de Microssatélites/genética , Polimorfismo Genético , Alelos , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Medicamentos de Ervas Chinesas , Genoma de Planta , Heterozigoto , Filogenia
2.
Mol Biol Rep ; 48(9): 6323-6333, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34383245

RESUMO

BACKGROUND: Scarlet eggplant (Solanum aethiopicum gr. gilo) is a part of African indigenous vegetables and acknowledged as a source of variations in the breeding of Brinjal. Since its genetic diversity is still largely unexplored, therefore genetic diversity and population structure of this plant were investigated in this study. METHODS AND RESULTS: Scarlet eggplant germplasm made of fifty-two accessions originated from two districts of Rwanda was assessed by employing the iPBS-retrotransposon markers system. Twelve most polymorphic primers were employed for molecular characterization and they yielded 329 total bands whereupon 85.03% were polymorphic. The recorded mean polymorphism information content was 0.363 and other diversity indices such as; mean the effective number of alleles, mean Shannon's information index and gene diversity with the following values; 1.298, 0.300 and 0.187 respectively. A superior level of diversity was noticed among accessions from Musanze district. The model-based structure, neighbor-joining, and principal coordinate analysis (PCoA) gathered scarlet germplasm in a divergence manner to their collection district. Analysis of molecular variance (AMOVA) displayed that the utmost variations (81%) in scarlet eggplant germplasm are resulting in differences within populations. CONCLUSIONS: The extensive diversity of scarlet eggplant in Rwanda might be used to form the base and genetic resource of an exhaustive breeding program of this economically important African indigenous vegetable. For instance, accessions MZE53 and GKE11 might be proposed as parent candidates due to their high relative genetic distance (0.6781).


Assuntos
Primers do DNA/genética , Polimorfismo Genético , Retroelementos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sementes/genética , Solanum melongena/genética , Solanum/genética , Alelos , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Melhoramento Vegetal , Ruanda , Sequências Repetidas Terminais/genética
3.
Mol Biol Rep ; 48(5): 4497-4515, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34101109

RESUMO

Cestrum is the second largest genus of family Solanaceae, after Solanum, distributed in warm to subtropical regions. Species of genus Cestrum are one of the most ethnopharmacological relevant plants, for their broad biological and pharmacological properties. There is a scarcity to taxonomical studies and identification of these plants in Egypt, thus, the objective of this study was to implement various morphological features, chemical markers and molecular tools to emphasize the taxonomical features of the different Cestrum species. Morphologically, the epidermal cells of C. diurnum, C. elegans and C. parqui were irregular with sinuate anticlinal wall patterns for both surfaces, while, C. nocturnum has anticlinal walls, sinuolate with polygonal to irregular epidermal cells on the abaxial surface. The species of Cestrum have hypostomatic leaves, except C. parqui that has amphistomatic leaves. The experimented species of Cestrum have Anomocytic and anisocytic stomata, while, C. elegans has a diacytic stomata. The morphologically identified Cestrum spp were molecular confirmed based on their ITS sequences, the sequences of C. diurnum, C. nocturnum, C. elegans and C. parqui were deposited on genbank with accession # MT742788.1, MT749390.1, MW091481.1 and MW023744.1, respectively. From the SCOT analyses, the four species of Cestrum were grouped into 2 clusters (I, II), cluster I contains C. elegans, C. nocturnum and C. parqui, while cluster II contains only C. diurnum with 100% polymorphism for all primers. From the GC-MS profile, the C. diurnum exhibited a diverse metabolic paradigm, ensuring their richness with different metabolites comparing to other experimented Cestrum species. Among the total resolved metabolites, 15-methyltricyclo 6.5.2-pentadeca-1,3,5,7,9, 11,13-heptene was the highly incident compound in C. elegans (35.89%) followed by C. parqui (21.81%) and C. diurnum (11.28%), while it absent on C. nocturnum. The compound, 2,2',6,6'-tetra-tert-butyl-4,4'-methylenediphenol was highly detected in C. elegans and C. dirunum with minor amounts in the other Cestrum species. Cypermethrin and 3-butynyl-2,2,5-trimethyl-1,3-dioxane-5-methanol were pivotally reported in C. nocturnum. Taken together, from molecular and metabolic markers, C. diurnum, C. parqui and C. elegans have higher proximity unlike to C. nocturnum.


Assuntos
Cestrum/classificação , Cestrum/genética , Filogenia , Estômatos de Plantas/genética , Estômatos de Plantas/ultraestrutura , Cestrum/anatomia & histologia , Cestrum/metabolismo , Primers do DNA , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , DNA Espaçador Ribossômico/genética , Egito , Microscopia Eletrônica de Varredura/métodos , Estômatos de Plantas/metabolismo , Polimorfismo Genético , Piretrinas/metabolismo
4.
PLoS One ; 16(2): e0245611, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33529182

RESUMO

Pollen metabarcoding has received much attention recently for its potential to increase taxonomic resolution of the identifications of pollen grains necessary for various public health, ecological and environmental inquiry. However, methodologies implemented are widely varied across studies confounding comparisons and casting uncertainty on the reliability of results. In this study, we investigated part of the methodology, the effects of level of exine rupture and lysis incubation time, on the performance of DNA extraction and Illumina sequencing. We examined 15 species of plants from 12 families with pollen that varies in size, shape, and aperture number to evaluate effort necessary for exine rupture. Then created mock communities of 14 of the species from DNA extractions at 4 levels of exine rupture (0, 33, 67, and 100%) and two levels of increased lysis incubation time without exine rupture (2 or 24 hours). Quantities of these DNA extractions displayed a positive correlation between increased rupture and DNA yield, however increasing time of lysis incubation was associated with decreased DNA yield. Illumina sequencing was performed with these artificial community treatments with three common plant DNA barcode regions (rbcL, ITS1, ITS2) with two different primer pairings for ITS2 and rbcL. We found decreased performance in treatments with 0% or 100% exine rupture compared to 33% and 67% rupture, based on deviation from expected proportions and species retrieval, and increased lysis incubation was found to be detrimental to results.


Assuntos
Código de Barras de DNA Taxonômico/métodos , DNA de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Plantas/genética , Pólen/genética , Sequência de Bases , DNA de Plantas/isolamento & purificação , Reprodutibilidade dos Testes , Especificidade da Espécie
5.
Methods Mol Biol ; 2264: 55-73, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33263903

RESUMO

High-resolution melting (HRM) analysis is a cost-effective, specific, and rapid tool that allows distinguishing genetically related plants and other organisms based on the detection of small nucleotide variations, which are recognized from melting properties of the double-stranded DNA. It has been widely applied in several areas of research and diagnostics, including botanical authentication of several food commodities and herbal products. Generally, it consists of the main steps: (1) in silico sequence analysis and primer design; (2) DNA extraction from plant material; (3) amplification by real-time PCR with an enhanced fluorescent dye targeting a specific DNA barcode or other regions of taxonomic interest (100-200 bp); (4) melting curve analysis; and (5) statistical data analysis using a specific HRM software. This chapter presents an overview of HRM analysis and application, followed by the detailed description of all the required reagents, instruments, and protocols for the successful and easy implementation of a HRM method to differentiate closely related plant species.


Assuntos
Código de Barras de DNA Taxonômico/métodos , DNA de Plantas/análise , DNA de Plantas/genética , Análise de Alimentos/métodos , Proteínas de Plantas/genética , Plantas Medicinais/genética , Reação em Cadeia da Polimerase/métodos , DNA de Plantas/isolamento & purificação , Plantas Medicinais/classificação , Especificidade da Espécie
6.
Molecules ; 25(18)2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32962310

RESUMO

Food fraud has been and still is a problem in the food industry. It is detectable by several approaches, such as high performance liquid chromatography (HPLC), chemometric assays, or DNA-based techniques, each with its own drawbacks. This work addresses one major drawback of DNA-based methods, in particular their sensitivity to inhibitors contained in particular matrices from which DNA is isolated. We tested five commercial kits and one in-house method characterized by different ways of sample homogenization and DNA capture and purification. Using these methods, DNA was isolated from 10 different fruit species commonly used in plant-based foodstuffs. The quality of the DNA was evaluated by UV-VIS spectrophotometry. Two types of qPCR assays were used for DNA quality testing: (i) Method specific for plant ITS2 region, (ii) methods specific for individual fruit species. Based mainly on the results of real-time PCR assays, we were able to find two column-based kits and one magnetic carrier-based kit, which consistently provided fruit DNA isolates of sufficient quality for PCR-based assays useful for routine analysis and identification of individual fruit species in food products.


Assuntos
DNA de Plantas/análise , DNA de Plantas/isolamento & purificação , Frutas/química , Extratos Vegetais/análise , Extratos Vegetais/isolamento & purificação , Prunus/química , Eletroforese , Kit de Reagentes para Diagnóstico , Reação em Cadeia da Polimerase em Tempo Real , Espectrofotometria
7.
Sci Rep ; 10(1): 11513, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32661429

RESUMO

Authenticity of dried aromatic herbs and herbal powders for the ASU (ayurvedic, siddha, unani) drug formulations is a key of their clinical success. The DNA based authentication is an answer; however, extraction of PCR quality DNA from such material is often problematic due to the presence of various co-extracted PCR inhibitors. Here, we report a novel DNA isolation and purification method utilizing cow skim milk that successfully yields PCR quality DNA from the aromatic herbs and dried herbal powders. The improved method presented in this study could be used as an alternative to successfully extract PCR quality DNA from such plant materials. Further, we present a set of robust matK primers which could be used as plant barcoding resource in future studies.


Assuntos
DNA de Plantas/isolamento & purificação , Leite/química , Plantas Medicinais/química , RNA de Plantas/isolamento & purificação , Animais , Bovinos , Código de Barras de DNA Taxonômico/métodos , Primers do DNA/genética , DNA de Plantas/química , Feminino , Plantas Medicinais/classificação , Plantas Medicinais/genética , Reação em Cadeia da Polimerase/métodos , Pós/química , RNA de Plantas/química
8.
PLoS One ; 15(4): e0231973, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32343710

RESUMO

Potato psyllid (Bactericera cockerelli Sulc)-transmitted "Candidatus Liberibacter solanacearum" (Lso) has been negatively impacting the potato industry in the United States as well as other potato-producing countries. Lso has been linked to a condition known as zebra chip (ZC) that affects yield and quality of potato tubers. Efforts to find sources of resistance to ZC have primarily focused on greenhouse evaluations based on a single inoculation time prior to harvest. Plant response to infection, however, could be influenced by the developmental stage of the host plant, and ZC may continue to develop after harvest. The objectives of this study were to quantify Lso inoculation success, Lso titer, ZC severity and Lso development during storage in eight potato genotypes. These evaluations were conducted on plants infested with Lso-positive psyllids at 77, 12, and 4 days before vine removal (DBVR). The evaluated genotypes were categorized according to their relative resistance to Lso and tolerance to ZC symptoms. Lso inoculation success in the genotype family A07781, derived from Solanum chacoense, was lower than that of the susceptible control ('Russet Burbank'). A07781-4LB and A07781-3LB genotypes were characterized relatively resistant to the pathogen and highly tolerant to ZC symptoms, while A07781-10LB was categorized as susceptible to Lso but relatively tolerant to symptom expression. In stored potatoes, increase in Lso concentrations was observed for all infestation times. However, significantly higher Lso titer was detected in tubers infested 12 DBVR and the effect was similar across genotypes. Overall, the A07781 family can be considered as a promising source of resistance or tolerance to ZC.


Assuntos
Hemípteros/fisiologia , Doenças das Plantas/etiologia , Solanum tuberosum/genética , Animais , DNA de Plantas/isolamento & purificação , DNA de Plantas/metabolismo , Resistência à Doença , Suscetibilidade a Doenças , Genótipo , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Tubérculos/genética , Tubérculos/crescimento & desenvolvimento
9.
J Ethnopharmacol ; 247: 112201, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31499140

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Bergenin is a well-known active compound that exhibits antioxidant, antiarrhythmic, hepatoprotective, and anti-inflammatory activities. However, the resource reserve of Rodgersia sambucifolia, one of the main raw materials for extracting bergenin, have sharply declined, and the bergenin content in different germplasms differs vastly, resulting in a serious shortage of the market supply of bergenin. AIM OF THE STUDY: To investigate the influence of genetic diversity and environmental factors on bergenin content in Rodgersia sambucifolia. MATERIALS AND METHODS: Fifty Rodgersia sambucifolia samples with a growth period of 2-3 years were collected from different areas across China and the bergenin content was determined via HPLC. Meanwhile the total genomic DNA was extracted and ISSR was performed. The bergenin content as measured using HPLC and the environmental data gathered from the meteorological stations and field work were combined and analyzed using correlation tests in XLSTAT 2018 to detect the key factors affecting bergenin content. The genetic UPGMA tree constructed based on genetic distances of the 50 samples and the chemical dendrogram constructed according to the distance between the bergenin content were compared to determine the correlation between genetic and chemical differentiation. RESULTS: Among the 50 individuals, bergenin content varied from 2.83 to 12.54%, with the highest content being 4.43-fold that of the lowest content. The survey of the 50 individuals produced a total of 193 amplified bands, 187 of which were polymorphic (96.89%). In the study, bergenin content was positively correlated with annual mean temperature (AMT) (r = 0.583, P < 0.0001) and 1-12 month monthly mean temperature (MMT) (P < 0.0001). A comparison of the genetic dendrogram with the AHC dendrogram found no corresponding relationship between them. Mantel correlation analyses also showed that there was no significant correlation between them (r = 0.144). CONCLUSIONS: There were large differences in bergenin content among different germplasms that were not correlated with the high genetic variation in Rodgersia sambucifolia but were significantly correlated with environmental factors, such as temperature. This study lays the foundation for subsequent superior germplasm selection and artificial breeding of Rodgersia sambucifolia to improve the bergenin content and meet market demands.


Assuntos
Benzopiranos/metabolismo , Produtos Biológicos/metabolismo , Vias Biossintéticas/genética , Variação Genética , Saxifragaceae/metabolismo , Antineoplásicos/isolamento & purificação , Antineoplásicos/metabolismo , Antioxidantes/isolamento & purificação , Antioxidantes/metabolismo , Benzopiranos/isolamento & purificação , Produtos Biológicos/isolamento & purificação , China , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Filogenia , Melhoramento Vegetal , Saxifragaceae/genética , Sementes/genética , Sementes/metabolismo , Temperatura
10.
Sci Rep ; 9(1): 17295, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754140

RESUMO

In this study, ITS, ITS2, matK, rbcL and psbA-trnH in Rehmannia were successfully amplified and sequenced, but some ITS sequences need to be proofread according to ITS2 sequences. Compared with rbcL, matK and psbA-trnH, ITS and ITS2 had higher mutation rate and more information sites, and ITS2 had higher interspecific diversity and lower intraspecific variation in Rehmannia, but the interspecific genetic variation of rbcL and matK was lower. Furthermore, the obvious barcoding gap was found in psbA-trnH or ITS2 + psbA-trnH, and the overlap between interspecific and intraspecific variation of ITS, ITS2 or matK was less. In addition, the phylogenetic tree based on ITS or ITS2 indicated that R. glutinosa, R. chingii or R. henryi with obvious monophyly could be successfully identified, but R. piasezkii and R. elata were clustered into one branch, R. solanifolia could not be distinguished from R. glutinosa, and R. chingii was closer to R. henryi. In phylogenetic tree based on psbA-trnH or ITS2 + psbA-trnH, cultivars and wild varieties of R. glutinosa could be distinguished, were clearly separated from other Rehmannia species, and cultivars or wild varieties of R. glutinosa could be also distinguished by matK. Taken together, ITS2 has great potential in systematic study and species identification of Rehmannia, the combination of ITS2 and psbA-trnH might be the most suitable DNA barcode for Rehmannia species.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Genes de Plantas/genética , Rehmannia/genética , Especificidade da Espécie , China , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Estudos de Viabilidade , Variação Genética , Taxa de Mutação , Filogenia , Plantas Medicinais/classificação , Plantas Medicinais/genética , Rehmannia/classificação , Análise de Sequência de DNA
11.
Food Chem ; 300: 125205, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31330372

RESUMO

For efficient extraction of amplifiable DNA from edible vegetable oils, we developed a novel DNA extraction approach based on the non-silica-based dipolar nanocomposites. The nanoparticle comprises a hydrophilic polymethyl methacrylate core with abundant capillaries, hydrophilic vesicles decorated with molecules having DNA affinity and a coating hydrophobic polystyrene layer. The nanoparticles are soluble in oil, adsorb the DNA from the aqueous phase and gave a high DNA recovery ratio. All DNA extracts from fully refined vegetable oil soybean, peanut, rapeseed, and cottonseed oils, including their blends, were sufficiently pure to be amplified by real-time PCR targeting the chloroplast ribulose-1,5-bisphosphate gene (rbcL), therefore, the species of origin and their ratios in mixed vegetable oils blended from two or three oil-species could be determined. These results indicate that the novel DNA isolation and real-time PCR kit is a simple, sensitive and efficient tool for the species identification and traceability in refined vegetable oils.


Assuntos
DNA de Plantas/isolamento & purificação , Nanopartículas/química , Óleos de Plantas/química , Reação em Cadeia da Polimerase em Tempo Real/métodos , Verduras/genética , Fracionamento Químico/métodos , Cloroplastos/genética , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Polimetil Metacrilato/química , Ribulosefosfatos/genética , Dióxido de Silício
12.
J AOAC Int ; 102(2): 386-389, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30563583

RESUMO

Appropriate use of genetic methods for botanical identification is based on the type of sequencing used as well as testing region selection. Although Sanger sequencing is useful for single-target species identification, targeted next generation sequencing is ideal for testing blended products or those that contain unexpected species. Unknown, fresh, or lightly processed materials are best tested through the use of long, universal deoxyribonucleic acid (DNA) regions (e.g., DNA barcodes). For highly processed products, using shorter and more specific regions helps to prevent false negatives and positives. All approaches must use DNA extraction techniques that address the presence of inhibitory compounds, which often occur in abundance within herbs and spices. The accuracy of identifications is improved when comparing genetic data of any type with a reference database that contains expertly determined vouchered materials, a variety of closely related species, and multiple specimens of the same species.


Assuntos
Código de Barras de DNA Taxonômico , DNA de Plantas/genética , Plantas Medicinais/genética , Reação em Cadeia da Polimerase , Especiarias , DNA de Plantas/isolamento & purificação , Bases de Dados Genéticas
13.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1102-1103: 125-134, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388702

RESUMO

The correct isolation of nucleic acid from various cells is an important preliminary step before many biochemical and diagnostic processes such as cloning, sequencing, replication, hybridization, and complementary DNA (cDNA) synthesis. In this study, the coated magnetic nanoparticles (MNFs) with Tween 20 and oleic acid because of paramagnetic and bio-compatibility properties used in the extractions of genomic DNA (gDNA) and total RNA from prokaryote and eukaryote cells. The amount and accuracy of gDNA and total RNA extracted were proved via agarose gel electrophoresis, digestion and polymerase chain reaction (PCR) techniques. According to UV-Vis spectrophotometry data and gDNA and ribosomal RNA (rRNA) bands observed on the agarose gel, the results showed that extraction of this nano-kit can be comparable with the existing methods used to purifying nucleic acids such as purification based on the use of Cetyltrimethylammonium bromide (CTAB) and phenol-chloroform methods. Characterization of the particles defines them to be ~34.85 nm in diameter and exhibiting high saturation magnetization (28 emu/g). Elimination of hazardous reagents such as phenol and chloroform from extraction solutions, the replacement for inorganic coating such as silica with organic oil, and reduction of reaction time are some advantages of this method. Therefore, according to the challenges in the nucleic acid purification pathway, the use of these kits can be remarkable.


Assuntos
DNA/isolamento & purificação , Nanopartículas de Magnetita/química , RNA/isolamento & purificação , Animais , Células Sanguíneas/química , Bovinos , Células Cultivadas , Fracionamento Químico , DNA Bacteriano/isolamento & purificação , DNA de Plantas/isolamento & purificação , Eletroforese em Gel de Ágar , Genoma , Humanos
14.
Sci Rep ; 8(1): 2590, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29416103

RESUMO

This study is the first to report the successful development of a method to extract opium poppy (Papaver somniferum L.) DNA from heroin samples. Determining of the source of an unknown heroin sample (forensic geosourcing) is vital to informing domestic and foreign policy related to counter-narcoterrorism. Current profiling methods focus on identifying process-related chemical impurities found in heroin samples. Changes to the geographically distinct processing methods may lead to difficulties in classifying and attributing heroin samples to a region/country. This study focuses on methods to optimize the DNA extraction and amplification of samples with low levels of degraded DNA and inhibiting compounds such as heroin. We compared modified commercial-off-the-shelf extraction methods such as the Qiagen Plant, Stool and the Promega Maxwell-16 RNA-LEV tissue kits for the ability to extract opium poppy DNA from latex, raw and cooked opium, white and brown powder heroin and black tar heroin. Opium poppy DNA was successfully detected in all poppy-derived samples, including heroin. The modified Qiagen stool method with post-extraction purification and a two-stage, dual DNA polymerase amplification procedure resulted in the highest DNA yield and minimized inhibition. This paper describes the initial phase in establishing a DNA-based signature method to characterize heroin.


Assuntos
DNA de Plantas/química , DNA de Plantas/isolamento & purificação , Heroína/análise , Látex/análise , Ópio/análise , Papaver/química , Papaver/genética
15.
Chin J Nat Med ; 16(1): 1-9, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29425585

RESUMO

"Wu zhu yu", which is obtained from the dried unripe fruits of Tetradium ruticarpum (A. Jussieu) T. G. Hartley, has been used as a traditional Chinese medicine for treatment of headaches, abdominal colic, and hypertension for thousands of years. The present study was designed to assess the molecular genetic diversity among 25 collected accessions of T. ruticarpum (Wu zhu yu in Chinese) from different areas of China, based on inter-primer binding site (iPBS) markers and inter-simple sequence repeat (ISSR) markers. Thirteen ISSR primers generated 151 amplification bands, of which 130 were polymorphic. Out of 165 bands that were amplified using 10 iPBS primers, 152 were polymorphic. The iPBS markers displayed a higher proportion of polymorphic loci (PPL = 92.5%) than the ISSR markers (PPL = 84.9%). The results showed that T. ruticarpum possessed high loci polymorphism and genetic differentiation occurred in this plant. The combined data of iPBS and ISSR markers scored on 25 accessions produced five clusters that approximately matched the geographic distribution of the species. The results indicated that both iPBS and ISSR markers were reliable and effective tools for analyzing the genetic diversity in T. ruticarpum.


Assuntos
Evodia/classificação , Evodia/genética , Variação Genética , Sequências Repetitivas Dispersas/genética , Filogenia , Polimorfismo Genético , Sequências Repetidas Terminais/genética , Sequência de Bases , Sítios de Ligação , Impressões Digitais de DNA , Primers do DNA/metabolismo , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Marcadores Genéticos/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico
16.
J Pharm Biomed Anal ; 149: 512-516, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-29175746

RESUMO

The use of DNA barcodes for species identification is a common laboratory practice. However, PCR amplification of full-length DNA barcode in processed material is difficult because of severe DNA fragmentation. In this study, an adaptor ligation-mediated PCR protocol was derived to amplify sets of target DNA fragments isolated from two CCMG products. The specially designed adaptor with asymmetric strands and terminal modification avoids amplification of non-target DNA sequences. DNA extracted from Angelica sinensis and Panax notoginseng CCMG were ligated with the adaptors and amplified by an adaptor primer and a single universal barcode primer to obtain partial ITS2 sequence. Results showed that various length of DNA fragments within the ITS2 region were amplified and could be used to identify the concerned species. The adaptor ligation-mediated PCR is therefore a promising universal method for species identification in highly processed herbal products.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Medicamentos de Ervas Chinesas/análise , Medicina Tradicional Chinesa , Reação em Cadeia da Polimerase/métodos , Angelica sinensis/genética , Primers do DNA/genética , DNA Intergênico/genética , DNA Intergênico/isolamento & purificação , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Panax notoginseng/genética , Análise de Sequência de DNA/métodos
17.
Food Chem ; 245: 1042-1051, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29287321

RESUMO

DNA-based methods have been gaining recognition as a tool for botanical authentication in herbal medicine; however, their application in processed botanical materials is challenging due to the low quality and quantity of DNA left after extensive manufacturing processes. The low amount of DNA recovered from processed materials, especially extracts, is "invisible" by current technology, which has casted doubt on the presence of amplifiable botanical DNA. A method using adapter-ligation and PCR amplification was successfully applied to visualize the "invisible" DNA in botanical extracts. The size of the "invisible" DNA fragments in botanical extracts was around 20-220 bp compared to fragments of around 600 bp for the more easily visualized DNA in botanical powders. This technique is the first to allow characterization and visualization of small fragments of DNA in processed botanical materials and will provide key information to guide the development of appropriate DNA-based botanical authentication methods in the future.


Assuntos
DNA de Plantas/análise , Suplementos Nutricionais/análise , Plantas Medicinais/genética , DNA de Plantas/isolamento & purificação , Fraude , Plantas Medicinais/classificação , Reação em Cadeia da Polimerase
18.
Food Chem ; 245: 812-819, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29287446

RESUMO

Molecular food traceability requires continuous updates to identify more robust, efficient and affordable methodologies to guarantee food quality and safety and especially consumers' health. Available commercial kits are often unsatisfactory and require modifications to successfully detect single components on complex and transformed food matrices. Here we report a simple method for molecular traceability of cold-pressed hazelnut oil based on microsatellite DNA markers. Different genomic extraction methodologies were tested and a total genome pre-amplification step was applied on PCR-negative samples. PCR-capillary electrophoresis using nine microsatellites demonstrates the accuracy of the fingerprint analysis even for filtered oil.


Assuntos
Corylus/genética , Eletroforese Capilar/métodos , Repetições de Microssatélites , Óleos de Plantas/análise , Reação em Cadeia da Polimerase/métodos , Fracionamento Químico , DNA de Plantas/isolamento & purificação , Análise de Alimentos/métodos
19.
PLoS One ; 12(10): e0186757, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29053740

RESUMO

Gene flow dynamics of common ash (Fraxinus excelsior L.) is affected by several human activities in Central Europe, including habitat fragmentation, agroforestry expansion, controlled and uncontrolled transfer of reproductive material, and a recently introduced emerging infectious disease, ash dieback, caused by Hymenoscyphus fraxineus. Habitat fragmentation may alter genetic connectivity and effective population size, leading to loss of genetic diversity and increased inbreeding in ash populations. Gene flow from cultivated trees in landscapes close to their native counterparts may also influence the adaptability of future generations. The devastating effects of ash dieback have already been observed in both natural and managed populations in continental Europe. However, potential long-term effects of genetic bottlenecks depend on gene flow across fragmented landscapes. For this reason, we studied the genetic connectivity of ash trees in an isolated forest patch of a fragmented landscape in Rösenbeck, Germany. We applied two approaches to parentage analysis to estimate gene flow patterns at the study site. We specifically investigated the presence of background pollination at the landscape level and the degree of genetic isolation between native and cultivated trees. Local meteorological data was utilized to understand the effect of wind on the pollen and seed dispersal patterns. Gender information of the adult trees was considered for calculating the dispersal distances. We found that the majority of the studied seeds (55-64%) and seedlings (75-98%) in the forest patch were fathered and mothered by the trees within the same patch. However, we determined a considerable amount of pollen flow (26-45%) from outside of the study site, representing background pollination at the landscape level. Limited pollen flow was observed from neighbouring cultivated trees (2%). Both pollen and seeds were dispersed in all directions in accordance with the local wind directions. Whereas there was no positive correlation between pollen dispersal distance and wind speed, the correlation between seed dispersal distance and wind speed was significant (0.71, p < 0.001), indicating that strong wind favours long-distance dispersal of ash seeds. Finally, we discussed the implications of establishing gene conservation stands and the use of enrichment planting in the face of ash dieback.


Assuntos
Ecossistema , Fraxinus/genética , Fluxo Gênico , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Genes de Plantas , Repetições de Microssatélites/genética , Pólen , Polinização , Vento
20.
BMC Genomics ; 18(1): 599, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28797221

RESUMO

BACKGROUND: Chamomile (Matricaria recutita L.) has a long history of use in herbal medicine with various applications, and the flower heads contain numerous secondary metabolites which are medicinally active. In the major crop plants, next generation sequencing (NGS) approaches are intensely applied to exploit genetic resources, to develop genomic resources and to enhance breeding. Here, genotyping-by-sequencing (GBS) has been used in the non-model medicinal plant chamomile to evaluate the genetic structure of the cultivated varieties/populations, and to perform genome wide association study (GWAS) focusing on genes with large effect on flowering time and the medicinally important alpha-bisabolol content. RESULTS: GBS analysis allowed the identification of 6495 high-quality SNP-markers in our panel of 91 M. recutita plants from 33 origins (2-4 genotypes each) and 4 M. discoidea plants as outgroup, grown in the greenhouse in Gatersleben, Germany. M. recutita proved to be clearly distinct from the outgroup, as was demonstrated by different cluster and principal coordinate analyses using the SNP-markers. Chamomile genotypes from the same origin were mostly genetically similar. Model-based cluster analysis revealed one large group of tetraploid genotypes with low genetic differentiation including 39 plants from 14 origins. Tetraploids tended to display lower genetic diversity than diploids, probably reflecting their origin by artificial polyploidisation from only a limited set of genetic backgrounds. Analyses of flowering time demonstrated that diploids generally flowered earlier than tetraploids, and the analysis of alpha-bisabolol identified several tetraploid genotypes with a high content. GWAS identified highly significant (P < 0.01) SNPs for flowering time (9) and alpha-bisabolol (71). One sequence harbouring SNPs associated with flowering time was described to play a role in self-pollination in Arabidopsis thaliana, whereas four sequences harbouring SNPs associated with alpha-bisabolol were identified to be involved in plant biotic and abiotic stress response in various plants species. CONCLUSIONS: The first genomic resource for future applications to enhance breeding in chamomile was created, andanalyses of diversity will facilitate the exploitation of these genetic resources. The GWAS data pave the way for future research towards the genetics underlying important traits in chamomile, the identification of marker-trait associations, and development of reliable markers for practical breeding.


Assuntos
Camomila/genética , Flores/crescimento & desenvolvimento , Loci Gênicos/genética , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Polimorfismo de Nucleotídeo Único/genética , Sesquiterpenos/metabolismo , Cruzamento , Camomila/crescimento & desenvolvimento , DNA de Plantas/genética , DNA de Plantas/isolamento & purificação , Diploide , Sesquiterpenos Monocíclicos , Análise de Sequência , Tetraploidia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA