Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(1): e23346, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38095297

RESUMO

Folate deficiency contribute to neural tube defects (NTDs) which could be rescued by folate supplementation. However, the underlying mechanisms are still not fully understood. Besides, there is considerable controversy concerning the forms of folate used for supplementation. To address this controversy, we prepared culture medium with different forms of folate, folic acid (FA), and 5-methyltetrahydrofolate (5mTHF), at concentrations of 5 µM, 500 nM, 50 nM, and folate free, respectively. Mouse embryonic fibroblasts (MEFs) were treated with different folates continuously for three passages, and cell proliferation and F-actin were monitored. We determined that compared to 5mTHF, FA showed stronger effects on promoting cell proliferation and F-actin formation. We also found that FOLR1 protein level was positively regulated by folate concentration and the non-canonical Wnt/planar cell polarity (PCP) pathway signaling was significantly enriched among different folate conditions in RNA-sequencing analyses. We demonstrated for the first time that FOLR1 could promote the transcription of Vangl2, one of PCP core genes. The transcription of Vangl2 was down-regulated under folate-deficient condition, which resulted in a decrease in PCP activity and F-actin formation. In summary, we identified a distinct advantage of FA in cell proliferation and F-actin formation over 5mTHF, as well as demonstrating that FOLR1 could promote transcription of Vangl2 and provide a new mechanism by which folate deficiency can contribute to the etiology of NTDs.


Assuntos
Deficiência de Ácido Fólico , Defeitos do Tubo Neural , Animais , Camundongos , Ácido Fólico/metabolismo , Actinas/metabolismo , Receptor 1 de Folato/genética , Receptor 1 de Folato/metabolismo , Polaridade Celular/genética , Fibroblastos/metabolismo , Via de Sinalização Wnt , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/metabolismo , Deficiência de Ácido Fólico/metabolismo
2.
Brain Res ; 1822: 148639, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37858854

RESUMO

Folate is essential for the normal growth and development of the fetus. Folic acid supplementation during the fetal period affects postnatal brain development and reduces the incidence of mental disorders in animal and human studies. However, the association between folate deficiency (FD) during pregnancy and developmental disorders in children remains poorly understood. In this study, we investigated whether prenatal FD is associated with neurodevelopmental disorders in offspring. ICR mice were fed a control diet (2 mg folic acid/kg diet) or a folate-deficient diet (0.3 mg folic acid/kg diet) from embryonic day 1 until parturition. We evaluated locomotor activity, anxiety, grooming, sociability and learning memory in male offspring at 7-10 weeks of age. No differences were found in locomotor activity or anxiety in the open field test, nor in grooming time in the self-grooming test. However, sociability, spatial memory, and novel object recognition were impaired in the FD mice compared with control offspring. Furthermore, we measured protein expression levels of the NMDA and AMPA receptors, as well as PSD-95 and the GABA-synthesizing enzymes GAD65/67 in the frontal cortex and hippocampus. In FD mice, expression levels of AMPA receptor 1 and PSD-95 in both regions were reduced compared with control mice. Moreover, NMDA receptor subunit 2B and GAD65/67 were significantly downregulated in the frontal cortex of prenatal FD mice compared with the controls. Collectively, these findings suggest that prenatal FD causes behavioral deficits together with a reduction in synaptic protein levels in the frontal cortex and hippocampus.


Assuntos
Deficiência de Ácido Fólico , Efeitos Tardios da Exposição Pré-Natal , Humanos , Gravidez , Feminino , Criança , Animais , Masculino , Camundongos , Ácido Fólico/metabolismo , Camundongos Endogâmicos ICR , Deficiência de Ácido Fólico/complicações , Deficiência de Ácido Fólico/metabolismo , Dieta , Encéfalo/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo
3.
Andrology ; 11(5): 927-942, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36697378

RESUMO

BACKGROUND: DNA methylation (DNAme) erasure and reacquisition occur during prenatal male germ cell development; some further remodeling takes place after birth during spermatogenesis. Environmental insults during germline epigenetic reprogramming may affect DNAme, presenting a potential mechanism for transmission of environmental exposures across multiple generations. OBJECTIVES: We investigated how germ cell DNAme is impacted by lifetime exposures to diets containing either low or high, clinically relevant, levels of the methyl donor folic acid and whether resulting DNAme alterations were inherited in germ cells of male offspring of subsequent generations. MATERIALS AND METHODS: Female mice were placed on a control (FCD), 7-fold folic acid deficient (7FD) or 10- to 20-fold supplemented (10FS and 20FS) diet before and during pregnancy. Resulting F1 litters were weaned on the respective diets. F2 and F3 males received control diets. Genome-wide DNAme at cytosines (within CpG sites) was assessed in F1 spermatogonia, and in F1, F2 and F3 sperm. RESULTS: In F1 germ cells, a greater number of differentially methylated cytosines (DMCs) were observed in spermatogonia as compared with F1 sperm for all folic acid diets. DMCs were lower in number in F2 versus F1 sperm, while an unexpected increase was found in F3 sperm. DMCs were predominantly hypomethylated, with genes in neurodevelopmental pathways commonly affected in F1, F2 and F3 male germ cells. While no DMCs were found to be significantly inherited inter- or transgenerationally, we observed over-representation of repetitive elements, particularly young long interspersed nuclear elements (LINEs). DISCUSSION AND CONCLUSION: These results suggest that the prenatal window is the time most susceptible to folate-induced alterations in sperm DNAme in male germ cells. Altered methylation of specific sites in F1 germ cells was not present in later generations. However, the presence of DNAme perturbations in the sperm of males of the F2 and F3 generations suggests that epigenetic inheritance mechanisms other than DNAme may have been impacted by the folate diet exposure of F1 germ cells.


Assuntos
Metilação de DNA , Deficiência de Ácido Fólico , Gravidez , Masculino , Feminino , Camundongos , Animais , Deficiência de Ácido Fólico/genética , Deficiência de Ácido Fólico/metabolismo , Sêmen/metabolismo , Epigênese Genética , Espermatozoides/metabolismo , Ácido Fólico/metabolismo , Suplementos Nutricionais , Espermatogônias/metabolismo , DNA/metabolismo
4.
Int J Mol Sci ; 23(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35805953

RESUMO

Early life stage folate status may influence neurodevelopment in offspring. The developmental origin of health and disease highlights the importance of the period of the first 1000 days (from conception to 2 years) of life. This study aimed to evaluate the effect of early life stage folic acid deficiency on de novo telomere synthesis, neurobehavioral development, and the cognitive function of offspring rats. The rats were divided into three diet treatment groups: folate-deficient, folate-normal, and folate-supplemented. They were fed the corresponding diet from 5 weeks of age to the end of the lactation period. After weaning, the offspring rats were still fed with the corresponding diet for up to 100 days. Neurobehavioral tests, folic acid and homocysteine (Hcy) levels, relative telomere length in brain tissue, and uracil incorporation in telomere in offspring were measured at different time points. The results showed that folic acid deficiency decreased the level of folic acid, increased the level of Hcy of brain tissue in offspring, increased the wrong incorporation of uracil into telomeres, and hindered de novo telomere synthesis. However, folic acid supplementation increased the level of folic acid, reduced the level of Hcy of brain tissue in offspring, reduced the wrong incorporation of uracil into telomeres, and protected de novo telomere synthesis of offspring, which was beneficial to the development of early sensory-motor function, spatial learning, and memory in adolescence and adulthood. In conclusion, early life stage folic acid deficiency had long-term inhibiting effects on neurodevelopment and cognitive function in offspring.


Assuntos
Deficiência de Ácido Fólico , Animais , Cognição , Suplementos Nutricionais , Feminino , Ácido Fólico/metabolismo , Deficiência de Ácido Fólico/complicações , Deficiência de Ácido Fólico/metabolismo , Ratos , Telômero/metabolismo , Uracila
5.
J Exp Med ; 218(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34546337

RESUMO

Hereditary spastic paraplegias are heterogeneous neurodegenerative disorders. Understanding of their pathogenic mechanisms remains sparse, and therapeutic options are lacking. We characterized a mouse model lacking the Cyp2u1 gene, loss of which is known to be involved in a complex form of these diseases in humans. We showed that this model partially recapitulated the clinical and biochemical phenotypes of patients. Using electron microscopy, lipidomic, and proteomic studies, we identified vitamin B2 as a substrate of the CYP2U1 enzyme, as well as coenzyme Q, neopterin, and IFN-α levels as putative biomarkers in mice and fluids obtained from the largest series of CYP2U1-mutated patients reported so far. We also confirmed brain calcifications as a potential biomarker in patients. Our results suggest that CYP2U1 deficiency disrupts mitochondrial function and impacts proper neurodevelopment, which could be prevented by folate supplementation in our mouse model, followed by a neurodegenerative process altering multiple neuronal and extraneuronal tissues.


Assuntos
Família 2 do Citocromo P450/genética , Família 2 do Citocromo P450/metabolismo , Deficiência de Ácido Fólico/genética , Deficiência de Ácido Fólico/metabolismo , Ácido Fólico/farmacologia , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação/genética , Fenótipo , Proteômica/métodos
6.
Biomed Environ Sci ; 34(5): 356-363, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34059172

RESUMO

OBJECTIVE: This study aimed to investigate the effects of N,N-dimethylglycine (DMG) on the concentration and metabolism of plasma homocysteine (pHcy) in folate-sufficient and folate-deficient rats. METHODS: In this study, 0.1% DMG was supplemented in 20% casein diets that were either folate-sufficient (20C) or folate-deficient (20CFD). Blood and liver of rats were subjected to assays of Hcy and its metabolites. Hcy and its related metabolite concentrations were determined using a liquid chromatographic system. RESULTS: Folate deprivation significantly increased pHcy concentration in rats fed 20C diet (from 14.19 ± 0.39 µmol/L to 28.49 ± 0.50 µmol/L; P < 0.05). When supplemented with DMG, pHcy concentration was significantly decreased (12.23 ± 0.18 µmol/L) in rats fed 20C diet but significantly increased (31.56 ± 0.59 µmol/L) in rats fed 20CFD. The hepatic methionine synthase activity in the 20CFD group was significantly lower than that in the 20C group; enzyme activity was unaffected by DMG supplementation regardless of folate sufficiency. The activity of hepatic cystathionine ß-synthase (CBS) in the 20CFD group was decreased but not in the 20C group; DMG supplementation enhanced hepatic CBS activity in both groups, in which the effect was significant in the 20C group but not in the other group. CONCLUSION: DMG supplementation exhibited hypohomocysteinemic effects under folate-sufficient conditions. By contrast, the combination of folate deficiency and DMG supplementation has deleterious effect on pHcy concentration.


Assuntos
Dieta , Suplementos Nutricionais , Deficiência de Ácido Fólico/metabolismo , Homocisteína/metabolismo , Sarcosina/análogos & derivados , Animais , Biomarcadores/metabolismo , Cromatografia Líquida , Fígado/metabolismo , Masculino , Distribuição Aleatória , Ratos , Ratos Wistar , Sarcosina/administração & dosagem , Sarcosina/metabolismo
7.
Mol Reprod Dev ; 88(6): 437-458, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34008284

RESUMO

Genomic imprinting is important for mammalian development and its dysregulation can cause various developmental defects and diseases. The study evaluated the effects of different dietary combinations of folic acid and B12 on epigenetic regulation of IGF2R and KCNQ1OT1 ncRNA in C57BL/6 mice model. Female mice were fed diets with nine combinations of folic acid and B12 for 4 weeks. They were mated and off-springs born (F1) were continued on the same diet for 6 weeks postweaning and were allowed to mate. The placenta and fetal (F2) tissues were collected at day 20 of gestation. Dietary deficiency of folate (BNFD and BOFD) and B12 (BDFN) with either state of other vitamin or combined deficiency of both vitamins (BDFD) in comparison to BNFN, were overall responsible for reduced expression of IGF2R in the placenta (F1) and the fetal liver (F2) whereas a combination of folate deficiency with different levels of B12 revealed sex-specific differences in kidney and brain. The alterations in the expression of IGF2R caused by folate-deficient conditions (BNFD and BOFD) and both deficient condition (BDFD) was found to be associated with an increase in suppressive histone modifications. Over-supplementation of either folate or B12 or both vitamins in comparison to BNFN, led to increase in expression of IGF2R and KCNQ1OT1 in the placenta and fetal tissues. The increase in the expression of IGF2R caused by folate over-supplementation (BNFO) was associated with decreased DNA methylation in fetal tissues. KCNQ1OT1 noncoding RNA (ncRNA), however, showed upregulation under deficient conditions of folate and B12 only in female fetal tissues which correlated well with hypomethylation observed under these conditions. An epigenetic reprograming of IGF2R and KCNQ1OT1 ncRNA in the offspring was evident upon different dietary combinations of folic acid and B12 in the mice.


Assuntos
Dieta , Epigênese Genética/efeitos dos fármacos , Feto/efeitos dos fármacos , Ácido Fólico/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Placenta/efeitos dos fármacos , RNA Longo não Codificante/genética , Receptor IGF Tipo 2/genética , Vitamina B 12/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Encéfalo/embriologia , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Feminino , Feto/metabolismo , Ácido Fólico/administração & dosagem , Ácido Fólico/sangue , Deficiência de Ácido Fólico/genética , Deficiência de Ácido Fólico/metabolismo , Impressão Genômica , Homocisteína/sangue , Rim/embriologia , Rim/metabolismo , Fígado/embriologia , Fígado/metabolismo , Masculino , Camundongos , Placenta/metabolismo , Gravidez , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptor IGF Tipo 2/metabolismo , Vitamina B 12/administração & dosagem , Vitamina B 12/sangue , Deficiência de Vitamina B 12/genética , Deficiência de Vitamina B 12/metabolismo
8.
Reproduction ; 161(4): 365-373, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33528379

RESUMO

Mechanistic target of rapamycin (MTOR) is essential for embryo development by acting as a nutrient sensor to regulate cell growth, proliferation and metabolism. Folate is required for normal embryonic development and it was recently reported that MTOR functions as a folate sensor. In this work, we tested the hypothesis that MTOR functions as a folate sensor in the embryo and its inhibition result in embryonic developmental delay affecting neural tube closure and that these effects can be rescued by folate supplementation. Administration of rapamycin (0.5 mg/kg) to rats during early organogenesis inhibited embryonic ribosomal protein S6, a downstream target of MTOR Complex1, markedly reduced embryonic folate incorporation (-84%, P < 0.01) and induced embryo developmental impairments, as shown by an increased resorption rate, reduced embryo somite number and delayed neural tube closure. These alterations were prevented by folic acid administered to the dams. Differently, although an increased rate of embryonic rotation defects was observed in the rapamycin-treated dams, this alteration was not prevented by maternal folic acid supplementation. In conclusion, MTOR inhibition during organogenesis in the rat resulted in decreased folate levels in the embryo, increased embryo resorption rate and impaired embryo development. These data suggest that MTOR signaling influences embryo folate availability, possibly by regulating the transfer of folate across the maternal-embryonic interface.


Assuntos
Embrião de Mamíferos/patologia , Desenvolvimento Embrionário , Deficiência de Ácido Fólico/fisiopatologia , Ácido Fólico/metabolismo , Organogênese , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Embrião de Mamíferos/metabolismo , Feminino , Deficiência de Ácido Fólico/metabolismo , Masculino , Gravidez , Ratos , Ratos Wistar , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
9.
Int J Neurosci ; 131(5): 468-477, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32241207

RESUMO

OBJECTIVE: Neural tube defects (NTDs) are one of the most common and serious birth defects in human beings caused by genetic and environmental factors. Folate insufficiency is involved in the occurrence of NTDs and folic acid supplementation can prevent NTDs occurrence, however, the underlying mechanism remains poorly understood. METHODS: We established cell and animal models of folic acid deficiency to detect the methylation modification and expression levels of genes by MassARRAY and real-time PCR, respectively. Results and conclusion: In the present study, we found firstly that in human folic acid-insufficient NTDs, the methylation level of imprinted gene Mest/Peg1 was decreased. By using a folic acid-deficient cell model, we demonstrated that Mest/Peg1 methylation was descended. Meanwhile, the mRNA level of Mest/Peg1 was up-regulated via hypomethylation modification under low folic acid conditions. Consistent with the results in cell models, Mest/Peg1 expression was elevated through hypomethylation regulation in folate-deficient animal models. Furthermore, the up-regulation of Mest/Peg1 inhibited the expression of Lrp6 gene, a crucial component of Wnt pathway. Similar results with Lrp6 down-regulation of fetal brain were verified in animal models under folic acid-deficient condition. Taken together, our findings indicated folic acid increased the expression of Mest/Peg1 via hypomethylation modification, and then inhibited Lrp6 expression, which may ultimately impact on the development of nervous system through the inactivation of Wnt pathway.


Assuntos
Encéfalo/metabolismo , Deficiência de Ácido Fólico/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Defeitos do Tubo Neural/metabolismo , Proteínas/metabolismo , Via de Sinalização Wnt/genética , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Feto , Deficiência de Ácido Fólico/complicações , Regulação da Expressão Gênica , Humanos , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Defeitos do Tubo Neural/etiologia
10.
Cereb Cortex ; 31(1): 635-649, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32995858

RESUMO

Folate is an essential micronutrient required for both cellular proliferation through de novo nucleotide synthesis and epigenetic regulation of gene expression through methylation. This dual requirement places a particular demand on folate availability during pregnancy when both rapid cell generation and programmed differentiation of maternal, extraembryonic, and embryonic/fetal tissues are required. Accordingly, prenatal neurodevelopment is particularly susceptible to folate deficiency, which can predispose to neural tube defects, or when effective transport into the brain is impaired, cerebral folate deficiency. Consequently, adequate folate consumption, in the form of folic acid (FA) fortification and supplement use, is widely recommended and has led to a substantial increase in the amount of FA intake during pregnancy in some populations. Here, we show that either maternal folate deficiency or FA excess in mice results in disruptions in folate metabolism of the offspring, suggesting diversion of the folate cycle from methylation to DNA synthesis. Paradoxically, either intervention causes comparable neurodevelopmental changes by delaying prenatal cerebral cortical neurogenesis in favor of late-born neurons. These cytoarchitectural and biochemical alterations are accompanied by behavioral abnormalities in FA test groups compared with controls. Our findings point to overlooked potential neurodevelopmental risks associated with excessively high levels of prenatal FA intake.


Assuntos
Comportamento Animal/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Ácido Fólico/farmacologia , Gravidez/efeitos dos fármacos , Animais , Metilação de DNA/efeitos dos fármacos , Suplementos Nutricionais/efeitos adversos , Feminino , Deficiência de Ácido Fólico/complicações , Deficiência de Ácido Fólico/genética , Deficiência de Ácido Fólico/metabolismo , Camundongos Endogâmicos C57BL
11.
Artigo em Inglês | WPRIM | ID: wpr-878371

RESUMO

Objective@#This study aimed to investigate the effects of @*Methods@#In this study, 0.1% DMG was supplemented in 20% casein diets that were either folate-sufficient (20C) or folate-deficient (20CFD). Blood and liver of rats were subjected to assays of Hcy and its metabolites. Hcy and its related metabolite concentrations were determined using a liquid chromatographic system.@*Results@#Folate deprivation significantly increased pHcy concentration in rats fed 20C diet (from 14.19 ± 0.39 μmol/L to 28.49 ± 0.50 μmol/L; @*Conclusion@#DMG supplementation exhibited hypohomocysteinemic effects under folate-sufficient conditions. By contrast, the combination of folate deficiency and DMG supplementation has deleterious effect on pHcy concentration.


Assuntos
Animais , Masculino , Ratos , Biomarcadores/metabolismo , Cromatografia Líquida , Dieta , Suplementos Nutricionais , Deficiência de Ácido Fólico/metabolismo , Homocisteína/metabolismo , Fígado/metabolismo , Distribuição Aleatória , Ratos Wistar , Sarcosina/metabolismo
12.
J Trace Elem Med Biol ; 62: 126568, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32521439

RESUMO

The aim of this study was to determine how folate and iron deficiency, and the subsequent supplementation of rats' diet with these nutrients, affects Slc19a1and Tfr2 gene expression and the metabolism of folate and iron. After 28 days of iron-folate deficiency 150 female rats were randomized into five experimental groups receiving a diet deficient in folic acid (FA), an iron-supplemented diet (DFE), an iron-deficient diet supplemented with FA (DFOL), a diet supplemented with iron and FA (FEFOL), and a diet deficient in iron and FA (D); there was also a control group (C). Samples were collected on days 2, 10, and 21 of the experiment. After two days of supplementation, Tfr2 mRNA level were 78 % lower in the DFE group than in the C group (p < 0.05); after 10 days, TfR2 levels in the FEFOL group were 82 % lower than in the C and the DFE group (p < 0.01). However, we did not find any differences at the protein level at any time-point. Hepcidin concentrations were higher in the DFE and the DFEFOL groups than in the D group after 21 days of supplementation (p < 0.01). Transcript and protein abundance of Slc19a1 gene did not differ between the groups at any time-point. Iron metabolism was affected by iron and folate deficiency and subsequent supplementation with these micronutrients, but TFR2 protein was not involved in the regulatory mechanism. Hepcidin expression can be are upregulated after 21 days of supplementation with 150 mg of iron/ kg of diet.


Assuntos
Deficiência de Ácido Fólico/metabolismo , Deficiências de Ferro , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Receptores da Transferrina/metabolismo , Proteína Carregadora de Folato Reduzido/metabolismo , Animais , Transporte Biológico , Suplementos Nutricionais , Modelos Animais de Doenças , Feminino , Ácido Fólico/metabolismo , Ácido Fólico/farmacologia , Deficiência de Ácido Fólico/dietoterapia , Regulação da Expressão Gênica/efeitos dos fármacos , Hepcidinas/metabolismo , Ferro/metabolismo , Ferro/farmacologia , Fígado/efeitos dos fármacos , Proteínas de Membrana Transportadoras/genética , Antígenos de Histocompatibilidade Menor/genética , Ratos Wistar , Receptores da Transferrina/genética , Proteína Carregadora de Folato Reduzido/genética
13.
Crit Rev Food Sci Nutr ; 60(5): 722-739, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30729795

RESUMO

Folic acid (FA) is often consumed as a food supplement and can be found in fortified staple foods in various western countries. Even though FA supplementation during pregnancy is known to prevent severe congenital anomalies in the developing child (e.g., neural tube defects), much less is known about its influence on cognition and neurological functioning. In this review, we address the advances in this field and situate how folate intake during pregnancy, postnatal life, adulthood and in the elderly affects cognition. In addition, an association between folate status and ageing, dementia and other neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis is discussed. While its role in the incidence and severity of these diseases is becoming apparent, the underlying action of folates and related metabolites remains elusive. Finally, the potential of FA as a nutraceutical has been proposed, although the efficacy will highly depend on the interplay with other micronutrients, the disease stage and the duration of supplementation. Hence, the lack of consistent data urges for more animal studies and (pre)clinical trials in humans to ascertain a potential beneficial role for folates in the treatment or amelioration of cognitive decline and ageing-related disorders.


Assuntos
Envelhecimento/metabolismo , Cognição , Ácido Fólico/metabolismo , Doenças Neurodegenerativas/metabolismo , Envelhecimento/efeitos dos fármacos , Cognição/efeitos dos fármacos , Suplementos Nutricionais , Ácido Fólico/uso terapêutico , Deficiência de Ácido Fólico/complicações , Deficiência de Ácido Fólico/dietoterapia , Deficiência de Ácido Fólico/tratamento farmacológico , Deficiência de Ácido Fólico/metabolismo , Humanos , Doenças Neurodegenerativas/complicações , Doenças Neurodegenerativas/tratamento farmacológico
14.
Int J Mol Sci ; 20(22)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739389

RESUMO

Deficiencies in methyl donors, folate, and vitamin B12 are known to lead to brain function defects. Fetal development is the most studied but data are also available for such an impact in elderly rats. To compare the functional consequences of nutritional deficiency in young versus adult rats, we monitored behavioral outcomes of cerebellum and hippocampus circuits in the offspring of deficient mother rats and in adult rats fed a deficient diet from 2 to 8 months-of-age. We present data showing that the main deleterious consequences are found in young ages compared to adult ones, in terms of movement coordination and learning abilities. Moreover, we obtained sex and age differences in the deleterious effects on these functions and on neuronal layer integrity in growing young rats, while deficient adults presented only slight functional alterations without tissue damage. Actually, the cerebellum and the hippocampus develop and maturate according to different time lap windows and we demonstrate that a switch to a normal diet can only rescue circuits that present a long permissive window of time, such as the cerebellum, whereas the hippocampus does not. Thus, we argue, as others have, for supplements or fortifications given over a longer time than the developmental period.


Assuntos
Encéfalo/metabolismo , Encéfalo/fisiopatologia , Deficiências Nutricionais/complicações , Deficiências Nutricionais/metabolismo , Desenvolvimento Fetal , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/metabolismo , Animais , Cognição , Deficiências Nutricionais/etiologia , Dieta , Modelos Animais de Doenças , Feminino , Deficiência de Ácido Fólico/complicações , Deficiência de Ácido Fólico/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Aprendizagem em Labirinto , Ratos
15.
Nutrients ; 11(10)2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31581752

RESUMO

Folates are water-soluble B9 vitamins that serve as one-carbon donors in the de novo synthesis of thymidylate and purines, and in the conversion of homocysteine to methionine. Due to their key roles in nucleic acid synthesis and in DNA methylation, inhibiting the folate pathway is still one of the most efficient approaches for the treatment of several tumors. Methotrexate and pemetrexed are the most prescribed antifolates and are mainly used in the treatment of acute myeloid leukemia, osteosarcoma, and lung cancers. Normal levels of folates in the blood are maintained not only by proper dietary intake and intestinal absorption, but also by an efficient renal reabsorption that seems to be primarily mediated by the glycosylphosphatidylinositol- (GPI) anchored protein folate receptor α (FRα), which is highly expressed at the brush-border membrane of proximal tubule cells. Folate deficiency due to malnutrition, impaired intestinal absorption or increased urinary elimination is associated with severe hematological and neurological deficits. This review describes the role of the kidneys in folate homeostasis, the molecular basis of folate handling by the kidneys, and the use of high dose folic acid as a model of acute kidney injury. Finally, we provide an overview on the development of folate-based compounds and their possible therapeutic potential and toxicological ramifications.


Assuntos
Antineoplásicos/metabolismo , Suplementos Nutricionais , Ácido Fólico/metabolismo , Rim/metabolismo , Reabsorção Renal , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/fisiopatologia , Animais , Antineoplásicos/toxicidade , Suplementos Nutricionais/toxicidade , Ácido Fólico/sangue , Ácido Fólico/toxicidade , Deficiência de Ácido Fólico/metabolismo , Deficiência de Ácido Fólico/fisiopatologia , Deficiência de Ácido Fólico/prevenção & controle , Homeostase , Humanos , Rim/efeitos dos fármacos , Rim/fisiopatologia , Estado Nutricional , Rim Policístico Autossômico Dominante/tratamento farmacológico , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/fisiopatologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Medição de Risco , Fatores de Risco
16.
Ecotoxicol Environ Saf ; 182: 109380, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31279279

RESUMO

Ultraviolet (UV) is an omnipresent environmental carcinogen transmitted by sunlight. Excessive UV irradiation has been correlated to an increased risk of skin cancers. UVB, the most mutagenic component among the three UV constituents, causes damage mainly through inducing DNA damage and oxidative stress. Therefore, strategies or nutrients that strengthen an individual's resistance to UV-inflicted harmful effects shall be beneficial. Folate is a water-soluble B vitamin essential for nucleotides biosynthesis, and also a strong biological antioxidant, hence a micronutrient with potential of modulating individual's vulnerability to UV exposure. In this study, we investigated the impact of folate status on UV sensitivity and the protective activity of folate supplementation using a zebrafish model. Elevated reactive oxygen species (ROS) level and morphological injury were observed in the larvae exposed to UVB, which were readily rescued by supplementing with folic acid, 5-formyltetrahydrofolate (5-CHO-THF) and N-acetyl-L-cysteine (NAC). The UVB-inflicted abnormalities and mortality were worsened in Tg(hsp:EGFP-γGH) larvae displaying folate deficiency. Intriguingly, only supplementation with 5-CHO-THF, as opposed to folic acid, offered significant and consistent protection against UVB-inflicted oxidative damage in the folate-deficient larvae. We concluded that the intrinsic folate status correlates with the vulnerability to UVB-induced damage in zebrafish larvae. In addition, 5-CHO-THF surpassed both folic acid and NAC in preventing UVB-inflicted oxidative stress and injury in our current experimental zebrafish model.


Assuntos
Deficiência de Ácido Fólico/prevenção & controle , Leucovorina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos , Complexo Vitamínico B/farmacologia , Peixe-Zebra/metabolismo , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Suplementos Nutricionais , Deficiência de Ácido Fólico/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Estresse Oxidativo/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo
17.
J Nutr ; 149(8): 1369-1376, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31111947

RESUMO

BACKGROUND: Hyperhomocysteinemia is associated with increased cardiovascular disease risk. Whole eggs contain several nutrients known to affect homocysteine regulation, including sulfur amino acids, choline, and B vitamins. OBJECTIVE: The aim of this study was to determine the effect of whole eggs and egg components (i.e., egg protein and choline) with respect to 1) homocysteine balance and 2) the hepatic expression and activity of betaine-homocysteine S-methyltransferase (BHMT) and cystathionine ß-synthase (CBS) in a folate-restricted (FR) rat model of hyperhomocysteinemia. METHODS: Male Sprague Dawley rats (n = 48; 6 wk of age) were randomly assigned to a casein-based diet (C; n = 12), a casein-based diet supplemented with choline (C + Cho; 1.3%, wt:wt; n = 12), an egg protein-based diet (EP; n = 12), or a whole egg-based diet (WE; n = 12). At week 2, half of the rats in each of the 4 dietary groups were provided an FR (0 g folic acid/kg) diet and half continued on the folate-sufficient (FS; 0.2 g folic acid/kg) diet for an additional 6 wk. All diets contained 20% (wt:wt) total protein. Serum homocysteine was measured by HPLC and BHMT and CBS expression and activity were evaluated using real-time quantitative polymerase chain reaction, Western blot, and enzyme activity. A 2-factor ANOVA was used for statistical comparisons. RESULTS: Rats fed FR-C exhibited a 53% increase in circulating homocysteine concentrations compared with rats fed FS-C (P < 0.001). In contrast, serum homocysteine did not differ between rats fed FS-C and FR-EP (P = 0.078). Hepatic BHMT activity was increased by 45% and 40% by the EP (P < 0.001) and WE (P = 0.002) diets compared with the C diets, respectively. CONCLUSIONS: Dietary intervention with egg protein prevented elevated circulating homocysteine concentrations in a rat model of hyperhomocysteinemia, due in part to upregulation of hepatic BHMT. These data may support the inclusion of egg protein for dietary recommendations targeting hyperhomocysteinemia prevention.


Assuntos
Betaína-Homocisteína S-Metiltransferase/metabolismo , Proteínas Dietéticas do Ovo/administração & dosagem , Deficiência de Ácido Fólico/metabolismo , Hiper-Homocisteinemia/prevenção & controle , Fígado/enzimologia , Regulação para Cima , Animais , Betaína-Homocisteína S-Metiltransferase/genética , Peso Corporal , Cisteína/sangue , Proteínas Dietéticas do Ovo/metabolismo , Masculino , RNA Mensageiro/genética , Ratos , Ratos Sprague-Dawley
18.
FASEB J ; 33(4): 4688-4702, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30592646

RESUMO

Folate deficiency in early development leads to disturbance in multiple processes, including neurogenesis during which fibroblast growth factor (FGF) pathway is one of the crucial pathways. Whether folic acid (FA) directly affects FGF pathways to influence neurodevelopment and the possible mechanism remains unclear. In this study, we presented evidence that in human FA-insufficient encephalocele, the FGF pathway was interfered. Furthermore, in Brachyury knockout mice devoid of such T-box transcription factors regulating embryonic neuromesodermal bipotency and a key component of FGF pathway, change in expression of Brachyury downstream targets, activator Fgf8 and suppressor dual specificity phosphatase 6 was detected, along with the reduction in expression of other key FGF pathway genes. By using a FA-deficient cell model, we further demonstrated that decrease in Brachyury expression was through alteration in hypermethylation at the Brachyury promoter region under FA deficiency conditions, and suppression of Brachyury promoted the inactivation of the FGF pathway. Correspondingly, FA supplementation partially reverses the effects seen in FA-deficient embryoid bodies. Lastly, in mice with maternal folate-deficient diets, aberrant FGF pathway activity was found in fetal brain dysplasia. Taken together, our findings highlight the effect of FA on FGF pathways during neurogenesis, and the mechanism may be due to the low expression of Brachyury gene via hypermethylation under FA-insufficient conditions.-Chang, S., Lu, X., Wang, S., Wang, Z., Huo, J., Huang, J., Shangguan, S., Li, S., Zou, J., Bao, Y., Guo, J., Wang, F., Niu, B., Zhang, T., Qiu, Z., Wu, J., Wang, L. The effect of folic acid deficiency on FGF pathway via Brachyury regulation in neural tube defects.


Assuntos
Proteínas Fetais/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Deficiência de Ácido Fólico/metabolismo , Ácido Fólico/uso terapêutico , Defeitos do Tubo Neural/tratamento farmacológico , Defeitos do Tubo Neural/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Imunoprecipitação da Cromatina , Encefalocele/metabolismo , Feminino , Deficiência de Ácido Fólico/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas , Transdução de Sinais/efeitos dos fármacos , Sulfitos/farmacologia
19.
Birth Defects Res ; 110(14): 1139-1147, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30070772

RESUMO

BACKGROUND: Spina bifida and anencephaly are largely preventable birth defects through mandatory folic acid fortification. Our objective was to estimate the proportion of folic acid-preventable spina bifida and anencephaly (FAP SBA) prevented worldwide through mandatory fortification of wheat and/or maize flour with folic acid during the year 2017. METHODS: Using existing data, we identified countries with mandatory fortification policies that added at least 1.0 ppm folic acid to wheat and/or maize flour and had information on percentage of industrially milled flour that is fortified. We assumed mandatory folic acid fortification at 200 µg/day of folic acid fully protects against FAP SBA, reducing the prevalence of spina bifida and anencephaly to 0.5 per 1,000 live births. RESULTS: Overall, 59 countries met our criteria for implementing mandatory folic acid fortification of wheat and/or maize flour in 2017. These countries prevented about 50,270 out of 280,500 FAP SBA births in 2017. Thus, we have only achieved 18% prevention of FAP SBA worldwide. Several countries in Africa and Asia with a high number of FAP SBA-affected births do not have mandatory fortification. CONCLUSION: About 230,000 children unnecessarily developed FAP SBA globally in 2017. There is an urgent need for all countries to implement mandatory folic acid fortification, a proven, safe public health intervention that saves money and prevents infant mortality and disability. Prevention of FAP SBA can play an important role in helping countries to achieve their Sustainable Development Goals for health.


Assuntos
Anencefalia/epidemiologia , Alimentos Fortificados/provisão & distribuição , Disrafismo Espinal/epidemiologia , Anencefalia/prevenção & controle , Feminino , Ácido Fólico/metabolismo , Ácido Fólico/uso terapêutico , Deficiência de Ácido Fólico/epidemiologia , Deficiência de Ácido Fólico/metabolismo , Deficiência de Ácido Fólico/terapia , Humanos , Lactente , Mortalidade Infantil , Gravidez , Prevalência , Disrafismo Espinal/prevenção & controle , Triticum , Zea mays
20.
Birth Defects Res ; 110(14): 1148-1152, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30114345

RESUMO

PURPOSE: The present study attempts to understand the complex contribution of biochemical (plasma homocysteine) and nutritional parameters (dietary pattern and folate supplementation) to the neural tube defects (NTDs) affected pregnancies and controls in North Indian population. METHODS: Case-control study design was adopted to assess the role of folic acid, dietary habits, and homocysteine in relation to NTD births. The subjects comprised of 130 mothers of affected children (cases) and 233 mothers of healthy children (controls), who were either carrying NTD fetus or gave birth to NTD child. RESULTS: The mean homocysteine levels were elevated in cases (15.71 ± 8.35 µmol/L) as compared to controls (12.87 ± 5.95 µmol/L) but were lower among the non-vergetarians (13.55 ± 6.64 µmol/L) than the vegetarians (14.78 ± 7.93 µmol/L). Vegetarian dietary habit increased the NTD risk by 1.6 fold (95% CI = 1.0-2.7) while folic acid supplementation demonstrated a protective effect for conceptions (OR = 0.59; 95% CI = 0.3-0.9). Consumption of folic acid with non-vegetarian diet witnessed lowering of homocysteine in cases (12.88 ± 6.81 µmol/L) and in controls (11.85 ± 5.54 µmol/L), with an odds ratio depicting a 3.1 fold risk for consuming vegetarian diet without folic acid supplementation during the peri-conceptional period. CONCLUSION: It is suggested that plasma hyperhomocysteinemia bears negative impact on child-bearing women group, of north Indian ancestry, in modulating the risk of NTDs. Efforts should be made to enhance awareness regarding folic acid and vitamin B12 (non-vegetarian diet) supplementations alongwith proper nutritional intake among women, especially those consuming vegetarian diet to control homocysteine levels in order to reduce the risk of NTDs.


Assuntos
Ácido Fólico/uso terapêutico , Homocisteína/análise , Defeitos do Tubo Neural/epidemiologia , Adulto , Estudos de Casos e Controles , Dieta , Dieta Vegetariana , Suplementos Nutricionais , Comportamento Alimentar , Feminino , Ácido Fólico/sangue , Ácido Fólico/metabolismo , Deficiência de Ácido Fólico/epidemiologia , Deficiência de Ácido Fólico/metabolismo , Deficiência de Ácido Fólico/terapia , Homocisteína/sangue , Humanos , Índia/epidemiologia , Lactente , Mortalidade Infantil , Pessoa de Meia-Idade , Razão de Chances , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA