Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Medicinas Complementares
Métodos Terapêuticos e Terapias MTCI
Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Signal Transduct Target Ther ; 8(1): 300, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37574471

RESUMO

As a family of cationic host defense peptides, defensins are mainly synthesized by Paneth cells, neutrophils, and epithelial cells, contributing to host defense. Their biological functions in innate immunity, as well as their structure and activity relationships, along with their mechanisms of action and therapeutic potential, have been of great interest in recent years. To highlight the key research into the role of defensins in human and animal health, we first describe their research history, structural features, evolution, and antimicrobial mechanisms. Next, we cover the role of defensins in immune homeostasis, chemotaxis, mucosal barrier function, gut microbiota regulation, intestinal development and regulation of cell death. Further, we discuss their clinical relevance and therapeutic potential in various diseases, including infectious disease, inflammatory bowel disease, diabetes and obesity, chronic inflammatory lung disease, periodontitis and cancer. Finally, we summarize the current knowledge regarding the nutrient-dependent regulation of defensins, including fatty acids, amino acids, microelements, plant extracts, and probiotics, while considering the clinical application of such regulation. Together, the review summarizes the various biological functions, mechanism of actions and potential clinical significance of defensins, along with the challenges in developing defensins-based therapy, thus providing crucial insights into their biology and potential clinical utility.


Assuntos
Doenças Inflamatórias Intestinais , Celulas de Paneth , Animais , Humanos , Celulas de Paneth/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Defensinas/genética , Defensinas/metabolismo
2.
Genes (Basel) ; 13(11)2022 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-36421774

RESUMO

Commiphora gileadensis L. is a medicinal plant, known as balsam, with pharmaceutical potential for its phytochemical activities and chemical constituents. Genetic diversity is a genetic tool used in medicinal plant evolution and conservation. Three accessions from C. gileadensis were collected from three localities in Saudi Arabia (Jeddah, Jizan and Riyadh). Genetic characterization was carried out using physio-biochemical parameters, molecular markers (inter-simple sequence repeat (ISSR) and start codon targeted (SCoT)), DNA barcoding (18 S rRNA and ITS rDNA regions), relative gene expressions (phenylalanine ammonia-lyase 1 (PAL1), defensin (PR-12)) and pathogenesis-related protein (AFPRT). The results of this study showed that C. gileadensis accession C3, collected from Riyadh, had the highest content from the physio-biochemical parameters perspective, with values of 92.54 mg/g and 77.13 mg/g for total phenolic content (TPC) and total flavonoid content (TFC), respectively. Furthermore, the highest content of antioxidant enzyme activity was present in accession C3 with values of 16.87, 60.87, 35.76 and 27.98 U mg-1 for superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) (mol/min/mg FW) and ascorbate peroxidase (APX) (U mg-1 protein), respectively. The highest total number of bands and number of unique bands were 138 and 59, respectively, for the SCoT marker. The SCoT marker was the most efficient for the genetic diversity of C. gileadensis by producing the highest polymorphism (75.63%). DNA barcoding using 18 S and ITS showed the nearby Commiphora genus and clustered C. gileadensis accessions from Jeddah and Jizan in one clade and the C. gileadensis accession from Ryiadh in a separate cluster. Moreover, relative gene expression of the PAL1, defensin (PR-12) and AFPRT (PR1) genes was upregulated in the C. gileadensis accession from Ryiadh. In conclusion, ecological and environmental conditions in each locality affect the genomic expression and genetic diversity, which can help the evolution of important medicinal plants and improve breeding and conservation systems.


Assuntos
Commiphora , Código de Barras de DNA Taxonômico , Commiphora/genética , Arábia Saudita , Filogenia , Melhoramento Vegetal , Códon de Iniciação , Marcadores Genéticos , Expressão Gênica , Defensinas/genética
3.
Toxins (Basel) ; 14(9)2022 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-36136568

RESUMO

Mesobuthus martensii, a famous and important Traditional Chinese Medicine has a long medical history and unique functions. It is the first scorpion species whose whole genome was sequenced worldwide. In addition, it is the most widespread and infamous poisonous animal in northern China with complex habitats. It possesses several kinds of toxins that can regulate different ion channels and serve as crucial natural drug resources. Extensive and in-depth studies have been performed on the structures and functions of toxins of M. martensii. In this research, we compared the morphology of M. martensii populations from different localities and calculated the COI genetic distance to determine intraspecific variations. Transcriptome sequencing by RNA-sequencing of the venom glands of M. martensii from ten localities and M. eupeus from one locality was analyzed. The results revealed intraspecific variation in the expression of sodium channel toxin genes, potassium channel toxin genes, calcium channel toxin genes, chloride channel toxin genes, and defensin genes that could be related to the habitats in which these populations are distributed, except the genetic relationships. However, it is not the same in different toxin families. M. martensii and M. eupeus exhibit sexual dimorphism under the expression of toxin genes, which also vary in different toxin families. The following order was recorded in the difference of expression of sodium channel toxin genes: interspecific difference; differences among different populations of the same species; differences between sexes in the same population, whereas the order in the difference of expression of potassium channel toxin genes was interspecific difference; differences between both sexes of same populations; differences among the same sex in different populations of the same species. In addition, there existed fewer expressed genes of calcium channel toxins, chloride channel toxins, and defensins (no more than four members in each family), and their expression differences were not distinct. Interestingly, the expression of two calcium channel toxin genes showed a preference for males and certain populations. We found a difference in the expression of sodium channel toxin genes, potassium channel toxin genes, and chloride channel toxin genes between M. martensii and M. eupeus. In most cases, the expression of one member of the toxin gene clusters distributed in series on the genome were close in different populations and genders, and the members of most clusters expressed in same population and gender tended to be the different. Twenty-one toxin genes were found with the MS/MS identification evidence of M. martensii venom. Since scorpions were not subjected to electrical stimulation or other special treatments before conducting the transcriptome extraction experiment, the results suggested the presence of intraspecific variation and sexual dimorphism of toxin components which revealed the expression characteristics of toxin and defensin genes in M. martensii. We believe this study will promote further in-depth research and use of scorpions and their toxin resources, which in turn will be helpful in standardizing the identification and medical applications of Quanxie in traditional Chinese medicine.


Assuntos
Venenos de Escorpião , Escorpiões , Sequência de Aminoácidos , Animais , Canais de Cálcio/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Defensinas/genética , Feminino , Masculino , Canais de Potássio/genética , RNA/metabolismo , Venenos de Escorpião/química , Escorpiões/genética , Escorpiões/metabolismo , Homologia de Sequência de Aminoácidos , Canais de Sódio/genética , Espectrometria de Massas em Tandem , Transcriptoma
4.
Mikrobiyol Bul ; 55(1): 81-90, 2021 Jan.
Artigo em Turco | MEDLINE | ID: mdl-33590983

RESUMO

Lucilia sericata, one of the most common species of the Calliphoridae family, is found in large numbers around droppings, garbage and carcasses. This fly species is important in medicine, forensics and veterinary medicine. The larvae of the parasite are important both in veterinary medicine and in combating of the animal diseases, as they cause significant losses in animal production. Since they are one of the first fly colonies to settle on corpses, they can also be used in determining the time of death in the field of forensic medicine. L.sericata larvae used in Maggot debridement treatment (MDT) which is a treatment method with fly larvae, help wound healing by destroying necrotic tissues and infectious agents in wounds. While the larvae protect themselves from polymicrobial flora with the proteins they secrete; at the same time, they make an interesting contribution to wound healing with these molecules secreted. One of the most important molecules discovered in recent years is lucimycin which has an antifungal effect. In addition, lucifensin and chymotrypsin secretions have gained importance in recent years due to their antibacterial effects and especially their effects on resistant gram-negative and positive bacteria. There is a need for the discovery of the molecules that can be alternative in the treatment of non-healing wounds or that can be applied together with existing antibiotics. It is necessary to investigate the antimicrobial characterization of the compounds involved in maggot therapy and their mechanisms. The aim of this study was to clone, molecular characterization and analysis of the antigenic structures of lucifensin and chymotrypsin genes, which are important defensin molecules secreted by L.sericata larvae used in MDT. Primarily, the cultivation of L.sericata colonies to be used in molecular studies were performed. Later, RNA isolation and cDNA synthesis from larvae were carried out. Lucifensin and chymotrypsin genes were individually inserted into the pJet1.2 plasmid by cloning reactions. The presence of the recombinant plasmid was confirmed by PCR screening and DNA sequence analysis methods in all steps. Nucleotide and amino acid based molecular characterizations of these two genes, which are important larval components in wound treatment, have been made. Antigenic regions and three-dimensional structures of the proteins were obtained. The isolate numbered MT495795 of the L.sericata lucifensin gene and the isolate numbered MT495794 of the chymotrypsin gene were registered to GenBank. This data reported for the first time in the Republic of Turkey will contribute to the literature. From the beginning of the 20th century until the discovery of the antibiotics, MDT was applied especially on soldiers but did not find much application area after the discovery of the antibiotics. Drug resistance, which is the most important problem encountered in the treatment of the wounds today, has led to the recall of MDT and its mechanism of action. In this study the data, obtained will constitute a source for the multidisciplinary studies of the scientists from different fields on the discovery and applicability of the important moleculesin the treatment of the wounds.


Assuntos
Quimotripsina , Defensinas , Dípteros , Animais , Quimotripsina/genética , Quimotripsina/metabolismo , Desbridamento , Defensinas/genética , Defensinas/metabolismo , Dípteros/genética , Humanos , Larva , Turquia
5.
Exp Dermatol ; 30(2): 249-261, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33067891

RESUMO

Phototherapy with narrow-band Ultraviolet B (nb-UVB) is a major therapeutic option in atopic dermatitis (AD), yet knowledge of the early molecular responses to this treatment is lacking. The objective of this study was to map the early transcriptional changes in AD skin in response to nb-UVB treatment. Adult patients (n = 16) with AD were included in the study and scored with validated scoring tools. AD skin was irradiated with local nb-UVB on day 0, 2 and 4. Skin biopsies were taken before and after treatment (day 0 and 7) and analysed for genome-wide modulation of transcription. When examining the early response after three local UVB treatments, gene expression analysis revealed 77 significantly modulated transcripts (30 down- and 47 upregulated). Among them were transcripts related to the inflammatory response, melanin synthesis, keratinization and epidermal structure. Interestingly, the pro-inflammatory cytokine IL-36γ was reduced after treatment, while the anti-inflammatory cytokine IL-37 increased after treatment with nb-UVB. There was also a modulation of several other mediators involved in inflammation, among them defensins and S100 proteins. This is the first study of early transcriptomic changes in AD skin in response to nb-UVB. We reveal robust modulation of a small group of inflammatory and anti-inflammatory targets, including the IL-1 family members IL36γ and IL-37, which is evident before any detectable changes in skin morphology or immune cell infiltrates. These findings provide important clues to the molecular mechanisms behind the treatment response and shed light on new potential treatment targets.


Assuntos
Dermatite Atópica/genética , Dermatite Atópica/radioterapia , Interleucina-1/genética , Transcrição Gênica/efeitos da radiação , Terapia Ultravioleta , Adulto , Idoso , Defensinas/genética , Dermatite Atópica/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas S100/genética , Fatores de Tempo , Raios Ultravioleta , Adulto Jovem
6.
Mol Plant Pathol ; 21(12): 1620-1633, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33029918

RESUMO

Pectin is synthesized in a highly methylesterified form in the Golgi cisternae and partially de-methylesterified in muro by pectin methylesterases (PMEs). Arabidopsis thaliana produces a local and strong induction of PME activity during the infection of the necrotrophic fungus Botrytis cinerea. AtPME17 is a putative A. thaliana PME highly induced in response to B. cinerea. Here, a fine tuning of AtPME17 expression by different defence hormones was identified. Our genetic evidence demonstrates that AtPME17 strongly contributes to the pathogen-induced PME activity and resistance against B. cinerea by triggering jasmonic acid-ethylene-dependent PDF1.2 expression. AtPME17 belongs to group 2 isoforms of PMEs characterized by a PME domain preceded by an N-terminal PRO region. However, the biochemical evidence for AtPME17 as a functional PME is still lacking and the role played by its PRO region is not known. Using the Pichia pastoris expression system, we demonstrate that AtPME17 is a functional PME with activity favoured by an increase in pH. AtPME17 performs a blockwise pattern of pectin de-methylesterification that favours the formation of egg-box structures between homogalacturonans. Recombinant AtPME17 expression in Escherichia coli reveals that the PRO region acts as an intramolecular inhibitor of AtPME17 activity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Botrytis/fisiologia , Hidrolases de Éster Carboxílico/metabolismo , Defensinas/metabolismo , Pectinas/metabolismo , Doenças das Plantas/imunologia , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Hidrolases de Éster Carboxílico/genética , Ciclopentanos/metabolismo , Defensinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Etilenos/metabolismo , Expressão Gênica , Isoenzimas , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes , Saccharomycetales/genética , Saccharomycetales/metabolismo
7.
Food Funct ; 10(6): 3535-3542, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31149689

RESUMO

Enteric infection is a major cause of morbidity and mortality in both humans and animals worldwide. Immunotherapy against intestinal infection is a well-known alternative to the antibiotic strategy. Herein, we demonstrated that isoleucine significantly suppressed the multiplication of E. coli in the presence of IPEC-J2 cells. Isoleucine supplementation enhanced the concentrations of total plasma protein and IgA in pigs compared to the alanine control diet, while inhibiting the increase in plasma endotoxin and IL-6 contents induced by E. coli challenge. A significant interaction between the E. coli challenge and the diet treatment was found in the red blood cell volume. Isoleucine improved the expression of porcine ß-defensin-1 (pBD-1), pBD-2, pBD-3, pBD-114 and pBD-129 in the jejunum and ileum of pigs with or without E. coli challenge. Conclusively, isoleucine attenuated the infection caused by the E. coli challenge possibly through increasing the intestinal ß-defensin expression and inhibiting the increase in plasma endotoxin and IL-6 in weaned pigs.


Assuntos
Defensinas/genética , Endotoxinas/sangue , Infecções por Escherichia coli/veterinária , Escherichia coli/fisiologia , Interleucina-6/sangue , Mucosa Intestinal/metabolismo , Isoleucina/administração & dosagem , Doenças dos Suínos/tratamento farmacológico , Animais , Defensinas/metabolismo , Suplementos Nutricionais/análise , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Íleo/efeitos dos fármacos , Íleo/metabolismo , Íleo/microbiologia , Interleucina-6/genética , Mucosa Intestinal/microbiologia , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , Jejuno/microbiologia , Suínos , Doenças dos Suínos/genética , Doenças dos Suínos/metabolismo , Doenças dos Suínos/microbiologia
8.
PLoS One ; 13(8): e0201668, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30071099

RESUMO

Data from both the laboratory and clinic in the last decade indicate that antimicrobial peptides (AMPs) are widely regarded as potential sources of future antibiotics owing to their broad-spectrum activities, rapid killing, potentially low-resistance rate and multidirectional mechanisms of action compared to conventional antibiotics. Defensins, a prominent family of AMPs, have been found in a wide range of organisms including plants. Thailand is a rich source of plants including medicinal plants used therapeutically, however there is no report of defensin from among these plants. In this study, a novel plant defensin gene, BcDef, was successfully cloned from Brugmansia x candida (Bc). BcDef cDNA was 237 bp in length, encoding 78 amino acids with a putative 31-amino acid residue signal peptide at the N-terminal followed by the mature sequence. BcDef shared high sequence identity (78-85%) with Solanaceae defensins and belonged to the class I plant defensins. From homology modeling, BcDef shared a conserved triple stranded ß-sheet (ß1-ß3) and one α-helix (α1) connected by a loop (L1-L3). BcDef1 peptide, designed from the γ-core motifs of BcDef located in loop 3, showed antibacterial activity against both Gram-positive and Gram-negative pathogens with the lowest MIC (15.70 µM) against Staphylococcus epidermidis. This peptide affected cell membrane potential and permeability, and caused cell membrane disruption. Moreover, BcDef1 also exhibited antioxidant activity and showed low cytotoxicity against mouse fibroblast L929 cells. These findings may provide an opportunity for developing a promising antibacterial agent for medical application in the future.


Assuntos
Brugmansia/metabolismo , Candida/patogenicidade , Defensinas/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Animais , Antioxidantes/química , Brugmansia/microbiologia , Linhagem Celular , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Defensinas/classificação , Defensinas/genética , Defensinas/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Permeabilidade/efeitos dos fármacos , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Proteínas de Plantas/farmacologia , Estrutura Secundária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia , Alinhamento de Sequência , Solanaceae/metabolismo
9.
Benef Microbes ; 9(5): 743-754, 2018 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30099892

RESUMO

Bacillus is widely used in the livestock industry. This study was designed to evaluate the effects of probiotic Bacillus amyloliquefaciens SC06 (Ba), originally isolated from soil, in piglets diet as an alternative to antibiotics (aureomycin), mainly on intestinal epithelial barrier and immune function. Ninety piglets were divided into three groups: G1 (containing 150 mg/kg aureomycin in the diet); G2 (containing 75 mg/kg aureomycin and 1×108 cfu/kg Ba in the diet); G3 (containing 2×108 cfu/kg Ba in the diet without any antibiotics). The results showed that, compared with the antibiotic group (G1), villus length, crypt depth and villus length/crypt depth ratio of intestine significantly increased in the G2 and G3 groups. In addition, intestinal villi morphology, goblet-cell number, mitochondria structure and tight junction proteins of intestinal epithelial cells in G2 and G3 were better than in G1. The relative gene expression of intestinal mucosal defensin-1, claudin3, claudin4, and human mucin-1 in G3 was significantly lower, while the expression of villin was significantly higher than in the antibiotic group. Probiotic Ba could significantly decrease serum interferon (IFN)-α, IFN-γ, interleukin (IL)-1ß, and IL-4 levels, whereas increase tumour necrosis factor (TNF)-α and IL-6 secretion. Ba could also significantly decrease cytokines TNF-α, IFN-γ, IL-1ß, and IL-4 level in liver, whereas it significantly increased IFN-α. Furthermore, replacing antibiotics with Ba also significantly down-regulated gene expression of TNF and IL-1α in intestinal mucosa, but up-regulated IL-6 and IL-8 transcription. Dietary addition of Ba could significantly reduce the gene expression of nuclear factor kappa beta (NFκB)-p50 and Toll-like receptor (TLR)6, while there was no significant difference for that of myeloid differentiation primary response 88, TNF receptor-associated factor-6, nucleotide-binding oligomerisation domain-containing protein 1, TLR2, TLR4, and TLR9. Taken together, our findings demonstrated that probiotic Ba could increase the intestinal epithelial cell barrier and immune function by improving intestinal mucosa structure, tight junctions and by activating the TLRs signalling pathway.


Assuntos
Bacillus amyloliquefaciens/fisiologia , Células Epiteliais/imunologia , Mucosa Intestinal/efeitos dos fármacos , Probióticos/administração & dosagem , Animais , Claudina-3/genética , Claudina-3/imunologia , Claudina-4/genética , Claudina-4/imunologia , Citocinas/genética , Citocinas/imunologia , Defensinas/genética , Defensinas/imunologia , Avaliação Pré-Clínica de Medicamentos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Masculino , Suínos
10.
Antimicrob Agents Chemother ; 60(10): 6302-12, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27503651

RESUMO

The plant defensin NaD1 is a potent antifungal molecule that also targets tumor cells with a high efficiency. We examined the features of NaD1 that contribute to these two activities by producing a series of chimeras with NaD2, a defensin that has relatively poor activity against fungi and no activity against tumor cells. All plant defensins have a common tertiary structure known as a cysteine-stabilized α-ß motif which consists of an α helix and a triple-stranded ß-sheet stabilized by four disulfide bonds. The chimeras were produced by replacing loops 1 to 7, the sequences between each of the conserved cysteine residues on NaD1, with the corresponding loops from NaD2. The loop 5 swap replaced the sequence motif (SKILRR) that mediates tight binding with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and is essential for the potent cytotoxic effect of NaD1 on tumor cells. Consistent with previous reports, there was a strong correlation between PI(4,5)P2 binding and the tumor cell killing activity of all of the chimeras. However, this correlation did not extend to antifungal activity. Some of the loop swap chimeras were efficient antifungal molecules, even though they bound poorly to PI(4,5)P2, suggesting that additional mechanisms operate against fungal cells. Unexpectedly, the loop 1B swap chimera was 10 times more active than NaD1 against filamentous fungi. This led to the conclusion that defensin loops have evolved as modular components that combine to make antifungal molecules with variable mechanisms of action and that artificial combinations of loops can increase antifungal activity compared to that of the natural variants.


Assuntos
Antifúngicos/farmacologia , Defensinas/química , Defensinas/farmacologia , Nicotiana/química , Antifúngicos/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Defensinas/genética , Defensinas/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Fusarium/efeitos dos fármacos , Humanos , Lipossomos , Neomicina/farmacologia , Permeabilidade , Fosfatidilinositol 4,5-Difosfato/metabolismo , Dobramento de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo
11.
Sci Rep ; 6: 30251, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27445230

RESUMO

ERF transcription factors play critical roles in plant immune responses. Here, we report the function of AtERF014, a nucleus-localized transcriptional activator, in Arabidopsis immunity. Expression of AtERF014 was induced by Pseudomonas syringae pv. tomato (Pst) and Botrytis cinerea (Bc). AtERF014-overexpressing (OE) plants displayed increased Pst resistance but decreased Bc resistance, whereas AtERF014-RNAi plants exhibited decreased Pst resistance but increased Bc resistance. After Pst infection, expression of salicylic acid (SA)-responsive genes AtPR1 and AtPR5 in AtERF014-OE plants and of a jasmonic acid/ethylene-responsive gene AtPDF1.2 in AtERF014-RNAi plants was intensified but expression of AtPDF1.2 in AtERF014-OE plants and of AtPR1 and AtPR5 in AtERF014-RNAi plants was weakened. After Bc infection, expression of AtPR1 and AtPR5 in AtERF014-OE plants was attenuated but expression of AtPR1, AtPR5 and AtPDF1.2 in AtERF014-RNAi plants was strengthened. Pathogen- and flg22-induced ROS burst, expression of PTI genes and SA-induced defense were partially suppressed in AtERF014-RNAi plants, whereas pathogen-induced ROS and flg22-induced immune response were strengthened in AtER014-OE plants. Altered expression of AtERR014 affected expression of pectin biosynthetic genes and pectin content in AtERF014-RNAi plants was decreased. These data demonstrate that AtERF014 acts as a dual regulator that differentially modulates immunity against Pst and Bc in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Imunidade Vegetal/genética , Fatores de Transcrição/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Botrytis/imunologia , Botrytis/patogenicidade , Ciclopentanos/metabolismo , Defensinas/genética , Resistência à Doença/imunologia , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Oxilipinas/metabolismo , Pectinas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Pseudomonas syringae/imunologia , Pseudomonas syringae/patogenicidade , Ácido Salicílico/metabolismo
12.
Sci Rep ; 6: 27070, 2016 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-27230284

RESUMO

Butyrate has been used to treat different inflammatory disease with positive outcomes, the mechanisms by which butyrate exerts its anti-inflammatory effects remain largely undefined. Here we proposed a new mechanism that butyrate manipulate endogenous host defense peptides (HDPs) which contributes to the elimination of Escherichia coli O157:H7, and thus affects the alleviation of inflammation. An experiment in piglets treated with butyrate (0.2% of diets) 2 days before E. coli O157:H7 challenge was designed to investigate porcine HDP expression, inflammation and E. coli O157:H7 load in feces. The mechanisms underlying butyrate-induced HDP gene expression and the antibacterial activity and bacterial clearance of macrophage 3D4/2 cells in vitro were examined. Butyrate treatment (i) alleviated the clinical symptoms of E. coli O157:H7-induced hemolytic uremic syndrome (HUS) and the severity of intestinal inflammation; (ii) reduced the E. coli O157:H7 load in feces; (iii) significantly upregulated multiple, but not all, HDPs in vitro and in vivo via histone deacetylase (HDAC) inhibition; and (iv) enhanced the antibacterial activity and bacterial clearance of 3D4/2 cells. Our findings indicate that butyrate enhances disease resistance, promotes the clearance of E. coli O157:H7, and alleviates the clinical symptoms of HUS and inflammation, partially, by affecting HDP expression via HDAC inhibition.


Assuntos
Ácido Butírico/farmacologia , Defensinas/genética , Infecções por Escherichia coli/imunologia , Escherichia coli O157/imunologia , Síndrome Hemolítico-Urêmica/imunologia , Inibidores de Histona Desacetilases/farmacologia , Animais , Ácido Butírico/uso terapêutico , Linhagem Celular , Colite/sangue , Colite/tratamento farmacológico , Colite/imunologia , Colite/microbiologia , Colo/imunologia , Colo/metabolismo , Colo/patologia , Citocinas/sangue , Defensinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Infecções por Escherichia coli/sangue , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Fezes/microbiologia , Expressão Gênica , Síndrome Hemolítico-Urêmica/sangue , Síndrome Hemolítico-Urêmica/tratamento farmacológico , Síndrome Hemolítico-Urêmica/microbiologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Sus scrofa , Ativação Transcricional , Regulação para Cima/efeitos dos fármacos
13.
Mol Biotechnol ; 56(9): 814-23, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24802621

RESUMO

Multi-auto-transformation vector system has been one of the strategies to produce marker-free transgenic plants without using selective chemicals and plant growth regulators and thus facilitating transgene stacking. In the study reported here, retransformation was carried out in marker-free transgenic potato CV. May Queen containing ChiC gene (isolated from Streptomyces griseus strain HUT 6037) with wasabi defensin (WD) gene (isolated from Wasabia japonica) to pyramid the two disease resistant genes. Molecular analyses of the developed shoots confirmed the existence of both the genes of interest (ChiC and WD) in transgenic plants. Co-expression of the genes was confirmed by RT-PCR, northern blot, and western blot analyses. Disease resistance assay of in vitro plants showed that the transgenic lines co-expressing both the ChiC and WD genes had higher resistance against the fungal pathogens, Fusarium oxysporum (Fusarium wilt) and Alternaria solani (early blight) compared to the non-transformed control and the transgenic lines expressing either of the ChiC or WD genes. The disease resistance potential of the transgenic plants could be increased by transgene stacking or multiple transformations.


Assuntos
Alternaria/patogenicidade , Quitinases/metabolismo , Defensinas/metabolismo , Fusarium/patogenicidade , Plantas Geneticamente Modificadas/microbiologia , Solanum tuberosum/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quitinases/genética , Defensinas/genética , Técnicas In Vitro , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Solanum tuberosum/microbiologia , Streptomyces griseus/enzimologia , Transformação Genética , Wasabia/metabolismo
14.
Biomed Res Int ; 2013: 986273, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24319695

RESUMO

Antimicrobial therapy is a useful tool to control infectious diseases in general and rising antibiotic resistant microorganisms in particular. Alternative strategies are desirable, and antimicrobial peptides (AMP) represent attractive control agents. Mexican avocado (Persea americana var. drymifolia) is used in traditional medicine; however, the AMP production has not been reported in this plant. We obtained a cDNA library from avocado fruit and clone PaDef was identified, which has a cDNA (249 bp) encoding a protein (78 aa) homologous with plant defensins (>80%). We expressed the defensin PaDef cDNA (pBME3) in the bovine endothelial cell line BVE-E6E7. Polyclonal and clonal populations were obtained and their activity was evaluated against Escherichia coli, Staphylococcus aureus, and Candida albicans. E. coli viability was inhibited with 100 µg/mL of total protein from clones (>55%). Also, S. aureus viability was inhibited from 50 µg/mL total protein (27-38%) but was more evident at 100 µg/mL (52-65%). This inhibition was higher than the effect showed by polyclonal population (~23%). Finally, we did not detect activity against C. albicans. These results are the first report that shows antimicrobial activity of a defensin produced by avocado and suggest that this AMP could be used in the control of pathogens.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Defensinas/farmacologia , Escherichia coli/efeitos dos fármacos , Proteínas de Plantas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Sequência de Bases , Candida albicans/efeitos dos fármacos , Bovinos , Linhagem Celular , DNA de Plantas/genética , Defensinas/química , Defensinas/genética , Células Endoteliais/metabolismo , Expressão Gênica , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Persea/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Medicinais/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia
15.
Exp Parasitol ; 135(1): 116-25, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23816644

RESUMO

Antimicrobial peptides (AMPs), which are differentiated from other antibiotic peptides, such as gramicidins and polymyxins, because they are synthesized by large enzymatic complex and bear modified amino acids including d-amino acids, are short polymers of l-amino acids synthesized by ribosomes upon which all living organisms rely to defend themselves from invaders or competitor microorganisms. AMPs have received a great deal of attention from the scientific community as potential new drugs for neglected diseases such as Leishmaniasis. In plants, they include several families of compounds, including the plant defensins. The aim of the present study was to improve the expression of recombinant defensin from Vigna unguiculata seeds (Vu-Defr) and to test its activity against Leishmania amazonensis promatigotes. Recombinant expression was performed in LB and TB media and under different conditions. The purification of Vu-Defr was achieved by immobilized metal ion affinity and reversed-phase chromatography. The purified Vu-Defr was analyzed by circular dichroism (CD), and its biological activity was tested against L. amazonenis promastigotes. To demonstrate that the recombinant production of Vu-Defr did not interfere with its fold and biological activity, the results of all experiments were compared with the results from the natural defensin (Vu-Def). The CD spectra of both peptides presented good superimposition indicating that both peptides present very similar secondary structure and that the Vu-Defr was correctly folded. L. amazonensis treated with Vu-Defr led to the elimination of 54.3% and 46.9% of the parasites at 24 and 48h of incubation time, respectively. Vu-Def eliminated 50% and 54.8% of the parasites at 24 and 48 h, respectively. Both were used at a concentration of 100 µg/mL. These results suggested the potential for plant defensins to be used as new antiparasitic substances.


Assuntos
Defensinas/farmacologia , Fabaceae/química , Leishmania mexicana/efeitos dos fármacos , Extratos Vegetais/farmacologia , Sementes/química , Defensinas/genética , Defensinas/metabolismo , Eletroforese em Gel de Poliacrilamida , Escherichia coli/fisiologia , Fabaceae/genética , Regulação da Expressão Gênica de Plantas , Extratos Vegetais/genética , Extratos Vegetais/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologia , Sementes/genética
16.
Pharmacology ; 91(5-6): 314-21, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23796966

RESUMO

A Kampo medicine, Hochuekkito (TJ-41), with an influenza virus-preventing effect had life-extending effectiveness, and immunological responses other than interferon (IFN)-α release were examined. TJ-41 (1 g/kg) was given to C57BL/6 male mice orally once a day for 2 weeks. Mice were then intranasally infected with influenza virus. After infection, virus titers and various parameters, mRNA levels and protein expression, for immunoresponses in the bronchoalveolar lavage fluid or removed lung homogenate, were measured by plaque assay, quantitative RT-PCR and ELISA. IFN-α and -ß levels of TJ-41-treated mice were higher than those of the control. Toll-like receptor TLR7 and TLR9 mRNAs were elevated after infection, but retinoic acid-inducible gene (RIG-1) family mRNA levels, RIG-1, melanoma differentiation-associated gene 5 and Leishmania G protein 2 showed no response in either TJ-41 or control groups. Interferon regulatory transcription factor (IRF)-3 mRNA levels to stimulate type I (α/ß) IFN were increased, but IRF-7 did not change. Only granulocyte-macrophage colony-stimulating factor (GM-CSF) after Hochuekkito treatment was significantly elevated 2 and 3 days after infection. The mRNA levels of 7 defensins after infection increased compared to preinfection values. The key roles of TJ-41 were not only stimulation of type I IFN release but also GM-CSF-derived anti-inflammation activity. Furthermore, defensin (antimicrobial peptide) mRNA levels increased by infection and were further enhanced by TJ-41 treatment. Defensin might prevent influenza virus replication.


Assuntos
Antivirais/uso terapêutico , Medicamentos de Ervas Chinesas/uso terapêutico , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Animais , Antivirais/farmacologia , Líquido da Lavagem Broncoalveolar/imunologia , Linhagem Celular , Citocinas/imunologia , Defensinas/genética , Cães , Medicamentos de Ervas Chinesas/farmacologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Masculino , Medicina Kampo , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , RNA Mensageiro/metabolismo , Replicação Viral/efeitos dos fármacos
17.
Fish Shellfish Immunol ; 33(4): 872-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22885029

RESUMO

Naturally occurring antimicrobial peptides take place in the first line of host defense against pathogen as part of the humoral innate immune response. ß-defensins are among the most abundant antimicrobial peptides in mammals, and thought to be solely found in vertebrates until a recent report describing the cloning and sequencing of defensin like peptides in the spiny lobster Panulirus japonicus. In the current study, we cloned and sequenced two genes from the hemocytes of the spiny lobster Panulirus argus encoding for two isoforms of defensin-like peptides, thus confirming the presence of this protein in the Panulirus genus. The 44 amino acids mature peptides showed the conservation of cysteine pattern characterizing the ß-defensins, as well as known amino acids residues critical to exert their antimicrobial activity. They are also amphipathics, hydrophobics, and display an overall positive charge (+1) located at the C-terminus. The tertiary structure obtained by homology modeling indicated that likely conformations of lobster peptides are highly similar to ß-defensins from vertebrates. The phylogenetic study carried out by probabilistic methods confirmed the relation with ancestral ß-defensin from vertebrates. The finding of a putative defensin-like peptide in the expressed sequence tag (EST) of the lobster Homarus americanus with high homology with those of P. argus described in this study, would indicate the presence of this peptides in Palinuridae family. Taking into account all similarities between these peptides with ß-defensins from vertebrates, it is conceivable to further support the finding of a new family of ß-defensins in invertebrate.


Assuntos
Proteínas de Artrópodes/genética , Defensinas/genética , Palinuridae/genética , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Sequência de Bases , Clonagem Molecular , Simulação por Computador , Defensinas/química , Defensinas/metabolismo , Etiquetas de Sequências Expressas , Hemócitos/metabolismo , Dados de Sequência Molecular , Nephropidae/química , Nephropidae/genética , Palinuridae/metabolismo , Filogenia , Reação em Cadeia da Polimerase , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , beta-Defensinas/química , beta-Defensinas/genética , beta-Defensinas/metabolismo
18.
Eur J Nutr ; 51(8): 899-907, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22797470

RESUMO

BACKGROUND: Antimicrobial peptides (AMPs) are synthesized and secreted by immune and epithelial cells that are constantly exposed to environmental microbes. AMPs are essential for barrier defense, and deficiencies lead to increased susceptibility to infection. In addition to their ability to disrupt the integrity of bacterial, viral and fungal membranes, AMPs bind lipopolysaccharides, act as chemoattractants for immune cells and bind to cellular receptors and modulate the expression of cytokines and chemokines. These additional biological activities may explain the role of AMPs in inflammatory diseases and cancer. Modulating the endogenous expression of AMPs offers potential therapeutic treatments for infection and disease. METHODS: The present review examines the published data from both in vitro and in vivo studies reporting the effects of nutrients and by-products of microbial metabolism on the expression of antimicrobial peptide genes in order to highlight an emerging appreciation for the role of dietary compounds in modulating the innate immune response. RESULTS: Vitamins A and D, dietary histone deacetylases and by-products of intestinal microbial metabolism (butyrate and secondary bile acids) have been found to regulate the expression of AMPs in humans. Vitamin D deficiency correlates with increased susceptibility to infection, and supplementation studies indicate an improvement in defense against infection. Animal and human clinical studies with butyrate indicate that increasing expression of AMPs in the colon protects against infection. CONCLUSION: These findings suggest that diet and/or consumption of nutritional supplements may be used to improve and/or modulate immune function. In addition, by-products of gut microbe metabolism could be important for communicating with intestinal epithelial and immune cells, thus affecting the expression of AMPs. This interaction may help establish a mucosal barrier to prevent invasion of the intestinal epithelium by either mutualistic or pathogenic microorganisms.


Assuntos
Bactérias/metabolismo , Catelicidinas/metabolismo , Defensinas/metabolismo , Regulação da Expressão Gênica , Imunidade Inata , Animais , Peptídeos Catiônicos Antimicrobianos , Ácidos e Sais Biliares/metabolismo , Butiratos/metabolismo , Catelicidinas/genética , Catelicidinas/imunologia , Defensinas/genética , Defensinas/imunologia , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Histona Desacetilases/farmacologia , Humanos , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Isotiocianatos , Lipopolissacarídeos/metabolismo , Sulfóxidos , Tiocianatos/metabolismo , Vitamina A/farmacologia , Vitamina D/farmacologia , Deficiência de Vitamina D/fisiopatologia , Vitaminas/farmacologia
19.
Arch Insect Biochem Physiol ; 79(3): 153-81, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22392802

RESUMO

The Colorado potato beetle (Leptinotarsa decemlineata) is the most important pest of potato in many areas of the world. One of the main reasons for its success lies in the ability of its larvae to counteract plant defense compounds. Larvae adapt to protease inhibitors (PIs) produced in potato leaves through substitution of inhibitor-sensitive digestive cysteine proteases with inhibitor-insensitive cysteine proteases. To get a broader insight into the basis of larval adaptation to plant defenses, we created a "suppression subtractive hybridisation" library using cDNA from the gut of L. decemlineata larvae fed methyl jasmonate-induced or uninduced potato leaves. Four hundred clones, randomly selected from the library, were screened for their relevance to adaptation with DNA microarray hybridizations. Selected enzyme systems of beetle digestion were further inspected for changes in gene expression using quantitative PCR and enzyme activity measurements. We identified two new groups of digestive cysteine proteases, intestains D and intestains E. Intestains D represent a group of structurally distinct digestive cysteine proteases, of which the tested members are strongly upregulated in response to induced plant defenses. Moreover, we found that other digestive enzymes also participate in adaptation, namely, cellulases, serine proteases, and an endopolygalacturonase. In addition, juvenile hormone binding protein-like (JHBP-like) genes were upregulated. All studied genes were expressed specifically in larval guts. In contrast to earlier studies that reported experiments based on PI-enriched artificial diets, our results increase understanding of insect adaptation under natural conditions.


Assuntos
Adaptação Fisiológica , Besouros/genética , Interações Hospedeiro-Parasita , Proteínas de Insetos/genética , Solanum tuberosum/parasitologia , Sequência de Aminoácidos , Animais , Celulase/genética , Quimotripsina/genética , Quimotripsina/metabolismo , Besouros/metabolismo , Defensinas/genética , Trato Gastrointestinal/metabolismo , Expressão Gênica , Genoma de Inseto , Larva/fisiologia , Dados de Sequência Molecular , Poligalacturonase/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência
20.
Plant Physiol Biochem ; 52: 9-20, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22305063

RESUMO

Plant injuries activate signal transduction cascades mediated by the plant hormones, which lead to enhanced expression of defence related genes and/or to changes in the emission of volatile organic compounds that can act as semiochemicals. In this research we demostrated that infection with the biotrophic pathogen Golovinomyces cichoracearum (DC.) V.P. Heluta (ex Erysiphe cichoracearum DC.), the causal agent of powdery mildew, led in the susceptible host Nicotiana tabacum L. cv Havana 425 to an increased emission of volatile compounds including Methyl-jasmonate (MeJA), (E)-2-hexenal and (E)-ß-ocimene. Furthermore we investigated the role of these volatiles in the plant-pathogen interaction. Exogenous application of MeJA induced in tobacco an increase in the transcripts level of the defence related genes lipoxygenase, allene oxide cyclase and defensin and a decrease in the severity of the infection. Qualitative and quantitative differences in volatile compounds emission were showed also in MeJA-treated plants, where the emission of (E)-ß-ocimene was significantly increased instead (E)-2-hexenal was not detected. Application of (E)-2-hexenal reduced the severity of powdery mildew while application of (E)-ß-ocimene did not. Since (E)-2-hexenal did not activate in tobacco the accumulation of the above reported genes transcripts and the plant cell death, the reduction of the infection severity could be attributable to its inhibitory activity on the fungal germ tube growth. Our data highlight the contributions of natural substances that can act, directly or indirectly, against phytopathogens. In the global context of sustainability, food safety and environmental protection, such semiochemicals represent an alternative and promising approach to integrated pest management.


Assuntos
Acetatos/farmacologia , Ascomicetos/fisiologia , Ciclopentanos/farmacologia , Nicotiana/fisiologia , Óleos Voláteis/metabolismo , Oxilipinas/farmacologia , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/farmacologia , Acetatos/metabolismo , Monoterpenos Acíclicos , Aldeídos/metabolismo , Alcenos/metabolismo , Anti-Infecciosos/metabolismo , Ciclopentanos/metabolismo , Defensinas/genética , Defensinas/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Interações Hospedeiro-Patógeno , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/metabolismo , Lipoxigenase/genética , Lipoxigenase/metabolismo , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Imunidade Vegetal/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Nicotiana/efeitos dos fármacos , Nicotiana/imunologia , Nicotiana/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA