Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Ethnopharmacol ; 279: 114347, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34147616

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Holothuria (Metriatyla) scabra Jaeger (H. scabra), sea cucumber, is the marine organism that has been used as traditional food and medicine to gain the health benefits since ancient time. Although our recent studies have shown that crude extracts from H. scabra exhibited neuroprotective effects against Parkinson's disease (PD), the underlying mechanisms and bioactive compounds are still unknown. AIM OF THE STUDY: In the present study, we examined the efficacy of purified compounds from H. scabra and their underlying mechanism on α-synuclein degradation and neuroprotection against α-synuclein-mediated neurodegeneration in a transgenic Caenorhabditis elegans PD model. MATERIAL AND METHODS: The H. scabra compounds (HSEA-P1 and P2) were purified and examined for their toxicity and optimal dose-range by food-clearance and lifespan assays. The α-synuclein degradation and neuroprotection against α-synuclein-mediated neurodegeneration were determined using transgenic C. elegans model, Punc-54::α-syn and Pdat-1:: α-syn; Pdat-1::GFP, respectively, and then further investigated by determining the behavioral assays including locomotion rate, basal slowing rate, ethanol avoidance, and area-restricted searching. The underlying mechanisms related to autophagy were clarified by quantitative PCR and RNAi experiments. RESULTS: Our results showed that HSEA-P1 and HSEA-P2 significantly diminished α-synuclein accumulation, improved motility deficits, and recovered the shortened lifespan. Moreover, HSEA-P1 and HSEA-P2 significantly protected dopaminergic neurons from α-synuclein toxicity and alleviated dopamine-associated behavioral deficits, i.e., basal slowing, ethanol avoidance, and area-restricted searching. HSEA-P1 and HSEA-P2 also up-regulated autophagy-related genes, including beclin-1/bec-1, lc-3/lgg-1, and atg-7/atg-7. RNA interference (RNAi) of these genes in transgenic α-synuclein worms confirmed that lc-3/lgg-1 and atg-7/atg-7 were required for α-synuclein degradation and DAergic neuroprotection activities of HSEA-P1 and HSEA-P2. NMR and mass spectrometry analysis revealed that the HSEA-P1 and HSEA-P2 contained diterpene glycosides. CONCLUSION: These findings indicate that diterpene glycosides extracted from H. scabra decreases α-synuclein accumulation and protects α-synuclein-mediated DAergic neuronal loss and its toxicities via lgg-1 and atg-7.


Assuntos
Diterpenos/farmacologia , Glicosídeos/farmacologia , Holothuria/química , Fármacos Neuroprotetores/farmacologia , Animais , Animais Geneticamente Modificados , Autofagia/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Diterpenos/isolamento & purificação , Neurônios Dopaminérgicos/efeitos dos fármacos , Glicosídeos/isolamento & purificação , Locomoção/efeitos dos fármacos , Degeneração Neural/prevenção & controle , Fármacos Neuroprotetores/isolamento & purificação , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/fisiopatologia , alfa-Sinucleína/metabolismo
2.
ASN Neuro ; 13: 17590914211015033, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33951964

RESUMO

Antioxidants and related compounds are anti-inflammatory and exhibit great potential in promoting human health. They are also often considered to be important elements in the process of neurodegeneration. Here we describe a antioxidant blend of Curcumin and Broccoli Seed Extract (BSE). Flies treated with the blend exhibit extended lifespan. RNA-seq analysis of samples from adult fly brains reveals a wide array of new genes with differential expression upon treatment with the blend. Interestingly, abolishing expression of some of the identified genes in dopaminergic (DA) neurons does not affect DA neuron number. Taken together, our findings reveal an antioxidant blend that promotes fly longevity and exhibits protective effect over neurodegeneration, demonstrating the importance of antioxidants in health and pathology.


Assuntos
Antioxidantes/administração & dosagem , Brassica , Curcumina/administração & dosagem , Longevidade/efeitos dos fármacos , Degeneração Neural/prevenção & controle , Fármacos Neuroprotetores/administração & dosagem , Animais , Antioxidantes/isolamento & purificação , Curcumina/isolamento & purificação , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Relação Dose-Resposta a Droga , Drosophila melanogaster , Feminino , Longevidade/fisiologia , Masculino , Degeneração Neural/genética , Degeneração Neural/patologia , Fármacos Neuroprotetores/isolamento & purificação , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Sementes
3.
J Neurosci Res ; 99(2): 561-572, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32964457

RESUMO

Stroke severely impairs quality of life and has a high mortality rate. On the other hand, dietary docosahexaenoic acid (DHA) prevents neuronal damage. In this review, we describe the effects of dietary DHA on ischemic stroke-associated neuronal damage and its role in stroke prevention. Recent epidemiological studies have been conducted to analyze stroke prevention through DHA intake. The effects of dietary intake and supply of DHA to neuronal cells, DHA-mediated inhibition of neuronal damage, and its mechanism, including the effects of the DHA metabolite, neuroprotectin D1 (NPD1), were investigated. These studies revealed that DHA intake was associated with a reduced risk of stroke. Moreover, studies have shown that DHA intake may reduce stroke mortality rates. DHA, which is abundant in fish oil, passes through the blood-brain barrier to accumulate as a constituent of phospholipids in the cell membranes of neuronal cells and astrocytes. Astrocytes supply DHA to neuronal cells, and neuronal DHA, in turn, activates Akt and Raf-1 to prevent neuronal death or damage. Therefore, DHA indirectly prevents neuronal damage. Furthermore, NDP1 blocks neuronal apoptosis. DHA, together with NPD1, may block neuronal damage and prevent stroke. The inhibitory effect on neuronal damage is achieved through the antioxidant (via inducing the Nrf2/HO-1 system) and anti-inflammatory effects (via promoting JNK/AP-1 signaling) of DHA.


Assuntos
Dano Encefálico Crônico/prevenção & controle , Ácidos Docosa-Hexaenoicos/uso terapêutico , AVC Isquêmico/dietoterapia , Degeneração Neural/prevenção & controle , Acidente Vascular Cerebral/prevenção & controle , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/uso terapêutico , Antioxidantes/administração & dosagem , Antioxidantes/farmacocinética , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Disponibilidade Biológica , Transporte Biológico , Barreira Hematoencefálica , Dano Encefálico Crônico/etiologia , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacocinética , Gorduras na Dieta/uso terapêutico , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacocinética , Ácidos Docosa-Hexaenoicos/farmacologia , Proteínas de Ligação a Ácido Graxo/fisiologia , Óleos de Peixe/administração & dosagem , Óleos de Peixe/farmacocinética , Humanos , Incidência , AVC Isquêmico/complicações , AVC Isquêmico/epidemiologia , Lipídeos de Membrana/metabolismo , Camundongos , Proteínas de Neoplasias/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Óleos de Plantas/administração & dosagem , Óleos de Plantas/farmacocinética , Transdução de Sinais/efeitos dos fármacos , Simportadores/deficiência , Simportadores/fisiologia , Ácido alfa-Linolênico/farmacocinética
4.
Psychopharmacology (Berl) ; 237(11): 3225-3236, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32651640

RESUMO

The asymptomatic and clinical stages of Parkinson's disease (PD) are associated with comorbid non-motor symptoms including gastrointestinal (GI) dysfunction. Although the neuroprotective and gastroprotective roles of kolaviron (KV) have been reported independently, whether KV-mediated GI-protective capacity could be beneficial in PD is unknown. We therefore investigated the modulatory effects of KV on the loss of dopaminergic neurons, locomotor abnormalities, and ileal oxidative damage when rats are lesioned in the nigrostriatal pathway. KV treatment markedly suppressed the behavioral deficit and apomorphine-induced rotations associated with rotenone lesioning. KV attenuated the loss of nigrostriatal dopaminergic neurons and perturbations in the striatal glucose-regulated protein (GRP78) and X-box binding protein 1 (XBP1) levels. Ileal epithelial injury following stereotaxic rotenone infusion was associated with oxidative stress and marked inhibition of acetylcholine esterase activity and reduced expression of occludin in the crypt and villi. While KV treatment attenuated the redox imbalance in the gut and enhanced occludin immunoreactivity, acetylcholinesterase activity was not affected. Our data demonstrate ileal oxidative damage as a characteristic non-motor gut dysfunction in PD while showing the potential dual efficacy of KV in the attenuation of both neural defects and gut abnormalities associated with PD.


Assuntos
Corpo Estriado/efeitos dos fármacos , Flavonoides/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Transtornos Parkinsonianos/prevenção & controle , Rotenona/toxicidade , Substância Negra/efeitos dos fármacos , Animais , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Flavonoides/isolamento & purificação , Microbioma Gastrointestinal/fisiologia , Masculino , Degeneração Neural/induzido quimicamente , Degeneração Neural/tratamento farmacológico , Degeneração Neural/prevenção & controle , Fármacos Neuroprotetores/administração & dosagem , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Ratos , Rotenona/administração & dosagem , Técnicas Estereotáxicas , Substância Negra/metabolismo
5.
Nutrients ; 12(4)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340314

RESUMO

There is indication that nutritional supplements protect retinal cells from degeneration. In a previous study, we demonstrated that dietary supplementation with an association of forskolin, homotaurine, spearmint extract and B vitamins efficiently counteracts retinal dysfunction associated with retinal ganglion cell (RGC) death caused by optic nerve crush. We extended our investigation on the efficacy of dietary supplementation with the use of a mouse model in which RGC degeneration depends as closely as possible on intraocular pressure (IOP) elevation. In this model, injecting the anterior chamber of the eye with methylcellulose (MCE) causes IOP elevation leading to RGC dysfunction. The MCE model was characterized in terms of IOP elevation, retinal dysfunction as determined by electrophysiological recordings, RGC loss as determined by brain-specific homeobox/POU domain protein 3A immunoreactivity and dysregulated levels of inflammatory and apoptotic markers. Except for IOP elevation, dysfunctional retinal parameters were all recovered by dietary supplementation indicating the involvement of non-IOP-related neuroprotective mechanisms of action. Our hypothesis is that the diet supplement may be used to counteract the inflammatory processes triggered by glial cell activation, thus leading to spared RGC loss and the preservation of visual dysfunction. In this respect, the present compound may be viewed as a potential remedy to be added to the currently approved drug therapies for improving RGC protection.


Assuntos
Colforsina/farmacologia , Suplementos Nutricionais , Glaucoma/patologia , Degeneração Neural/prevenção & controle , Fármacos Neuroprotetores , Fenômenos Fisiológicos da Nutrição/fisiologia , Células Ganglionares da Retina/efeitos dos fármacos , Taurina/análogos & derivados , Complexo Vitamínico B/farmacologia , Animais , Colforsina/administração & dosagem , Modelos Animais de Doenças , Feminino , Glaucoma/etiologia , Pressão Intraocular , Masculino , Camundongos Endogâmicos C57BL , Degeneração Neural/etiologia , Degeneração Neural/patologia , Hipertensão Ocular/complicações , Células Ganglionares da Retina/patologia , Taurina/administração & dosagem , Taurina/farmacologia , Complexo Vitamínico B/administração & dosagem
6.
Invest Ophthalmol Vis Sci ; 60(14): 4606-4618, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31756254

RESUMO

Purpose: To investigate the neuroprotective effects of Lycium barbarum polysaccharides (LBP) against chronic ocular hypertension (OHT) in rats and to consider if effects differed when treatment was applied before (pretreatment) or during (posttreatment) chronic IOP elevation. Methods: Sprague-Dawley rats (10-weeks old) underwent suture implantation around the limbus for 15 weeks (OHT) or 1 day (sham). Four experimental groups were studied, three OHT groups (n = 8 each) treated either with vehicle (PBS), LBP pretreatment or posttreatment, and a sham control (n = 5) received no treatment. LBP (1 mg/kg) pre- and posttreatment were commenced at 1 week before and 4 weeks after OHT induction, respectively. Treatments continued up through week 15. IOP was monitored twice weekly for 15 weeks. Optical coherence tomography and ERG were measured at baseline, week 4, 8, 12, and 15. Eyes were collected for ganglion cell layer (GCL) histologic analysis at week 15. Results: Suture implantation successfully induced approximately 50% IOP elevation and the cumulative IOP was similar between the three OHT groups. When compared with vehicle control (week 4: -23 ± 5%, P = 0.03), LBP pretreatment delayed the onset of retinal nerve fiber layer (RNFL) thinning (week 4, 8: -2 ± 7%, -11 ± 3%, P > 0.05) and arrested further reduction up through week 15 (-10 ± 4%, P > 0.05). LBP posttreatment intervention showed no significant change in rate of loss (week 4, 15: -25 ± 4.1%, -28 ± 3%). However, both LBP treatments preserved the retinal ganglion cells (RGC) and retinal functions up to week 15, which were significantly reduced in vehicle control. Conclusions: LBP posttreatment arrested the subsequent neuronal degeneration after treatment commencement and preserved RGC density and retinal functions in a chronic OHT model, which was comparable with pretreatment outcomes.


Assuntos
Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/uso terapêutico , Degeneração Neural/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Hipertensão Ocular/tratamento farmacológico , Animais , Doença Crônica , Eletrorretinografia , Feminino , Pressão Intraocular/fisiologia , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Fibras Nervosas/patologia , Hipertensão Ocular/metabolismo , Hipertensão Ocular/fisiopatologia , Ratos , Ratos Sprague-Dawley , Retina/fisiopatologia , Células Ganglionares da Retina/patologia , Tomografia de Coerência Óptica
7.
Life Sci ; 229: 187-199, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31108095

RESUMO

Spinal cord injury (SCI) is a serious neurological disease without efficacious drugs. Anti-apoptosis and suppressing dendritic/synaptic degeneration in the anterior horn are essential targets after SCI. Previous studies found that hyperbaric oxygen therapy (HBOT) significantly protected rats after SCI. However, its potential effects and mechanisms remain unknown. The BDNF/TrkB signaling pathways evidently contribute to the SCI recovery. Currently, we mainly investigate the potential effects and mechanism of HBOT on anti-apoptosis and ameliorating impaired dendrites, dendritic spines and synapses after SCI. Establish SCI model and randomly divide rats into 5 groups. After SCI, rats were subjected to HBOT. ANA-12 is the specific inhibitor of BDNF/TrkB signal pathway. Changes in neurological deficit, neuronal morphology, apoptosis, protein expression and dendrite/synapse were examined by Basso-Beattie-Bresnahan (BBB) locomotor rating scale, Hematoxylin-eosin (HE) and Nissl staining, TUNEL staining, RT-PCR, Western blot, immunofluorescence and Golgi-Cox staining. We found HBOT suppressed dendritic/synaptic degeneration and alleviated apoptosis, consistent with the increase of BDNF and TrkB expression and improved neurological recovery. In contrast to the positive effects of HBOT, inhibitor increased degeneration and apoptosis. Moreover, we observed that these HBOT-mediated protective effects were significantly inhibited by inhibitor, consistent with the lower expression of BDNF/TrkB and worse neurobehavioral state. These findings suggest that hyperbaric oxygen therapy ameliorates spinal cord injury-induced neurological impairment by anti-apoptosis and suppressing dendritic/synaptic degeneration via upregulating the BDNF/TrkB signaling pathways.


Assuntos
Apoptose , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dendritos/metabolismo , Oxigenoterapia Hiperbárica/métodos , Degeneração Neural/prevenção & controle , Receptor trkB/metabolismo , Traumatismos da Medula Espinal/terapia , Sinapses/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Dendritos/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Receptor trkB/genética , Recuperação de Função Fisiológica , Transdução de Sinais , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Sinapses/patologia
8.
Phytother Res ; 33(6): 1627-1638, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31069872

RESUMO

Milk thistle (Silybum marianum) is a medicinal plant from the Asteraceae family. Silymarin is the major constituent of milk thistle extract and is a mixture of some flavonolignans such as silybin, which is the most active component of silymarin. It is most commonly known for its hepatoprotective effect. Also, studies have shown other therapeutic effects such as anticancer, anti-Alzheimer, anti-Parkinson, and anti-diabetic, so its safety is very important. It has no major toxicity in animals. Silymarin was mutagen in Salmonella typhimurium strains in the presence of metabolic enzymes. Silybin, silydianin, and silychristin were not cytotoxic and genotoxic at concentration of 100 µM. Silymarin is safe in humans at therapeutic doses and is well tolerated even at a high dose of 700 mg three times a day for 24 weeks. Some gastrointestinal discomforts occurred like nausea and diarrhea. One clinical trial showed silymarin is safe in pregnancy, and there were no anomalies. Consequently, caution should be exercised during pregnancy, and more studies are needed especially in humans. Silymarin has low-drug interactions, and it does not have major effects on cytochromes P-450. Some studies demonstrated that the use of silymarin must be with caution when co-administered with narrow therapeutic window drugs.


Assuntos
Extratos Vegetais/uso terapêutico , Silybum marianum/química , Silimarina/uso terapêutico , Animais , Antioxidantes/efeitos adversos , Antioxidantes/isolamento & purificação , Antioxidantes/uso terapêutico , Antioxidantes/toxicidade , Asteraceae/química , Asteraceae/classificação , Sistema Enzimático do Citocromo P-450/metabolismo , Citoproteção/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Interações Medicamentosas , Feminino , Humanos , Hipoglicemiantes/efeitos adversos , Hipoglicemiantes/uso terapêutico , Fígado/efeitos dos fármacos , Silybum marianum/efeitos adversos , Degeneração Neural/prevenção & controle , Extratos Vegetais/efeitos adversos , Gravidez , Silimarina/efeitos adversos
9.
Int J Mol Sci ; 20(7)2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30934738

RESUMO

Parkinson's disease (PD), a multifactorial movement disorder that involves progressive degeneration of the nigrostriatal system affecting the movement ability of the patient. Oxidative stress and neuroinflammation both are shown to be involved in the etiopathogenesis of PD. The aim of this study was to evaluate the therapeutic potential of thymol, a dietary monoterpene phenol in rotenone (ROT)-induced neurodegeneration in rats that precisely mimics PD in humans. Male Wistar rats were injected ROT at a dose of 2.5 mg/kg body weight for 4 weeks, to induce PD. Thymol was co-administered for 4 weeks at a dose of 50 mg/kg body weight, 30 min prior to ROT injection. The markers of dopaminergic neurodegeneration, oxidative stress and inflammation were estimated using biochemical assays, enzyme-linked immunosorbent assay, western blotting and immunocytochemistry. ROT challenge increased the oxidative stress markers, inflammatory enzymes and cytokines as well as caused significant damage to nigrostriatal dopaminergic system of the brain. Thymol treatment in ROT challenged rats appears to significantly attenuate dopaminergic neuronal loss, oxidative stress and inflammation. The present study showed protective effects of thymol in ROT-induced neurotoxicity and neurodegeneration mediated by preservation of endogenous antioxidant defense networks and attenuation of inflammatory mediators including cytokines and enzymes.


Assuntos
Dieta , Neurônios Dopaminérgicos/patologia , Degeneração Neural/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Timol/uso terapêutico , Animais , Catalase/metabolismo , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Glutationa/metabolismo , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Neostriado/efeitos dos fármacos , Neostriado/patologia , Degeneração Neural/patologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos Wistar , Rotenona , Substância Negra/efeitos dos fármacos , Substância Negra/patologia , Superóxido Dismutase/metabolismo , Timol/química , Timol/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo
10.
Cell Biol Toxicol ; 35(2): 147-159, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30673990

RESUMO

Manganese exposure is among the many environmental risk factors linked to the progression of neurodegenerative diseases, such as manganese-induced parkinsonism. In animal models, chronic exposure to manganese causes loss of cell viability, neurodegeneration, and functional deficits. Polyamines, such as spermine, have been shown to rescue animals from age-induced neurodegeneration in an autophagy-dependent manner; nonetheless, it is not understood whether polyamines can prevent manganese-induced toxicity. In this study, we used two model systems, the Caenorhabditis elegans UA44 strain and SK-MEL-28 cells, both expressing the protein alpha-synuclein (α-syn) to determine whether spermine could ameliorate manganese-induced toxicity. Manganese caused a substantial reduction in the viability of SK-MEL-28 cells and hastened neurodegeneration in the UA44 strain. Spermine protected both the SK-MEL-28 cells and the UA44 strain from manganese-induced toxicity. Spermine also reduced the age-associated neurodegeneration observed in the UA44 strain compared with a control strain without α-syn expression and led to improved avoidance behavior in a functional assay. Treatment with berenil, an inhibitor of polyamine catabolism, which leads to increased intracellular polyamine levels, also showed similar cellular protection against manganese toxicity. While both translation blocker cycloheximide and autophagy blocker chloroquine caused a reduction in the cytoprotective effect of spermine, transcription blocker actinomycin D had no effect. This study provides new insights on the effect of spermine in preventing manganese-induced toxicity, which is most likely via translational regulation of several candidate genes, including those of autophagy. Thus, our results indicate that polyamines positively influence neuronal health, even when exposed to high levels of manganese and α-syn, and supplementing polyamines through diet might delay the onset of diseases involving degeneration of dopaminergic neurons.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Manganês/toxicidade , Fármacos Neuroprotetores/farmacologia , Espermina/farmacologia , Animais , Caenorhabditis elegans/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Diminazena/análogos & derivados , Diminazena/farmacologia , Humanos , Degeneração Neural/prevenção & controle , alfa-Sinucleína/metabolismo
11.
Neurotoxicology ; 65: 98-110, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29427613

RESUMO

Thiamine/vitamin B1 deficiency can lead to behavioral changes and neurotoxicity in humans. This may due in part to vascular damage, neuroinflammation and neuronal degeneration in the diencephalon, which is seen in animal models of pyrithiamine-enhanced thiamine deficiency. However, the time course of the progression of these changes in the animal models has been poorly characterized. Therefore, in this study, the progression of: 1) activated microglial association with vasculature; 2) neurodegeneration; and 3) any vascular leakage in the forebrain during the progress of thiamine deficiency were determined. A thiamine deficient diet along with 0.25 mg/kg/d of pyrithiamine was used as the mouse model. Vasculature was identified with Cd31 and microglia with Cd11b and Iba1 immunoreactivity. Neurodegeneration was determined by FJc labeling. The first sign of activated microglia within the thalamic nuclei were detected after 8 d of thiamine deficiency, and by 9 d activated microglia associated primarily with vasculature were clearly present but only in thalamus. At the 8 d time point neurodegeneration was not present in thalamus. However at 9 d, the first signs of neurodegeneration (FJc + neurons) were seen in most animals. Over 80% of the microglia were activated at 10 d but almost exclusively in the thalamus and the number of degenerating neurons was less than 10% of the activated microglia. At 10 d, there were sporadic minor changes in IgG presence in thalamus indicating minor vascular leakage. Dizocilpine (0.2-0.4 mg/kg) or phenobarbital (10-20 mg/kg) was administered to groups of mice from day 8 through day 10 to block neurodegeneration but neither did. In summary, activated microglia start to surround vasculature 1-2 d prior to the start of neurodegeneration. This response may be a means of controlling or repairing vascular damage and leakage. Glutamate excitotoxicity and vascular leakage likely only play a minor role in the early neurodegeneration resulting from thiamine deficiency. However, failure of dysfunctional vasculature endothelium to supply sufficient nutrients to neurons could be contributing to the neurodegeneration.


Assuntos
Vasos Sanguíneos/patologia , Microglia/metabolismo , Degeneração Neural/patologia , Tálamo/metabolismo , Tálamo/patologia , Deficiência de Tiamina/metabolismo , Deficiência de Tiamina/patologia , Animais , Antígeno CD11b/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Dieta , Maleato de Dizocilpina/farmacologia , Feminino , Camundongos , Proteínas dos Microfilamentos/metabolismo , Degeneração Neural/prevenção & controle , Fenobarbital/farmacologia , Piritiamina , Deficiência de Tiamina/induzido quimicamente , Fatores de Tempo
12.
Can J Physiol Pharmacol ; 95(4): 340-348, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28060522

RESUMO

There is evidence for a relationship between inflammation and seizures because epilepsy can be caused by or result in inflammation. This study aimed to investigate the effect of aspirin and (or) omega-3 polyunsaturated fatty acids (PUFAs) on seizure activity and neurodegeneration in pentylenetetrazole (PTZ)-kindled rats focusing on their effect on corticohippocampal production of lipoxin A4 (LXA4) and expression of formyl peptide receptor-like 1 (FPRL1) receptors. Male rats were injected with PTZ (35 mg/kg, i.p.) 3 times per week for a total of 15 doses. Rats were treated daily with aspirin (20 mg/kg, i.p.), omega-3 PUFAs (85 mg/kg, p.o.), or a combination of them for 35 days. Both LXA4 level and expression of FPRL1 receptor in the cortices and hippocampi of rats' brains were greater in PTZ-kindled rats compared to a saline control group. Cotreatment with aspirin and (or) omega-3 PUFAs reduced convulsive behaviour; reduced levels of LXA4, interleukin-1ß, and nuclear factor-κB; and showed a lower percentage of corticohippocampal degenerative cells compared to PTZ-kindled rats. The combination of the 2 therapeutic agents did not provide significant improvement in comparison with the monotherapies. These findings suggest the use of aspirin or omega-3 PUFAs may delay the development of seizures and provide neuroprotection in a clinical setting.


Assuntos
Aspirina/uso terapêutico , Epilepsia/prevenção & controle , Ácidos Graxos Ômega-3/uso terapêutico , Lipoxinas/metabolismo , Degeneração Neural/prevenção & controle , Fármacos Neuroprotetores/uso terapêutico , Receptores de Lipoxinas/metabolismo , Animais , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Modelos Animais de Doenças , Regulação para Baixo , Quimioterapia Combinada , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/patologia , Interleucina-1beta/metabolismo , Masculino , NF-kappa B/metabolismo , Pentilenotetrazol/toxicidade , Ratos , Receptores de Formil Peptídeo/metabolismo
13.
Anat Rec (Hoboken) ; 300(7): 1290-1298, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27998013

RESUMO

Aspartame (ASP) is one of the commonest artificial sweetener used all over the world and considered as an extremely risky compound and raises a lot of controversy. Therefore, this study was designed to investigate cellular damage of the anterior horn cells in the spinal cord of albino male rats and the possibility of hindering these changes by using omega-3 (OM3).Thirty seven adult male albino rats were divided into three groups: Control, ASP-treated and ASP + OM3-treated groups. Spinal cord sections were prepared and stained with Hx&E, caspase-3 and GFAP immunostaining. All data were morphometrically and statistically analyzed. In ASP-treated group, the cell body of some degenerated neurons was swollen and its cytoplasm was vacuolated. Their nuclei were eccentric and pyknotic. Moreover, other neurons were of a heterogeneous pattern in the form of cell body shrinkage, loss of Nissl substance, intensely stained eosinophilic cytoplasm and a small darkly stained nucleus that may eventually fragment. However, the cells were apparently normal in ASP+ OM3-treated group. Strong +ve caspase-3 stained neurons were detected in ASP-treated group. Furthermore, the immunoreaction was faint on treating the rats with both ASP and OM3. Few number of +ve GFAP- stained astrocytes were observed in ASP-treated rats. On the other hand, the immunoreactivity for GFAP was found to be intense in the ASP + OM3-treated group. Additionally, there was a significant decrease in the surface area percentage of the +ve GFAP-stained astrocytes of the ASP-treated group compared to the control and the ASP + OM3-treated groups. Anat Rec, 300:1290-1298, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Aspartame/efeitos adversos , Astrócitos/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Degeneração Neural/prevenção & controle , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Medula Espinal/efeitos dos fármacos , Animais , Astrócitos/patologia , Masculino , Degeneração Neural/induzido quimicamente , Neurônios/patologia , Ratos , Medula Espinal/patologia
14.
Pharm Biol ; 55(1): 428-434, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27937035

RESUMO

CONTEXT: The defatted seeds of Camellia oleifera var. monosperma Hung T. Chang (Theaceae) are currently discarded without effective utilization. However, sapogenin has been isolated and shows antioxidative, anti-inflammatory and analgesic activities suggestive of its neuroprotective function. OBJECTIVE: In order to improve the activities of sapogenin, the nanoparticles of iron-sapogenin have been synthesized, and the neuroprotective effects are evaluated. MATERIALS AND METHODS: Structural characters of the nanoparticles were analyzed, and the antioxidant effect was assessed by DPPH method, and the neuroprotective effect was evaluated by rotenone-induced neurodegeneration in Kunming mice injected subcutaneously into the back of neck with rotenone (50 mg/kg/day) for 6 weeks and then treated by tail intravenous injection with the iron-sapogenin at the dose of 25, 50 and 100 mg/kg for 7 days. Mice behaviour and neurotransmitters were tested. RESULTS: The product had an average size of 162 nm with spherical shape, and scavenged more than 90% DPPH radicals at 0.8 mg/mL concentration. It decreased behavioural disorder and malondialdehyde content in mice brain, and increased superoxide dismutase activity, tyrosine hydroxylase expression, dopamine and acetylcholine levels in brain in dose dependence, and their maximum changes were respectively up to 60.83%, 25.17%, 22.13%, 105.26%, 42.17% and 22.89% as compared to vehicle group. Iron-sapogenin nanoparticle shows significantly better effects than the sapogenin. DISCUSSION AND CONCLUSION: Iron-sapogenin alleviates neurodegeneration of mice injured by neurotoxicity of rotenone, it is a superior candidate of drugs for neuroprotection.


Assuntos
Encéfalo/efeitos dos fármacos , Camellia/química , Cloretos/farmacologia , Compostos Férricos/farmacologia , Nanopartículas Metálicas , Degeneração Neural/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Sapogeninas/farmacologia , Sementes/química , Acetilcolina/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Biomarcadores/metabolismo , Compostos de Bifenilo/química , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Cloretos/administração & dosagem , Cloretos/química , Modelos Animais de Doenças , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Composição de Medicamentos , Compostos Férricos/administração & dosagem , Compostos Férricos/química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/isolamento & purificação , Sequestradores de Radicais Livres/farmacologia , Injeções Intravenosas , Injeções Subcutâneas , Masculino , Malondialdeído/metabolismo , Camundongos , Atividade Motora/efeitos dos fármacos , Degeneração Neural/induzido quimicamente , Degeneração Neural/metabolismo , Degeneração Neural/psicologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Estresse Oxidativo/efeitos dos fármacos , Fitoterapia , Picratos/química , Plantas Medicinais , Rotenona , Sapogeninas/administração & dosagem , Sapogeninas/química , Sapogeninas/isolamento & purificação , Superóxido Dismutase/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
15.
Turk Neurosurg ; 27(6): 924-930, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27509464

RESUMO

AIM: Traumatic brain injury (TBI) is a complex process. Increasing evidence has demonstrated that reactive oxygen species contribute to brain injury. Resveratrol (RVT) which exhibits significant antioxidant properties, is neuroprotective against excitotoxicity, ischemia, and hypoxia. The aim of this study was to evaluate the neuroprotective effects of RVT on the hippocampus of a rat model of TBI. MATERIAL AND METHODS: Twenty eight rats were divided into four groups. A moderate degree of head trauma was induced using Feeney"s falling weight technique. Group 1 (control) underwent no intervention or treatment. Head trauma was induced in Group 2 (trauma) and no drug was administered. Head trauma was induced in Group 3 and low-dose RVT (50 mg/kg per day) was injected. In Group 4, high-dose RVT (100 mg/kg per day) was used after head trauma. Brain tissues were extracted immediately after perfusion without damaging the tissues. Histopathological and biochemistry parameters were studied. RESULTS: Brain tissue malondialdehyde (MDA) levels in the trauma group were significantly higher than those in the control, lowdose RVT-treated, and high-dose-RVT-treated groups. The superoxide dismutase (SOD) levels in the control group were significantly higher than those in the trauma, low-dose RVT-treated, and high-dose RVT-treated groups. Glutathione peroxidase (GSH-Px) levels in the control group were significantly higher than those in the trauma and low-dose RVT-treated groups. The level of oxidative deoxyribonucleic acid (DNA) damage (8-OHdG/106 dG) in the trauma group was higher than that in the control group, low-dose RVT-treated, and high-dose RVT-treated groups. CONCLUSION: Resveratrol has a healing effect on neurons after TBI.


Assuntos
Lesões Encefálicas Traumáticas/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Degeneração Neural/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Estilbenos/uso terapêutico , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Lesões Encefálicas Traumáticas/enzimologia , Lesões Encefálicas Traumáticas/metabolismo , Dano ao DNA/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Masculino , Malondialdeído/metabolismo , Ratos , Resveratrol , Estilbenos/farmacologia , Superóxido Dismutase/metabolismo
16.
J Neuroinflammation ; 13(1): 207, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27566665

RESUMO

BACKGROUND: Data from multiple sclerosis (MS) and the MS rodent model, experimental autoimmune encephalomyelitis (EAE), highlighted an inflammation-dependent synaptopathy at the basis of the neurodegenerative damage causing irreversible disability in these disorders. This synaptopathy is characterized by an imbalance between glutamatergic and GABAergic transmission and has been proposed to be a potential therapeutic target. Siponimod (BAF312), a selective sphingosine 1-phosphate1,5 receptor modulator, is currently under investigation in a clinical trial in secondary progressive MS patients. We investigated whether siponimod, in addition to its peripheral immune modulation, may exert direct neuroprotective effects in the central nervous system (CNS) of mice with chronic progressive EAE. METHODS: Minipumps allowing continuous intracerebroventricular (icv) infusion of siponimod for 4 weeks were implanted into C57BL/6 mice subjected to MOG35-55-induced EAE. Electrophysiology, immunohistochemistry, western blot, qPCR experiments, and peripheral lymphocyte counts were performed. In addition, the effect of siponimod on activated microglia was assessed in vitro to confirm the direct effect of the drug on CNS-resident immune cells. RESULTS: Siponimod administration (0.45 µg/day) induced a significant beneficial effect on EAE clinical scores with minimal effect on peripheral lymphocyte counts. Siponimod rescued defective GABAergic transmission in the striatum of EAE, without correcting the EAE-induced alterations of glutamatergic transmission. We observed a significant attenuation of astrogliosis and microgliosis together with reduced lymphocyte infiltration in the striatum of EAE mice treated with siponimod. Interestingly, siponimod reduced the release of IL-6 and RANTES from activated microglial cells in vitro, which might explain the reduced lymphocyte infiltration. Furthermore, the loss of parvalbumin-positive (PV+) GABAergic interneurons typical of EAE brains was rescued by siponimod treatment, providing a plausible explanation of the selective effects of this drug on inhibitory synaptic transmission. CONCLUSIONS: Altogether, our results show that siponimod has neuroprotective effects in the CNS of EAE mice, which are likely independent of its peripheral immune effect, suggesting that this drug could be effective in limiting neurodegenerative pathological processes in MS.


Assuntos
Azetidinas/uso terapêutico , Compostos de Benzil/uso terapêutico , Encefalomielite Autoimune Experimental/complicações , Degeneração Neural , Fármacos Neuroprotetores/uso terapêutico , Sinapses/fisiologia , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Azetidinas/farmacologia , Compostos de Benzil/farmacologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular Transformada , Córtex Cerebral/citologia , Citocinas/farmacologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Adjuvante de Freund/imunologia , Adjuvante de Freund/toxicidade , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Glicoproteína Mielina-Oligodendrócito/imunologia , Glicoproteína Mielina-Oligodendrócito/toxicidade , Degeneração Neural/etiologia , Degeneração Neural/patologia , Degeneração Neural/prevenção & controle , Condução Nervosa/efeitos dos fármacos , Condução Nervosa/fisiologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/toxicidade , Sinapses/efeitos dos fármacos , Potenciais Sinápticos/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/patologia , Substância Branca/efeitos dos fármacos , Substância Branca/patologia
17.
J Proteome Res ; 15(8): 2595-606, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27246451

RESUMO

Herein we report the discovery of a novel lead compound, oxyphylla A [(R)-4-(2-hydroxy-5-methylphenyl)-5-methylhexanoic acid] (from the fruit of Alpinia oxyphylla), which functions as a neuroprotective agent against Parkinson's disease. To identify a shortlist of candidates from the extract of A. oxyphylla, we employed an integrated strategy combining liquid chromatography/mass spectrometry, bioactivity-guided fractionation, and chemometric analysis. The neuroprotective effects of the shortlisted candidates were validated prior to scaling up the finalized list of potential neuroprotective constituents for more detailed chemical and biological characterization. Oxyphylla A has promising neuroprotective effects: (i) it ameliorates in vitro chemical-induced primary neuronal cell damage and (ii) alleviates chemical-induced dopaminergic neuron loss and behavioral impairment in both zebrafish and mice in vivo. Quantitative proteomics analyses of oxyphylla A-treated primary cerebellar granule neurons that had been intoxicated with 1-methyl-4-phenylpyridinium revealed that oxyphylla A activates nuclear factor-erythroid 2-related factor 2 (NRF2)-a master redox switch-and triggers a cascade of antioxidative responses. These observations were verified independently through western blot analyses. Our integrated metabolomics, chemometrics, and pharmacological strategy led to the efficient discovery of novel bioactive ingredients from A. oxyphylla while avoiding the nontargeting, labor-intensive steps usually required for identification of bioactive compounds. Our successful development of a synthetic route toward oxyphylla A should lead to its availability on a large scale for further functional development and pathological studies.


Assuntos
Alpinia/química , Descoberta de Drogas , Fármacos Neuroprotetores/isolamento & purificação , Doença de Parkinson/tratamento farmacológico , Animais , Caproatos/isolamento & purificação , Caproatos/farmacologia , Fracionamento Químico , Cromatografia Líquida , Cresóis/isolamento & purificação , Cresóis/farmacologia , Dopaminérgicos/isolamento & purificação , Dopaminérgicos/uso terapêutico , Neurônios Dopaminérgicos/efeitos dos fármacos , Espectrometria de Massas , Camundongos , Degeneração Neural/tratamento farmacológico , Degeneração Neural/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Peixe-Zebra
18.
Oxid Med Cell Longev ; 2016: 2646840, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26966507

RESUMO

Parsley was used as a probe of the current experiment to prevent the behavioral, morphological and biochemical changes in the newborn brain following the administration of cadmium (Cd) to the pregnant mice. The nonanesthetized pregnant mice were given daily parsley juice (Petroselinum crispum) at doses of 20 mg/kg and 10 mg/kg. Pregnant mothers were given Cd at a dose of 30 mg/kg divided into 3 equal times. The newborns have been divided into 6 groups: Group A, mothers did not take treatment; Groups B and C, mothers were treated with low and high dose of parsley, respectively; Group D, mothers were treated only with Cd (perinatal intoxication); Groups E and F, mothers were treated with Cd doses and protected by low and high doses of parsley, respectively. Light microscopy showed that Cd-induced neuronal degeneration by chromatolysis and pyknosis in the brain regions. The low dose of parsley 10 g/kg/day exhibited significant effects in neutralizing and reducing the deleterious changes due to Cd exposure during pregnancy on the behavioral activities, neurotransmitters, oxidative stress, and brain neurons morphology of the mice newborns.


Assuntos
Encéfalo/efeitos dos fármacos , Cádmio/toxicidade , Sucos de Frutas e Vegetais , Fármacos Neuroprotetores/farmacologia , Petroselinum , Extratos Vegetais/farmacologia , Animais , Animais Recém-Nascidos , Encéfalo/crescimento & desenvolvimento , Citoproteção/efeitos dos fármacos , Feminino , Masculino , Camundongos , Degeneração Neural/patologia , Degeneração Neural/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Petroselinum/química , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle
19.
Childs Nerv Syst ; 32(3): 467-74, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26732065

RESUMO

PURPOSE: We aim to study the effect of neurodegeneration on the brain of rat pups caused by prenatal and postnatal ethanol exposure with modified liquid diet to elucidate protective effects of betaine and omega-3 supplementation. When ethanol is consumed during prenatal and postnatal periods, it may result in fetal alcohol syndrome (FAS) in the offspring. METHODS: Rats were divided into control, ethanol, ethanol + betaine, ethanol + omega-3, ethanol + omega-3 + betaine groups. The effect of betaine and omega-3 in response to ethanol-induced changes on the brain, by biochemical analyses cytochrome c, caspase-3, calpain, cathepsin B and L, DNA fragmentation, histological and morfometric methods were evaluated. RESULTS: Caspase-3, calpain, cathepsin B, and cytochrome c levels in ethanol group were significantly higher than control. Caspase-3, calpain levels were decreased in ethanol + betaine, ethanol + omega-3, and ethanol + omega-3 + betaine groups compared to ethanol group. Cathepsin B in ethanol + omega-3 + betaine group was decreased compared to ethanol, ethanol + betaine groups. Cathepsin L and DNA fragmentation were found not statistically significant. We found similar results in histological and morfometric parameters. CONCLUSION: We found that pre- and postnatal ethanol exposure is capable of triggering necrotic cell death in rat brains, omega-3, and betaine reduce neurodegeneration. Omega-3 and betaine may prove beneficial for neurodegeneration, particularly in preventing FAS.


Assuntos
Betaína/farmacologia , Depressores do Sistema Nervoso Central/toxicidade , Etanol/toxicidade , Ácidos Graxos Ômega-3/farmacologia , Degeneração Neural/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Animais , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Lipotrópicos/farmacologia , Degeneração Neural/prevenção & controle , Gravidez , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Ratos , Ratos Sprague-Dawley
20.
Clin Sci (Lond) ; 129(8): 741-56, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26201024

RESUMO

Diabetic peripheral neuropathy affects up to half of diabetic patients. This neuronal damage leads to sensory disturbances, including allodynia and hyperalgesia. Many growth factors have been suggested as useful treatments for prevention of neurodegeneration, including the vascular endothelial growth factor (VEGF) family. VEGF-A is generated as two alternative splice variant families. The most widely studied isoform, VEGF-A165a is both pro-angiogenic and neuroprotective, but pro-nociceptive and increases vascular permeability in animal models. Streptozotocin (STZ)-induced diabetic rats develop both hyperglycaemia and many of the resulting diabetic complications seen in patients, including peripheral neuropathy. In the present study, we show that the anti-angiogenic VEGF-A splice variant, VEGF-A165b, is also a potential therapeutic for diabetic neuropathy. Seven weeks of VEGF-A165b treatment in diabetic rats reversed enhanced pain behaviour in multiple behavioural paradigms and was neuroprotective, reducing hyperglycaemia-induced activated caspase 3 (AC3) levels in sensory neuronal subsets, epidermal sensory nerve fibre loss and aberrant sciatic nerve morphology. Furthermore, VEGF-A165b inhibited a STZ-induced increase in Evans Blue extravasation in dorsal root ganglia (DRG), saphenous nerve and plantar skin of the hind paw. Increased transient receptor potential ankyrin 1 (TRPA1) channel activity is associated with the onset of diabetic neuropathy. VEGF-A165b also prevented hyperglycaemia-enhanced TRPA1 activity in an in vitro sensory neuronal cell line indicating a novel direct neuronal mechanism that could underlie the anti-nociceptive effect observed in vivo. These results demonstrate that in a model of Type I diabetes VEGF-A165b attenuates altered pain behaviour and prevents neuronal stress, possibly through an effect on TRPA1 activity.


Assuntos
Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/prevenção & controle , Degeneração Neural/prevenção & controle , Neuralgia/prevenção & controle , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Animais , Linhagem Celular , Neuropatias Diabéticas/etiologia , Avaliação Pré-Clínica de Medicamentos , Azul Evans , Feminino , Gânglios Espinais/efeitos dos fármacos , Hiperglicemia/complicações , Masculino , Ratos Sprague-Dawley , Ratos Wistar , Células Receptoras Sensoriais/efeitos dos fármacos , Canal de Cátion TRPA1 , Canais de Cátion TRPC/análise , Fator A de Crescimento do Endotélio Vascular/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA