Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Neuropharmacology ; 166: 107948, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31962288

RESUMO

Frontotemporal degeneration (FTD) is a complex disease presenting as a spectrum of clinical disorders with progressive degeneration of frontal and temporal brain cortices and extensive neuroinflammation that result in personality and behavior changes, and eventually, death. There are currently no effective therapies for FTD. While 60-70% of FTD patients are sporadic cases, the other 30-40% are heritable (familial) cases linked to mutations in several known genes. We focus here on FTD caused by mutations in the GRN gene, which encodes a secreted protein, progranulin (PGRN), that has diverse roles in regulating cell survival, immune responses, and autophagy and lysosome function in the brain. FTD-linked mutations in GRN reduce brain PGRN levels that lead to autophagy and lysosome dysfunction, TDP43 accumulation, excessive microglial activation, astrogliosis, and neuron death through still poorly understood mechanisms. PGRN insufficiency has also been linked to Alzheimer's disease (AD), and so the development of therapeutics for GRN-linked FTD that restore PGRN levels and function may have broader application for other neurodegenerative diseases. This review focuses on a strategy to increase PGRN to functional, healthy levels in the brain by identifying novel genetic and chemical modulators of neuronal PGRN levels. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.


Assuntos
Lobo Frontal/metabolismo , Demência Frontotemporal/metabolismo , Demência Frontotemporal/terapia , Progranulinas/metabolismo , Lobo Temporal/metabolismo , Animais , Lobo Frontal/efeitos dos fármacos , Demência Frontotemporal/genética , Terapia Genética/tendências , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Progranulinas/agonistas , Quinolonas/farmacologia , Quinolonas/uso terapêutico , Lobo Temporal/efeitos dos fármacos , Tirosina/análogos & derivados , Tirosina/farmacologia , Tirosina/uso terapêutico
2.
Neurobiol Dis ; 130: 104519, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31233882

RESUMO

The intraneuronal aggregates of hyperphosphorylated and misfolded tau (neurofibrillary tangles, NFTs) cause a stereotypical spatiotemporal Alzheimer's disease (AD) progression that correlates with the severity of the associated cognitive decline. Kinase activity contributes to the balance between neuron survival and cell death. Hyperactivation of kinases including the conventional protein kinase C (PKC) is a defective molecular event accompanying associative memory loss, tau phosphorylation, and progression of AD or related neurodegenerative diseases. Here, we investigated the ability of small therapeutic compounds (a custom library) to improve tau-induced rough-eye phenotype in a Drosophila melanogaster model of frontotemporal dementia. We also assessed the tau phosphorylation in vivo and selected hit compounds. Among the potential hits, we investigated Ro 31-8220, described earlier as a potent PKCα inhibitor. Ro 31-8220 robustly improved the rough-eye phenotype, reduced phosphorylated tau species in vitro and in vivo, reversed tau-induced memory impairment, and improved the fly motor functions. In a human neuroblastoma cell line, Ro 31-8220 reduced the PKC activity and the tau phosphorylation pattern, but we also have to acknowledge the compound's wide range of biological activity. Nevertheless, Ro 31-8220 is a novel therapeutic mitigator of tau-induced neurotoxocity.


Assuntos
Demência Frontotemporal/metabolismo , Indóis/farmacologia , Emaranhados Neurofibrilares/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteínas tau/metabolismo , Animais , Modelos Animais de Doenças , Drosophila melanogaster , Avaliação Pré-Clínica de Medicamentos , Emaranhados Neurofibrilares/metabolismo , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos
3.
J Alzheimers Dis ; 68(3): 1287-1307, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30909235

RESUMO

BACKGROUND: Frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions (FTLD-TDP) may appear as sporadic (sFTLD-TDP) or linked to mutations in various genes including expansions of the non-coding region of C9ORF72 (c9FTLD). OBJECTIVE: Analysis of differential mRNA and protein expression in the frontal cortex in c9FLTD and evaluation with previous observations in frontal cortex in sFTLD-TDP and amyotrophic lateral sclerosis with TDP-43 inclusions. METHODS: Microarray hybridization and mass spectrometry-based quantitative proteomics followed by RT-qPCR, gel electrophoresis, and western blotting in frontal cortex area 8 in 19 c9FTLD cases and 14 age- and gender-matched controls. RESULTS: Microarray hybridization distinguish altered gene transcription related to DNA recombination, RNA splicing regulation, RNA polymerase transcription, myelin synthesis, calcium regulation, and ubiquitin-proteasome system in c9FTLD; proteomics performed in the same tissue samples pinpoints abnormal protein expression involving apoptosis, inflammation, metabolism of amino acids, metabolism of carbohydrates, metabolism of membrane lipid derivatives, microtubule dynamics, morphology of mitochondria, neuritogenesis, neurotransmission, phagocytosis, receptor-mediated endocytosis, synthesis of reactive oxygen species, and calcium signaling in c9FTLD. CONCLUSION: Transcriptomics and proteomics, as well as bioinformatics processing of derived data, reveal similarly altered pathways in the frontal cortex in c9FTLD, but different RNAs and proteins are identified by these methods. Combined non-targeted '-omics' is a valuable approach to deciphering altered molecular pathways in FTLD provided that observations are approached with caution when assessing human postmortem brain samples.


Assuntos
Proteína C9orf72/genética , Lobo Frontal/metabolismo , Degeneração Lobar Frontotemporal/metabolismo , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Western Blotting , Feminino , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/genética , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Análise Serial de Proteínas , Proteômica
4.
Cell Death Dis ; 9(10): 975, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30250194

RESUMO

A GGGGCC repeat expansion in the C9ORF72 gene has been identified as the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. The repeat expansion undergoes unconventional translation to produce dipeptide repeat (DPR) proteins. Although it has been reported that DPR proteins cause neurotoxicity, the underlying mechanism has not been fully elucidated. In this study, we have first confirmed that proline-arginine repeat protein (poly-PR) reduces levels of ribosomal RNA and causes neurotoxicity and found that the poly-PR-induced neurotoxicity is repressed by the acceleration of ribosomal RNA synthesis. These results suggest that the poly-PR-induced inhibition of ribosome biogenesis contributes to the poly-PR-induced neurotoxicity. We have further identified DEAD-box RNA helicases as poly-PR-binding proteins, the functions of which are inhibited by poly-PR. The enforced reduction in the expression of DEAD-box RNA helicases causes impairment of ribosome biogenesis and neuronal cell death. These results together suggest that poly-PR causes neurotoxicity by inhibiting the DEAD-box RNA helicase-mediated ribosome biogenesis.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Arginina/metabolismo , Proteína C9orf72/genética , RNA Helicases DEAD-box/metabolismo , Dipeptídeos/genética , Demência Frontotemporal/metabolismo , Repetições de Microssatélites/fisiologia , Prolina/metabolismo , Ribossomos/metabolismo , Esclerose Lateral Amiotrófica/genética , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular , Demência Frontotemporal/genética , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos ICR/embriologia , Neurônios/metabolismo , RNA Ribossômico/metabolismo
5.
Nat Rev Neurol ; 14(5): 259-271, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29569624

RESUMO

The effects of neurodegenerative syndromes extend beyond cognitive function to involve key physiological processes, including eating and metabolism, autonomic nervous system function, sleep, and motor function. Changes in these physiological processes are present in several conditions, including frontotemporal dementia, amyotrophic lateral sclerosis, Alzheimer disease and the parkinsonian plus conditions. Key neural structures that mediate physiological changes across these conditions include neuroendocrine and hypothalamic pathways, reward pathways, motor systems and the autonomic nervous system. In this Review, we highlight the key changes in physiological processing in neurodegenerative syndromes and the similarities in these changes between different progressive neurodegenerative brain conditions. The changes and similarities between disorders might provide novel insights into the human neural correlates of physiological functioning. Given the evidence that physiological changes can arise early in the neurodegenerative process, these changes could provide biomarkers to aid in the early diagnosis of neurodegenerative diseases and in treatment trials.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Sistema Nervoso Autônomo , Demência Frontotemporal , Hipotálamo , Rede Nervosa , Transtornos Parkinsonianos , Transtornos do Sono-Vigília , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Sistema Nervoso Autônomo/fisiopatologia , Demência Frontotemporal/metabolismo , Demência Frontotemporal/fisiopatologia , Humanos , Hipotálamo/metabolismo , Hipotálamo/fisiopatologia , Rede Nervosa/fisiopatologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Transtornos do Sono-Vigília/fisiopatologia
6.
Cell ; 165(4): 921-35, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27114033

RESUMO

Microglia maintain homeostasis in the brain, but whether aberrant microglial activation can cause neurodegeneration remains controversial. Here, we use transcriptome profiling to demonstrate that deficiency in frontotemporal dementia (FTD) gene progranulin (Grn) leads to an age-dependent, progressive upregulation of lysosomal and innate immunity genes, increased complement production, and enhanced synaptic pruning in microglia. During aging, Grn(-/-) mice show profound microglia infiltration and preferential elimination of inhibitory synapses in the ventral thalamus, which lead to hyperexcitability in the thalamocortical circuits and obsessive-compulsive disorder (OCD)-like grooming behaviors. Remarkably, deleting C1qa gene significantly reduces synaptic pruning by Grn(-/-) microglia and mitigates neurodegeneration, behavioral phenotypes, and premature mortality in Grn(-/-) mice. Together, our results uncover a previously unrecognized role of progranulin in suppressing aberrant microglia activation during aging. These results represent an important conceptual advance that complement activation and microglia-mediated synaptic pruning are major drivers, rather than consequences, of neurodegeneration caused by progranulin deficiency.


Assuntos
Envelhecimento/metabolismo , Encéfalo/metabolismo , Ativação do Complemento , Complemento C1q/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Microglia/metabolismo , Envelhecimento/imunologia , Animais , Líquido Cefalorraquidiano , Complemento C1q/genética , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Granulinas , Humanos , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Lisossomos/metabolismo , Redes e Vias Metabólicas , Camundongos , Transtorno Obsessivo-Compulsivo/genética , Transtorno Obsessivo-Compulsivo/metabolismo , Progranulinas , Sinapses/metabolismo , Tálamo/metabolismo
7.
Eur J Neurol ; 22(8): 1201-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25926068

RESUMO

BACKGROUND AND PURPOSE: Although primitive reflexes (PRs) are inhibited during the first years of childhood, they may reappear with brain injury. PRs have been linked to frontal lobe dysfunction, but their precise topography has not yet been defined. The purpose of this study was to map which regions of the brain display a reduced glucose metabolism in patients with cognitive impairment and PRs. METHODS: A prospective study was conducted to evaluate PRs in a group of patients assessed due to suspected cognitive decline. Neurological and neuropsychological examinations and (18) F-fluorodeoxyglucose positron emission tomography fused with computerized tomography were performed. Voxel-based brain mapping analysis by means of statistical parametric mapping was used to compare patients with and without PRs. RESULTS: The study included 99 patients (33 diagnosed with Alzheimer's disease, 33 on the frontotemporal dementia spectrum and 33 with other diagnoses). Mean age was 71 ± 9.7 years; time since symptom onset was 3.6 ± 2.9 years. At least one PR was observed in 43 cases (43.4% of the whole sample; 48.5% in the Alzheimer disease group, 63.6% in frontotemporal dementia and 18.2% in the group with other diagnoses). The group of patients with PRs exhibited a decreased cerebral metabolism in the bilateral superior frontal gyri (Brodmann area 6), bilateral putamina and thalami. CONCLUSIONS: The presence of PRs was associated with hypometabolism at the superior frontal gyrus and putamen. This suggests that dysfunction in the corticostriatal motor circuit (supplementary motor area-putamen-thalamus) may constitute the anatomical basis of the recurrence of PRs.


Assuntos
Demência/metabolismo , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons/métodos , Córtex Pré-Frontal/metabolismo , Putamen/metabolismo , Reflexo/fisiologia , Tálamo/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Demência/fisiopatologia , Feminino , Demência Frontotemporal/metabolismo , Demência Frontotemporal/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
8.
Neurocase ; 21(6): 767-72, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25587661

RESUMO

Some patients with frontotemporal dementia (FTD) show an artistic enhancement of musical abilities. However, no patients with FTD, to date, have been reported to be able to learn how to play a musical instrument after disease onset. Herein we describe a patient (J. K.) who had never played any musical instruments premorbidly, but who learned to play the saxophone after being diagnosed with a behavioral variant of FTD. He mastered a repertoire that consisted of 10 pieces of Korean folk songs over a period of three years. Furthermore, his saxophone skills were high enough to outperform other students in his class.


Assuntos
Demência Frontotemporal/psicologia , Aprendizagem , Destreza Motora , Música , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos
9.
Nat Med ; 20(12): 1444-51, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25401692

RESUMO

Neurodegenerative diseases, such as frontotemporal dementia (FTD), are often associated with behavioral deficits, but the underlying anatomical and molecular causes remain poorly understood. Here we show that forebrain-specific expression of FTD-associated mutant CHMP2B in mice causes several age-dependent neurodegenerative phenotypes, including social behavioral impairments. The social deficits were accompanied by a change in AMPA receptor (AMPAR) composition, leading to an imbalance between Ca(2+)-permeable and Ca(2+)-impermeable AMPARs. Expression of most AMPAR subunits was regulated by the brain-enriched microRNA miR-124, whose abundance was markedly decreased in the superficial layers of the cerebral cortex of mice expressing the mutant CHMP2B. We found similar changes in miR-124 and AMPAR levels in the frontal cortex and induced pluripotent stem cell-derived neurons from subjects with behavioral variant FTD. Moreover, ectopic miR-124 expression in the medial prefrontal cortex of mutant mice decreased AMPAR levels and partially rescued behavioral deficits. Knockdown of the AMPAR subunit Gria2 also alleviated social impairments. Our results identify a previously undescribed mechanism involving miR-124 and AMPARs in regulating social behavior in FTD and suggest a potential therapeutic avenue.


Assuntos
Comportamento Animal , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Lobo Frontal/metabolismo , Demência Frontotemporal/genética , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Receptores de AMPA/metabolismo , Comportamento Social , Animais , Cálcio/metabolismo , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Demência Frontotemporal/metabolismo , Demência Frontotemporal/psicologia , Camundongos , Camundongos Transgênicos , Córtex Pré-Frontal/metabolismo
10.
Am J Alzheimers Dis Other Demen ; 28(6): 606-11, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23813609

RESUMO

Sleep disturbances including excessive daytime sleepiness (EDS) are encountered in frontotemporal dementia (FTD). To investigate the relationship between the plasma orexin-A levels and sleep disturbance patterns, we measured the plasma orexin-A levels and performed sleep studies in patients with FTD. The orexin-A levels were measured in 10 consecutive patients with FTD and controls by enzyme-linked immunosorbent assay. Nocturnal polysomnography (PSG) and Multiple Sleep Latency Test (MSLT) were performed in 2 patients with FTD. The orexin-A levels were significantly lower in patients with FTD compared to controls. The PSG revealed increased rapid eye movement (REM) latency in patients, whether or not they reported EDS. Mean sleep latency in MSLT was less than 10 minutes in both the patients, being shorter in patient without EDS, but none of them had REM sleep onset. Some patients with FTD may develop narcolepsy-like involuntary sleep attacks, even without complaining of EDS. Involvement of hypothalamus and a subsequent alteration in the orexin levels might be one of the determining factors in this sleep disturbance.


Assuntos
Demência Frontotemporal/complicações , Demência Frontotemporal/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/sangue , Neuropeptídeos/sangue , Transtornos do Sono-Vigília/complicações , Transtornos do Sono-Vigília/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Atrofia , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Feminino , Demência Frontotemporal/fisiopatologia , Humanos , Hipotálamo/fisiopatologia , Masculino , Pessoa de Meia-Idade , Orexinas , Polissonografia , Transtornos do Sono-Vigília/fisiopatologia , Sono REM/fisiologia
11.
Neurology ; 75(24): 2204-11, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21172843

RESUMO

BACKGROUND: We sought to describe the antemortem clinical and neuroimaging features among patients with frontotemporal lobar degeneration with TDP-43 immunoreactive inclusions (FTLD-TDP). METHODS: Subjects were recruited from a consecutive series of patients with a primary neuropathologic diagnosis of FTLD-TDP and antemortem MRI. Twenty-eight patients met entry criteria: 9 with type 1, 5 with type 2, and 10 with type 3 FTLD-TDP. Four patients had too sparse FTLD-TDP pathology to be subtyped. Clinical, neuropsychological, and neuroimaging features of these cases were reviewed. Voxel-based morphometry was used to assess regional gray matter atrophy in relation to a group of 50 cognitively normal control subjects. RESULTS: Clinical diagnosis varied between the groups: semantic dementia was only associated with type 1 pathology, whereas progressive nonfluent aphasia and corticobasal syndrome were only associated with type 3. Behavioral variant frontotemporal dementia and frontotemporal dementia with motor neuron disease were seen in type 2 or type 3 pathology. The neuroimaging analysis revealed distinct patterns of atrophy between the pathologic subtypes: type 1 was associated with asymmetric anterior temporal lobe atrophy (either left- or right-predominant) with involvement also of the orbitofrontal lobes and insulae; type 2 with relatively symmetric atrophy of the medial temporal, medial prefrontal, and orbitofrontal-insular cortices; and type 3 with asymmetric atrophy (either left- or right-predominant) involving more dorsal areas including frontal, temporal, and inferior parietal cortices as well as striatum and thalamus. No significant atrophy was seen among patients with too sparse pathology to be subtyped. CONCLUSIONS: FTLD-TDP subtypes have distinct clinical and neuroimaging features, highlighting the relevance of FTLD-TDP subtyping to clinicopathologic correlation.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Imageamento por Ressonância Magnética , Idoso , Idoso de 80 Anos ou mais , Afasia/patologia , Atrofia , Proteínas de Ligação a DNA/classificação , Feminino , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Humanos , Corpos de Inclusão/metabolismo , Masculino , Pessoa de Meia-Idade , Lobo Temporal/metabolismo , Lobo Temporal/patologia , Tálamo/metabolismo , Tálamo/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA