Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Physiol Plant ; 176(2): e14286, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618752

RESUMO

Shoot branching fundamentally influences plant architecture and agricultural yield. However, research on shoot branching in Dendrobium catenatum, an endangered medicinal plant in China, remains limited. In this study, we identified a transcription factor DcERF109 as a key player in shoot branching by regulating the expression of strigolactone (SL) receptors DWARF 14 (D14)/ DECREASED APICAL DOMINANCE 2 (DAD2). The treatment of D. catenatum seedlings with GR24rac/TIS108 revealed that SL can significantly repress the shoot branching in D. catenatum. The expression of DcERF109 in multi-branched seedlings is significantly higher than that of single-branched seedlings. Ectopic expression in Arabidopsis thaliana demonstrated that overexpression of DcERF109 resulted in significant shoot branches increasing and dwarfing. Molecular and biochemical assays demonstrated that DcERF109 can directly bind to the promoters of AtD14 and DcDAD2.2 to inhibit their expression, thereby positively regulating shoot branching. Inhibition of DcERF109 by virus-induced gene silencing (VIGS) resulted in decreased shoot branching and improved DcDAD2.2 expression. Moreover, overexpression of DpERF109 in A. thaliana, the homologous gene of DcERF109 in Dendrobium primulinum, showed similar phenotypes to DcERF109 in shoot branch and plant height. Collectively, these findings shed new insights into the regulation of plant shoot branching and provide a theoretical basis for improving the yield of D. catenatum.


Assuntos
Arabidopsis , Dendrobium , Compostos Heterocíclicos com 3 Anéis , Lactonas , Dendrobium/genética , Agricultura , Plântula , Transdução de Sinais
2.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473979

RESUMO

Many Dendrobium species, which hold a high status and value in traditional Chinese medicine, grow on barks and rocks in the wild, often encountering harsh environments and facing droughts. However, the molecular mechanisms underlying the shift in the photosynthetic pathway induced by drought remain unclear. To address this issue, three Dendrobium species with different photosynthetic pathways were selected for sequencing and transcriptome data analysis after drought treatment. The findings included 134.43 GB of sequencing data, with numerous Differentially Expressed Genes (DEGs) exhibiting different response mechanisms under drought stress. Gene Ontology (GO)-KEGG-based enrichment analysis of DEGs revealed that metabolic pathways contributed to drought tolerance and alterations in photosynthetic pathways. Phosphoenolpyruvate Carboxylase (PEPC) was subjected to phylogenetic tree construction, sequence alignment, and domain analysis. Under drought stress, variations were observed in the PEPC gene structure and expression among different Dendrobium species; the upregulation of Dc_gene2609 expression may be caused by dof-miR-384, which resulted in the shift from C3 photosynthesis to CAM, thereby improving drought tolerance in Dendrobium. This study revealed the expression patterns and roles of PEPC genes in enhancing plant drought tolerance and will provide an important basis for in-depth research on Dendrobium's adaptation mechanisms in arid environments.


Assuntos
Dendrobium , Secas , Dendrobium/genética , Filogenia , Transcriptoma , Perfilação da Expressão Gênica , Fotossíntese , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
3.
Zhongguo Zhong Yao Za Zhi ; 49(1): 70-79, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403340

RESUMO

Flavonoid C-glycosides are a class of natural products that are widely involved in plant defense responses and have diverse pharmacological activities. They are also important active ingredients of Dendrobium huoshanense. Flavanone synthase Ⅱ has been proven to be a key enzyme in the synthesis pathway of flavonoid C-glycosides in plants, and their catalytic product 2-hydroxyflavanone is the precursor compound for the synthesis of various reported flavonoid C-glycosides. In this study, based on the reported amino acid sequence of flavanone synthase Ⅱ, a flavanone synthase Ⅱ gene(DhuFNSⅡ) was screened and verified from the constructed D. huoshanense genome localization database. Functional validation of the enzyme showed that it could in vitro catalyze naringenin and pinocembrin to produce apigenin and chrysin, respectively. The open reading frame(ORF) of DhuFNSⅡ was 1 644 bp in length, encoding 547 amino acids. Subcellular localization showed that the protein was localized on the endoplasmic reticulum. RT-qPCR results showed that DhuFNSⅡ had the highest expression in stems, followed by leaves and roots. The expression levels of DhuFNSⅡ and other target genes in various tissues of D. huoshanense were significantly up-regulated after four kinds of abiotic stresses commonly encountered in the growth process, but the extent of up-regulation varied among treatment groups, with drought and cold stress having more significant effects on gene expression levels. Through the identification and functional analysis of DhuFNSⅡ, this study is expected to contribute to the elucidation of the molecular mechanism of the formation of quality metabolites of D. huoshanense, flavonoid C-glycosides, and provide a reference for its quality formation and scientific cultivation.


Assuntos
Dendrobium , Flavanonas , Dendrobium/genética , Dendrobium/química , Flavanonas/metabolismo , Flavonoides , Clonagem Molecular , Glicosídeos/metabolismo
4.
Int J Biol Macromol ; 259(Pt 2): 129229, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211913

RESUMO

The medicinal Dendrobium species of Orchidaceae possess significant pharmaceutical value, and modern pharmacological research has shown that Dendrobium contains many important active ingredients. Alkaloids, the crucial components of medicinal Dendrobium, demonstrate beneficial healing properties in cardiovascular, cataract, gastrointestinal, and respiratory diseases. Members of the cytochrome P450 monooxygenase (CYP) gene family play essential roles in alkaloid synthesis, participating in alkaloid terpene skeleton construction and subsequent modifications. Although studies of the CYP family have been conducted in some species, genome-wide characterization and systematic analysis of the CYP family in medicinal Dendrobium remain underexplored. In this study, we identified CYP gene family members in the genomes of four medicinal Dendrobium species recorded in the Pharmacopoeia: D. nobile, D. chrysotoxum, D. catenatum, and D. huoshanense. Further, we analyzed the motif composition, gene replication events, and selection pressure of this family. Syntenic analysis revealed that members of the clan 710 were present on chromosome 18 in three medicinal Dendrobium species, except for D. nobile, indicating a loss of clan 710 occurring in D. nobile. We also conducted an initial screening of the CYP genes involved in alkaloid synthesis through transcriptome sequencing. Quantitative real-time reverse transcription PCR showed that the expression of DnoNew43 and DnoNew50, homologs of secologanin synthase involved in the alkaloid synthesis pathway, was significantly higher in the stems than in the leaves. This result coincided with the distribution of dendrobine content in Dendrobium stems and leaves, indicating that these two genes might be involved in the dendrobine synthesis pathway. Our results give insights into the CYP gene family evolution analysis in four medicinal Dendrobium species for the first time and identify two related genes that may be involved in alkaloid synthesis, providing a valuable resource for further investigations into alkaloid synthesis pathway in Dendrobium and other medicinal plants.


Assuntos
Alcaloides , Dendrobium , Dendrobium/genética , Alcaloides/genética , Alcaloides/análise , Vias Biossintéticas/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Terpenos/metabolismo
5.
Molecules ; 28(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38067620

RESUMO

Dendrobium nobile Lindl., as an endangered medicinal plant within the genus Dendrobium, is widely distributed in southwestern China and has important ecological and economic value. There are a variety of metabolites with pharmacological activity in D. nobile. The alkaloids and polysaccharides contained within D. nobile are very important active components, which mainly have antiviral, anti-tumor, and immunity improvement effects. However, the changes in the compounds and functional genes of D. nobile induced by methyl jasmonate (MeJA) are not clearly understood. In this study, the metabolome and transcriptome of D. nobile were analyzed after exposure to MeJA. A total of 377 differential metabolites were obtained through data analysis, of which 15 were related to polysaccharide pathways and 35 were related to terpenoids and alkaloids pathways. Additionally, the transcriptome sequencing results identified 3256 differentially expressed genes that were discovered in 11 groups. Compared with the control group, 1346 unigenes were differentially expressed in the samples treated with MeJA for 14 days (TF14). Moreover, the expression levels of differentially expressed genes were also significant at different growth and development stages. According to GO and KEGG annotations, 189 and 99 candidate genes were identified as being involved in terpenoid biosynthesis and polysaccharide biosynthesis, respectively. In addition, the co-expression analysis indicated that 238 and 313 transcription factors (TFs) may contribute to the regulation of terpenoid and polysaccharide biosynthesis, respectively. Through a heat map analysis, fourteen terpenoid synthetase genes, twenty-three cytochrome P450 oxidase genes, eight methyltransferase genes, and six aminotransferase genes were identified that may be related to dendrobine biosynthesis. Among them, one sesquiterpene synthase gene was found to be highly expressed after the treatment with MeJA and was positively correlated with the content of dendrobine. This study provides important and valuable metabolomics and transcriptomic information for the further understanding of D. nobile at the metabolic and molecular levels and provides candidate genes and possible intermediate compounds for the dendrobine biosynthesis pathway, which lays a certain foundation for further research on and application of Dendrobium.


Assuntos
Alcaloides , Dendrobium , Transcriptoma , Dendrobium/genética , Dendrobium/metabolismo , Extratos Vegetais/metabolismo , Alcaloides/metabolismo , Terpenos/metabolismo , Metaboloma , Polissacarídeos/metabolismo
6.
Int J Biol Macromol ; 253(Pt 8): 127599, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871722

RESUMO

Dendrobium huoshanense, a traditional Chinese medicine prized for its horticultural and medicinal properties, thrives in an unfavorable climate and is exposed to several adverse environmental conditions. Acid invertase (AINV), a widely distributed enzyme that has been demonstrated to play a significant role in response to environmental stresses. However, the identification of the AINV gene family in D. huoshanense, the collinearity between relative species, and the expression pattern under external stress have yet to be resolved. We systematically retrieved the D. huoshanense genome and screened out four DhAINV genes, which were further classified into two subfamilies by the phylogenetic analysis. The evolutionary history of AINV genes in D. huoshanense was uncovered by comparative genomics investigations. The subcellular localization predicted that the DhVINV genes may be located in the vacuole, while the DhCWINV genes may be located in the cell wall. The exon/intron structures and conserved motifs of DhAINV genes were found to be highly conserved in two subclades. The conserved amino acids and catalytic motifs in DhAINV proteins were determined to be critical to their function. Notably, the cis-acting elements in all DhAINV genes were mainly relevant to abiotic stresses and light response. In addition, the expression profile coupled with qRT-PCR revealed the typical expression patterns of DhAINV in response to diverse abiotic stresses. Our findings could be beneficial to the characterization and further investigation of AINV functions in Dendrobium plants.


Assuntos
Dendrobium , beta-Frutofuranosidase , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo , Dendrobium/genética , Filogenia , Técnicas de Amplificação de Ácido Nucleico , Estresse Fisiológico/genética
7.
Plant Physiol Biochem ; 202: 107942, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37562204

RESUMO

Dendrobium catenatum, which belongs to the Orchidaceae family, has been used as a traditional medicine and healthy food in China for over 2000 years, and is of enormous economic value. Polysaccharides and flavonoids are two major functional ingredients in D. catenatum stems that contribute to its health benefits. D. catenatum lives in close association with endophytic fungi, but the literature regarding the further relations between them, especially the fungal-induced accumulation of metabolites in the host plant, is sparse. Our previous study showed that Pestalotiopsis sp. DO14 isolated from D. catenatum improved the host plant growth and metabolite accumulation. This study was performed to investigate dynamic variations of the growth traits, key metabolites (polysaccharides and flavonoids), and expression of key genes of D. catenatum under conditions of the DO14 colonization. Colonization with DO14 promoted D. catenatum growth as indicated by increased leaf area, mid-stem thickness, and plant height. The content of polysaccharides, mannose, and sucrose increased even without DO14 entering the host cells or forming a mature symbiotic relationship concurrent with improved photosynthesis rate. Furthermore, DO14 induced upregulation of genes involved in sugar and flavonoid metabolism, especially phosphoenolpyruvate carboxykinase (PCKA), chalcone synthase (CHS) and UDP-glycose flavonoid glycosyltransferase (UFGT). These observations suggested that endophytic fungi induce the accumulation of polysaccharides and flavonoids by plants, increasing the efficiency of carbon assimilation and carbon turnover. The findings of this study provide insight into the mechanisms underlying Orchidaceae-endophyte interactions, and suggest potential novel applications of endophytic fungi in D. catenatum breeding to improved plant quality.


Assuntos
Dendrobium , Flavonoides , Dendrobium/genética , Transcriptoma , Pestalotiopsis/genética , Melhoramento Vegetal , Polissacarídeos/análise , Metaboloma
8.
BMC Genomics ; 24(1): 378, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37415124

RESUMO

BACKGROUND: Dendrobium officinale Kimura et Migo (D. officinale) is a well-known traditional Chinese medicine with high content polysaccharides in stems. The SWEET (Sugars Will Eventually be Exported Transporters) family is a novel class of sugar transporters mediating sugar translocation among adjacent cells of plants. The expression patterns of SWEETs and whether they are associated with stress response in D. officinale remains uncovered. RESULTS: Here, 25 SWEET genes were screened out from D. officinale genome, most of which typically contained seven transmembrane domains (TMs) and harbored two conserved MtN3/saliva domains. Using multi-omics data and bioinformatic approaches, the evolutionary relationship, conserved motifs, chromosomal location, expression patterns, correlationship and interaction network were further analyzed. DoSWEETs were intensively located in nine chromosomes. Phylogenetic analysis revealed that DoSWEETs were divided into four clades, and conserved motif 3 specifically existed in DoSWEETs from clade II. Different tissue-specific expression patterns of DoSWEETs suggested the division of their roles in sugar transport. In particular, DoSWEET5b, 5c, and 7d displayed relatively high expression levels in stems. DoSWEET2b and 16 were significantly regulated under cold, drought, and MeJA treatment, which were further verified using RT-qPCR. Correlation analysis and interaction network prediction discovered the internal relationship of DoSWEET family. CONCLUSIONS: Taken together, the identification and analysis of the 25 DoSWEETs in this study provide basic information for further functional verification in D. officinale.


Assuntos
Dendrobium , Dendrobium/genética , Dendrobium/metabolismo , Filogenia , Genes de Plantas , Proteínas de Membrana Transportadoras/genética , Transporte Biológico , Proteínas de Plantas/metabolismo
9.
Zhongguo Zhong Yao Za Zhi ; 48(7): 1840-1850, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37282959

RESUMO

Uridine diphosphate glycosyltransferase(UGT) is a highly conserved protein in plants, which usually functions in secondary metabolic pathways. This study used the Hidden Markov Model(HMM) to screen out members of UGT gene family in the whole genome of Dendrobium officinale, and 44 UGT genes were identified. Bioinformatics was used to analyze the structure, phylogeny, and promoter region components of D. officinale genes. The results showed that UGT gene family could be divided into four subfamilies, and UGT gene structure was relatively conserved in each subfamily, with nine conserved domains. The upstream promoter region of UGT gene contained a variety of cis-acting elements related to plant hormones and environmental factors, indicating that UGT gene expression may be induced by plant hormones and external environmental factors. UGT gene expression in different tissues of D. officinale was compared, and UGT gene expression was found in all parts of D. officinale. It was speculated that UGT gene played an important role in many tissues of D. officinale. Through transcriptome analysis of D. officinale mycorrhizal symbiosis environment, low temperature stress, and phosphorus deficiency stress, this study found that only one gene was up-regulated in all three conditions. The results of this study can help understand the functions of UGT gene family in Orchidaceae plants and provide a basis for further study on the molecular regulation mechanism of polysaccharide metabolism pathway in D. officinale.


Assuntos
Dendrobium , Micorrizas , Dendrobium/genética , Reguladores de Crescimento de Plantas , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Perfilação da Expressão Gênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Funct Plant Biol ; 50(4): 314-334, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36872310

RESUMO

Nitrogen (N) is the main nutrient of plants, and low nitrogen usually affects plant growth and crop yield. The traditional Chinese herbal medicine Dendrobium officinale Kimura et. Migo is a typical low nitrogen-tolerant plant, and its mechanism in response to low nitrogen stress has not previously been reported. In this study, physiological measurements and RNA-Seq analysis were used to analyse the physiological changes and molecular responses of D. officinale under different nitrogen concentrations. The results showed that under low nitrogen levels, the growth, photosynthesis and superoxide dismutase activity were found to be significantly inhibited, while the activities of peroxidase and catalase, the content of polysaccharides and flavonoids significantly increased. Differentially expressed genes (DEGs) analysis showed that nitrogen and carbon metabolisms, transcriptional regulation, antioxidative stress, secondary metabolite synthesis and signal transduction all made a big difference in low nitrogen stress. Therefore, copious polysaccharide accumulation, efficient assimilation and recycling of nitrogen, as well as rich antioxidant components play critical roles. This study is helpful for understanding the response mechanism of D. officinale to low nitrogen levels, which might provide good guidance for practical production of high quality D. officinale .


Assuntos
Dendrobium , Dendrobium/genética , Perfilação da Expressão Gênica , Polissacarídeos/farmacologia , Medicina Tradicional Chinesa , Estresse Oxidativo
11.
Int J Biol Macromol ; 236: 124010, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36918075

RESUMO

Dendrobium catenatum is a traditional Chinese medicine listing as rare and endangered due to environmental impacts. But little is known about its stress resistance mechanism. The CBL-CIPK signaling pathway played vital roles in various stress responses. In this study, we identified 9 calcineurin B-like (CBL) genes and 28 CBL-interacting protein kinase (CIPK) genes from D. catenatum. Phylogenetic analysis showed that DcCBL and DcCIPK families could be divided into four and six subgroups, respectively. Members in each subgroup had similar gene structures. Cis-acting element analyses showed that these genes were involved in stress responses and hormone signaling. Spatial expression profiles showed that they were tissue-specific, and expressed lower in vegetative organs than reproductive organs. Gene expression analyses revealed that these genes were involved in drought, heat, cold, and salt responses and depended on abscisic acid (ABA) and salicylic acid (SA) signaling pathways. Furthermore, we cloned 19 DcCIPK genes and 9 DcCBL genes and detected ten interacting CBL-CIPK combinations using yeast two-hybrid system. Finally, we constructed 20 CBL-CIPK signaling pathways based on their expression patterns and interaction relationships. These results established CBL-CIPK signaling pathway responding to abiotic stress and provided a molecular basis for improving D. catenatum stress resistance in the future.


Assuntos
Dendrobium , Proteínas Quinases , Humanos , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Dendrobium/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
12.
BMC Plant Biol ; 23(1): 93, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782128

RESUMO

BACKGROUND: Gibberellins (GAs) are widely involved in plant growth and development. DELLA proteins are key regulators of plant development and a negative regulatory factor of GA. Dendrobium officinale is a valuable traditional Chinese medicine, but little is known about D. officinale DELLA proteins. Assessing the function of D. officinale DELLA proteins would provide an understanding of their roles in this orchid's development. RESULTS: In this study, the D. officinale DELLA gene family was identified. The function of DoDELLA1 was analyzed in detail. qRT-PCR analysis showed that the expression levels of all DoDELLA genes were significantly up-regulated in multiple shoots and GA3-treated leaves. DoDELLA1 and DoDELLA3 were significantly up-regulated in response to salt stress but were significantly down-regulated under drought stress. DoDELLA1 was localized in the nucleus. A strong interaction was observed between DoDELLA1 and DoMYB39 or DoMYB308, but a weak interaction with DoWAT1. CONCLUSIONS: In D. officinale, a developmental regulatory network involves a close link between DELLA and other key proteins in this orchid's life cycle. DELLA plays a crucial role in D. officinale development.


Assuntos
Dendrobium , Dendrobium/genética , Dendrobium/metabolismo , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36675032

RESUMO

Dendrobium denneanum is an important medicinal and ornamental plant. Its ornamental and medicinal values are affected by its vegetative growth conditions and chemical composition accumulation. This study adopted an orthogonal experimental design to treat D. denneanum with nine different levels of nitrogen (N), potassium (K), and phosphorus (P). The morphological indicators of the plant were positively correlated with the nitrogen concentration. The polysaccharide content was the highest at 1500 mg·L-1 nitrogen and 3000 mg·L-1 phosphorous and was 26.84% greater than the control. The flavonoid content increased by 36.2% at 500 mg·L-1 nitrogen, 2000 mg·L-1 phosphorous, and 300 mg·L-1 potassium. Principal component score analysis showed that nitrogen had the most significant impact on the various indicators of D. denneanum, followed by phosphorus and potassium. The comprehensive score showed that the T9 treatment (N: 1500 mg·L-1, P: 3000 mg·L-1, K: 500 mg·L-1) had the strongest effect on D. denneanum. Transcriptional analysis showed that compared with the control, the T9 treatment led to 2277 differentially expressed genes (1230 upregulated and 1047 downregulated). This includes fifteen genes enriched in the MAPK signaling pathway, five genes in phenylpropanoid biosynthesis, and two genes in flavonoid biosynthesis. These genes may be involved in regulating plant growth and the biosynthesis of polysaccharides and flavonoids. This study provides guidance for the optimal use of N, P, and K in the cultivation of D. denneanum.


Assuntos
Dendrobium , Dendrobium/genética , Dendrobium/química , Polissacarídeos/química , Flavonoides , Nitrogênio , Fósforo , Potássio , Fertilização
14.
BMC Plant Biol ; 22(1): 529, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36376794

RESUMO

BACKGROUND: Dendrobium officinale Kimura et Migo, which contains rich polysaccharides, flavonoids and alkaloids, is a Traditional Chinese Medicine (TCM) with important economic benefits, while various pathogens have brought huge losses to its industrialization. NBS gene family is the largest class of plant disease resistance (R) genes, proteins of which are widely distributed in the upstream and downstream of the plant immune systems and are responsible for receiving infection signals and regulating gene expression respectively. It is of great significance for the subsequent disease resistance breeding of D. officinale to identify NBS genes by using the newly published high-quality chromosome-level D. officinale genome. RESULTS: In this study, a total of 655 NBS genes were uncovered from the genomes of D. officinale, D. nobile, D. chrysotoxum, V. planifolia, A. shenzhenica, P. equestris and A. thaliana. The phylogenetic results of CNL-type protein sequences showed that orchid NBS-LRR genes have significantly degenerated on branches a and b. The Dendrobium NBS gene homology analysis showed that the Dendrobium NBS genes have two obvious characteristics: type changing and NB-ARC domain degeneration. Because the NBS-LRR genes have both NB-ARC and LRR domains, 22 D. officinale NBS-LRR genes were used for subsequent analyses, such as gene structures, conserved motifs, cis-elements and functional annotation analyses. All these results suggested that D. officinale NBS-LRR genes take part in the ETI system, plant hormone signal transduction pathway and Ras signaling pathway. Finally, there were 1,677 DEGs identified from the salicylic acid (SA) treatment transcriptome data of D. officinale. Among them, six NBS-LRR genes (Dof013264, Dof020566, Dof019188, Dof019191, Dof020138 and Dof020707) were significantly up-regulated. However, only Dof020138 was closely related to other pathways from the results of WGCNA, such as pathogen identification pathways, MAPK signaling pathways, plant hormone signal transduction pathways, biosynthetic pathways and energy metabolism pathways. CONCLUSION: Our results revealed that the NBS gene degenerations are common in the genus Dendrobium, which is the main reason for the diversity of NBS genes, and the NBS-LRR genes generally take part in D. officinale ETI system and signal transduction pathways. In addition, the D. officinale NBS-LRR gene Dof020138, which may have an important breeding value, is indirectly activated by SA in the ETI system.


Assuntos
Dendrobium , Ácido Salicílico , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Dendrobium/genética , Dendrobium/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Resistência à Doença/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Melhoramento Vegetal , Transcriptoma
15.
Molecules ; 27(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35956813

RESUMO

BACKGROUND: Dendrobium officinale is a perennial epiphytic herb in Orchidaceae. Cultivated products are the main alternative for clinical application due to the shortage of wild resources. However, the phenotype and quality of D. officinale have changed post-artificial cultivation, and environmental cues such as light, temperature, water, and nutrition supply are the major influencing factors. This study aims to unveil the mechanisms beneath the cultivation-induced variation by analyzing the changes of the metabolome and transcriptome of D. officinale seedlings treated with red- blue LED light and potassium fertilizer. RESULTS: After light- and K-treatment, the D. officinale pseudobulbs turned purple and the anthocyanin content increased significantly. Through wide-target metabolome analysis, compared with pseudobulbs in the control group (P), the proportion of flavonoids in differentially-accumulated metabolites (DAMs) was 22.4% and 33.5% post light- and K-treatment, respectively. The gene modules coupled to flavonoids were obtained through the coexpression analysis of the light- and K-treated D. officinale transcriptome by WGCNA. The KEGG enrichment results of the key modules showed that the DEGs of the D. officinale pseudobulb were enriched in phenylpropane biosynthesis, flavonoid biosynthesis, and jasmonic acid (JA) synthesis post-light- and K-treatment. In addition, anthocyanin accumulation was the main contribution to the purple color of pseudobulbs, and the plant hormone JA induced the accumulation of anthocyanins in D. officinale. CONCLUSIONS: These results suggested that light and potassium affected the accumulation of active compounds in D. officinale, and the gene-flavone network analysis emphasizes the key functional genes and regulatory factors for quality improvement in the cultivation of this medicinal plant.


Assuntos
Dendrobium , Transcriptoma , Antocianinas/metabolismo , Dendrobium/genética , Dendrobium/metabolismo , Flavonoides/metabolismo , Potássio/metabolismo , Transcriptoma/genética
16.
BMC Genomics ; 23(1): 612, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35999493

RESUMO

BACKGROUND: Dendrobium catenatum/D. officinale (here after D. catenatum), a well-known economically important traditional medicinal herb, produces a variety of bioactive metabolites including polysaccharides, alkaloids, and flavonoids with excellent pharmacological and clinical values. Although many genes associated with the biosynthesis of medicinal components have been cloned and characterized, the biosynthetic pathway, especially the downstream and regulatory pathway of major medicinal components in the herb, is far from clear. ß-glucosidases (BGLUs) comprise a diverse group of enzymes that widely exist in plants and play essential functions in cell wall modification, defense response, phytohormone signaling, secondary metabolism, herbivore resistance, and scent release by hydrolyzing ß-D-glycosidic bond from a carbohydrate moiety. The recent release of the chromosome-level reference genome of D. catenatum enables the characterization of gene families. Although the genome-wide analysis of the BGLU gene family has been successfully conducted in various plants, no systematic analysis is available for the D. catenatum. We previously isolated DcBGLU2 in the BGLU family as a key regulator for polysaccharide biosynthesis in D. catenatum. Yet, the exact number of DcBGLUs in the D. catenatum genome and their possible roles in bioactive compound production deserve more attention. RESULTS: To investigate the role of BGLUs in active metabolites production, 22 BGLUs (DcBGLU1-22) of the glycoside hydrolase family 1 (GH1) were identified from D. catenatum genome. Protein prediction showed that most of the DcBGLUs were acidic and phylogenetic analysis classified the family into four distinct clusters. The sequence alignments revealed several conserved motifs among the DcBGLU proteins and analyses of the putative signal peptides and N-glycosylation site revealed that the majority of DcBGLU members dually targeted to the vacuole and/or chloroplast. Organ-specific expression profiles and specific responses to MeJA and MF23 were also determined. Furthermore, four DcBGLUs were selected to test their involvement in metabolism regulation. Overexpression of DcBGLU2, 6, 8, and 13 significantly increased contents of flavonoid, reducing-polysaccharide, alkaloid and soluble-polysaccharide, respectively. CONCLUSION: The genome-wide systematic analysis identified candidate DcBGLU genes with possible roles in medicinal metabolites production and laid a theoretical foundation for further functional characterization and molecular breeding of D. catenatum.


Assuntos
Alcaloides , Celulases , Dendrobium , Plantas Medicinais , Alcaloides/metabolismo , Celulases/genética , Dendrobium/genética , Dendrobium/metabolismo , Flavonoides/metabolismo , Filogenia , Plantas Medicinais/química , Polissacarídeos/metabolismo
17.
Genes (Basel) ; 13(8)2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-36011396

RESUMO

Dendrobium huoshanense is a kind of precious herb with important medicinal and edible value in China, which is widely used in traditional Chinese medicine for various diseases. Recent studies have paid close attention to the genetic expression of the biosynthetic pathway of the main active components (polysaccharides, alkaloids, and flavonoids), and real-time polymerase chain reaction (qPCR) is one of the most widely used methods for doing so. However, so far, no reference gene selections have been reported in D. huoshanense. In this study, 15 reference gene candidates (GAPDH, eIF, EF-1α, PP2A, UBCE, RPL5, TBP, APT1, MDH, PTBP3, PEPC, CYP71, NCBP2, TIP41, and F-box) were selected and evaluated for their expression stability in D. huoshanense under various experimental conditions, including in different tissues (root, stem, and leaf), abiotic stresses (oxidative, drought, cold, and UV), and hormone treatment (methyl jasmonate) using three statistical programs (geNorm, NormFinder, and BestKeeper). Then, the RefFinder program was employed to comprehensively validate the stability of the selected reference genes. Finally, the expression profiles of the CESA and GMPP genes were further analyzed, and these results indicated that TBP, NCBP2, and CYP71 were the top three most stable reference genes after comprehensive comparison, which could be used as stable reference genes for normalizing the genes expression in D. huoshanense. This study described here provides the first data regarding on reference gene selection in D. huoshanense, which will be extremely beneficial for future research on the gene expression normalization in D. huoshanense.


Assuntos
Dendrobium , Genes de Plantas , Dendrobium/genética , Secas , Expressão Gênica , Estresse Fisiológico/genética
18.
Plant Physiol Biochem ; 188: 38-46, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35981438

RESUMO

Following successful pollination, Dendrobium orchid flowers rapidly undergo senescence. In Dendrobium cv. Khao Chaimongkol, compatible pollination resulted in faster ethylene production and more rapid development of senescence symptoms, such as drooping, epinasty, venation and yellowing, compared with non-pollinated controls or pollination with incompatible pollinia. The DenACS1 and DenACO1 genes in the perianth of florets that had been pollinated with compatible pollinia were expressed more highly than those in non-pollinated open florets. Incompatible pollinia reduced the expression of DenACS1 and DenACO1 genes in the perianth. Transcript levels of the ethylene receptor gene DenERS1 and signaling genes DenEIL1 and DenERF1 showed differential spatial regulation with greater expression in the perianth than in the column plus ovary following compatible pollination. Compatible pollinia increased ethylene production concomitant with premature senescence and the increased expression of the DenACS1 and DenACO1 genes, and suppressed the ethylene receptor gene DenERS1, whereas incompatible pollinia did not stimulate ethylene production nor induce premature senescence but induced higher expression of DenERS1 both in the perianth and in the column plus ovary. These results suggest that the increased ethylene production in open florets pollinated with compatible pollen was partially due to an increase in the expression of DenACS1 and DenACO1 genes. The compatible pollinia induced a negative regulation of DenERS1 which may play an important role in ethylene perception and in modulating ethylene signaling transduction during pollinia-induced flower senescence.


Assuntos
Dendrobium , Polinização , Dendrobium/genética , Dendrobium/metabolismo , Etilenos/metabolismo , Flores/fisiologia , Pólen/metabolismo
19.
Genes (Basel) ; 13(7)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35886004

RESUMO

Dendrobium officinale (D. officinale) is a widely used traditional Chinese medicine with high economic value. MicroR159 (miR159) is an ancient and conserved microRNA (miRNA) family in land plants, playing roles in the progress of growth and development, as well as the stress response. In order to find out functions of miR159 in D. officinale, multiple bioinformatic approaches were employed and 10 MIR159 genes were found, localizing on seven chromosomes and an unanchored segment of the D. officinale genome. All of the precursor sequences of Dof-miR159 could form a stable stem-loop structure. The phylogenetic analysis revealed that the MIR159 genes of D. officinale were divided into five clades. Furthermore, the conservation analysis suggested that the 2 to 20 nt region of miR159 mature sequences were highly conserved among family members. The promoter analysis of MIR159s showed that the majority of the predicted cis-elements were related to environmental stress or hormones. In total, five classes of genes were predicted to be the target genes of Dof-miR159s, including GAMYB transcription factors, which had been confirmed in many other land plants. The expression patterns of predicted target genes revealed their potential roles in the growth and development of D. officinale, as well as in cold and drought stress responses. In conclusion, our results illustrated the stress-related miR159-targeted genes in D. officinale, which could provide candidate genes for resistance breeding in the future.


Assuntos
Dendrobium , Biologia Computacional , Dendrobium/genética , Regulação da Expressão Gênica de Plantas , Filogenia , Melhoramento Vegetal
20.
Braz J Biol ; 82: e260394, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35674573

RESUMO

Dendrobium nobile Lindl. is an orcid plant with important medicinal values. This is a colourful houseplant, and also a popular herb in traditional Chinese medicine (TCM). The variants of this plant from different geographic regions might be high, and in this study, we aimed to develop specific sequence characterized amplified region (SCAR) markers for the identification of specific variant of this plant. Different cultivars of D. nobile were collected from nine different places of China, and one cultivar from Myanmar. DNA materials were extracted from the plant samples, random amplified polymorphic DNA (RAPD) were developed, cloned and sequenced for the development of SCAR markers. We have developed four SCAR markers, which are specific to the cultivar from Luzhou China, and clearly distinguishable (genetically) from other cultivars. These SCAR markers are deposited in GenBank (accession number MZ417502, MZ484089, MZ417504 and MZ417505). Four SCAR markers for D. nobile are effective molecular technique to genetically identify the different cultivars or species, and this method is applicable for genetic characterization and identification of other plant species too.


Assuntos
Dendrobium , China , DNA , Dendrobium/genética , Marcadores Genéticos/genética , Técnica de Amplificação ao Acaso de DNA Polimórfico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA