Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Curr Drug Targets ; 24(17): 1317-1334, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38037908

RESUMO

Dengue fever has become a major public health concern. It is usually related to intravascular leaking, bleeding disorders, and thrombocytopenia and is recognized as a potent threat to humans. The scarcity of anti-dengue medication or vaccine for such a serious disease leads to an upsurge in the usage of traditional medicines for its proper management. India has diverse biodiversity and a long history of using plant-based remedies. Several medicinal plant extracts have been studied for producing anti-dengue viral activity. AYUSH traditional systems provide a plethora of plants that have been reported to be useful in the treatment of fever. Single and compound plant- based formulations in natural form have been used in Unani holistic approaches. This review serves as a new approach to illustrate the most recent evidence regarding the antiviral activity of various plants by providing scientific proof and also to validate the traditional formulations as effective treatments in dengue fever for global acceptance.


Assuntos
Dengue , Fitoterapia , Humanos , Medicina Unani , Medicina Tradicional , Dengue/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
2.
Antiviral Res ; 216: 105666, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37429528

RESUMO

Zika virus (ZIKV) has garnered global attention due to its association with severe congenital defects including microcephaly. However, there are no licensed vaccines or drugs against ZIKV infection. Pregnant women have the greatest need for treatment, making drug safety crucial. Alpha-linolenic acid (ALA), a polyunsaturated ω-3 fatty acid, has been used as a health-care product and dietary supplement due to its potential medicinal properties. Here, we demonstrated that ALA inhibits ZIKV infection in cells without loss of cell viability. Time-of-addition assay revealed that ALA interrupts the binding, adsorption, and entry stages of ZIKV replication cycle. The mechanism is probably that ALA disrupts membrane integrity of the virions to release ZIKV RNA, inhibiting viral infectivity. Further examination revealed that ALA inhibited DENV-2, HSV-1, influenza virus and SARS-CoV-2 infection dose-dependently. ALA is a promising broad-spectrum antiviral agent.


Assuntos
COVID-19 , Dengue , Herpes Simples , Orthomyxoviridae , Infecção por Zika virus , Zika virus , Feminino , Humanos , Gravidez , Infecção por Zika virus/tratamento farmacológico , Ácido alfa-Linolênico/farmacologia , Ácido alfa-Linolênico/uso terapêutico , Antivirais/uso terapêutico , SARS-CoV-2 , Dengue/tratamento farmacológico , Herpes Simples/tratamento farmacológico , Replicação Viral
3.
Phytomedicine ; 119: 154977, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37506573

RESUMO

BACKGROUND: Dengue virus (DENV) is a major public health threat. However, there are no specific therapeutic drugs for DENV. Many Chinese heat-cleaning formulas, such as Liang-Ge-San (LGS), have been frequently used in the virus-induced diseases. The antiviral effect of LGS has not been reported yet. PURPOSE: In this study, the effect of LGS on the inhibition of dengue virus serotype 2 (DENV-2) was investigated and the relevant mechanism was explored. METHODS: High-performance liquid chromatography was applied to analyze the chemical characterization of LGS. The in vitro antiviral activities of LGS against DENV-2 were evaluated by time-of-drug-addition assay. The binding of heat shock protein 70 (Hsp70) and envelope (E) protein or caveolin1 (Cav1) were analyzed by immunofluorescence and immunoprecipitation assays. Then the role of Cav1 in the anti-DENV-2 effects of LGS was further examined. DENV-2 infected Institute of Cancer Research suckling mice (n = 10) and AG129 mice (n = 8) were used to examine the protective effects of LGS. RESULTS: It was found that geniposide, liquiritin, forsythenside A, forsythin, baicalin, baicalein, rhein, and emodin maybe the characteristic components of LGS. LGS inhibited the early stage of DENV-2 infection, decreased the expression levels of viral E and non-structural protein 1 (NS1) proteins. LGS also reduced E protein and Hsp70 binding and attenuated the translocation of Hsp70 from cytoplasm to the cell membrane. Moreover, LGS decreased the binding of Hsp70 to Cav1. Further study showed that the overexpression of Cav1 reversed LGS-mediated E protein and Hsp70 inhibition in the plasma membrane. In the in vivo study, LGS was highly effective in prolonging the survival time, reducing viral loads. CONCLUSION: This work demonstrates for the first time that LGS exerts anti-DENV-2 activity in vitro and in vivo. LGS decreases DENV-2-stimulated cytoplasmic Hsp70 translocation into the plasma membrane by Cav1 inhibition, thereby inhibiting the early stage of virus infection. These findings indicate that LGS may be a candidate for the treatment of DENV.


Assuntos
Vírus da Dengue , Dengue , Animais , Camundongos , Dengue/tratamento farmacológico , Proteínas de Choque Térmico HSP70 , Sorogrupo , Membrana Celular , Antivirais/farmacologia , Antivirais/uso terapêutico , Citoplasma/metabolismo
4.
Exp Parasitol ; 249: 108513, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36997017

RESUMO

Dengue fever is a viral mosquito borne disease transmitted by day biting mosquito, Aedes aegypti. No medicine has been proven to be effective for the complete cure of dengue and mosquito control remains to be the only effective option. Increased cases of dengue contraction are being enormously reported worldwide every year. Thus, the urge for an effective measure remains a factor of major concern. In the present study, biosynthesized spherical-like structured zinc oxide (ZnO) nanoparticles using Indigofera tinctoria leaf extracts are employed as a mosquito controlling agent. The biosynthesized nanoparticles are characterized by UV-Vis, FTIR, FESEM, EDAX, XRD, Zeta Potential, and DLS analysis. The efficacy of the green synthesized ZnO nanoparticles were tested against different larval and pupal stages of A. aegypti. Further, it is established that a significant LC50 values of 4.030 ppm in first instar and 7.213 ppm in pupae of A. aegypti is due to the impact of synthesized ZnO. Histological studies confirmed that effective and destructive changes were observed in larval body tissues particularly in the fat cells and the midgut. Therefore, this study highlights the application of biosynthesized ZnO nanoparticles as a potential candidate for safe and eco-friendly agent against the dengue vector, A. aegypti.


Assuntos
Aedes , Dengue , Indigofera , Inseticidas , Nanopartículas Metálicas , Óxido de Zinco , Animais , Humanos , Óxido de Zinco/farmacologia , Mosquitos Vetores , Extratos Vegetais/farmacologia , Prata , Larva , Dengue/tratamento farmacológico , Dengue/prevenção & controle , Folhas de Planta
5.
Altern Lab Anim ; 51(2): 136-143, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36793154

RESUMO

Dengue is an arboviral (insect-transmitted) infection of global concern. Currently, there are still no specific dengue antiviral agents to treat the disease. Plant extracts have been used in traditional medicine for treating various viral infections - thus, in the present study, aqueous extracts of dried flowers of Aegle marmelos (AM), whole plant of Munronia pinnata (MP) and leaves of Psidium guajava (PG) were investigated for their potential capacity to inhibit dengue virus infection of Vero cells. The maximum non-toxic dose (MNTD) and the 50% cytotoxic concentration (CC50) were determined by using the MTT assay. A plaque reduction antiviral assay was carried out with dengue virus types 1 (DV1), 2 (DV2), 3 (DV3) and 4 (DV4), in order to calculate the half-maximum inhibitory concentration (IC50). AM extract inhibited all four virus serotypes tested; MP extract inhibited DV1, DV2 and DV4, but not DV3; PG extract inhibited DV1, DV2 and DV4, but not DV3. Thus, the results suggest that AM is a promising candidate for the pan-serotype inhibition of dengue viral activity.


Assuntos
Aegle , Vírus da Dengue , Dengue , Psidium , Animais , Chlorocebus aethiops , Células Vero , Água , Dengue/tratamento farmacológico
6.
Phytomedicine ; 110: 154650, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36649670

RESUMO

BACKGROUND: Dengue caused by dengue virus (DENV) spreads rapidly around the world. However, there are no worldwide licensed vaccines or specific antivirals to combat DENV infection. Quassinoids are the most characteristic components of Eurycoma longifolia, which have been reported to display a variety of biological activities. However, whether quassinoids exert anti-DENV activities remains unknown. PURPOSE: To test the quassinoids of E. longifolia for their activity against DENV and to clarify the potential mechanisms. METHODS: The quassinoids from E. longifolia were isolated by chromatography techniques, and their chemical structures were elucidated by spectroscopic analysis. The anti-DENV activities of quassinoids on baby hamster kidney cells BHK-21 were determined by lactate dehydrogenase (LDH) assay. The synthesis of progeny virus was measured by plaque assay. The expression levels of envelope protein (E) and non-structural protein 1 (NS1) were evaluated by qRT-PCR, Western blot and immunofluorescence assays. Molecular docking was used to screen the potential targets of the most active quassinoid against DENV-2, and surface plasmon resonance analysis was employed to confirm the direct binding between the most active quassinoid and potential target. RESULTS: Twenty-four quassinoids, including three new quassinoids (1 - 3), were isolated from the ethanol extract of E. longifolia. Quassinoids 4, 5, 9, 11, 12, 15, 16, 17, 19 and 20 significantly reduced the LDH release at the stages of viral binding and entry or intracellular replication. Among them, 19 (6α-hydroxyeurycomalactone, 6α-HEL) exhibited the best anti-DENV-2 activities with an EC50 value of 0.39 ± 0.02 µM. Further experiments suggested that 6α-HEL remarkably inhibited progeny virus synthesis and mRNA and protein expression levels of E and NS1 of DENV-2. Time-of-drug-addition assay suggested that 6α-HEL inhibited intracellular replication of DENV-2 at an early stage. Moreover, 6α-HEL was shown to interact with NS5-RdRp domain at a binding affinity of -8.15 kcal/mol. SPR assay further verified 6α-HEL bound to RdRp protein with an equilibrium dissociation constant of 1.49 × 10-7 M. CONCLUSION: Ten quassinoids from E. longifolia showed anti-DENV activities at processes of virus binding and entry or intracellular replication. The most active quassinoid 6α-HEL exerts the anti-DENV-2 activities at intracellular replication stage by directly targeting the NS5-RdRp protein. These results suggest that 6α-HEL could be a promising candidate for the treatment of DENV-2 infection.


Assuntos
Antivirais , Vírus da Dengue , Eurycoma , Quassinas , Replicação Viral , Animais , Cricetinae , Humanos , Antivirais/química , Antivirais/isolamento & purificação , Antivirais/farmacologia , Dengue/tratamento farmacológico , Eurycoma/química , Simulação de Acoplamento Molecular , Quassinas/isolamento & purificação , Quassinas/farmacologia , RNA Polimerase Dependente de RNA , Replicação Viral/efeitos dos fármacos , Vírus da Dengue/efeitos dos fármacos
7.
Curr Pharm Biotechnol ; 24(4): 486-494, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35619300

RESUMO

Dengue fever is a disease with a high mortality rate around the world, which is an important issue for the health authorities of many countries. As a result of this, the search for new drugs that are effective to combat this disease has become necessary. Medicinal plants have been used since ancient times to treat a wide list of diseases, including dengue fever. In this mini-review, 12 medicinal plants with known pharmacological properties are presented, which have been used in studies to evaluate their antiviral activity in vitro tests. Among the chemical agents involved in the antiviral response, found in the alcoholic extracts of these plants, are flavonoids, terpenes and alkaloids, which within the mechanism of action in blocking viral replication are considered entry inhibitors, fusion inhibitors, translation inhibitors and protease inhibitors. The present work shows whether these plants possess antiviral activity and the chemical compounds involved in this response.


Assuntos
Dengue , Plantas Medicinais , Humanos , Plantas Medicinais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Flavonoides/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Dengue/tratamento farmacológico
8.
Appl Biochem Biotechnol ; 195(6): 3747-3763, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35587327

RESUMO

Dengue fever is a rapidly spreading infection that affects people all over the tropics and subtropics, posing a significant public health threat. The brown seaweed Stoechospermum marginatum was found all over the world, from South Africa (Indian Ocean) to Australia (Pacific Ocean), among other places. In India, it is only available along the coast of the Bay of Bengal, which is a small region. Various metal oxides were proved to be successful in the formation of nanoparticles and zinc is one among them. In this present study, an attempt was made to study the anti-dengue activity of green synthesized zinc oxide nanoparticles of crude fucoidan isolated from brown seaweed S. marginatum. The fucoidan was isolated from the seaweed by acid extraction method and then characterized by UV, HPLC, and Fourier Transform Infra-Red (FT-IR) Spectroscopy. Then it was biosynthesized into ZnO nanoparticles and characterized by SEM-EDAX analysis. The results showed the formation of fucoidans and SEM studies showed the crystalline nature of the synthesized nanoparticles. The size of nanoparticles was in the range of 80-126 nm. The synthesized nanoparticles were tested with the C6/36 cell line and it was shown 99.09% of anti-dengue activity against the tested cell line. As an antiviral agent, the ZnO nanoparticles of fucoidans have been shown to be an excellent lead molecule for the treatment of dengue fever.


Assuntos
Dengue , Nanopartículas Metálicas , Alga Marinha , Óxido de Zinco , Humanos , Alga Marinha/metabolismo , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Dengue/tratamento farmacológico , Nanopartículas Metálicas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
9.
J Ethnopharmacol ; 304: 116044, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36528212

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sauropus androgynus L. Merr. (Euphorbiaceae) commonly known as "multigreen" and "multivitamin" is consumed as a vegetable and used in traditional medicine to relieve fever. AIM OF THE STUDY: This in vitro study is aimed to explore the activities of the lipophilic fraction of the leaves of S. androgynus (LFSA) against dengue (DENV), chikungunya (CHIKV) viruses and malaria (P. falciparum strain 3D7) parasite. MATERIALS AND METHODS: The LFSA was analyzed by using GC-FID and GC-MS. The antiviral activity of LFSA was studied using the Vero CCL-81 cell line. The cytotoxicity assay was performed using 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT). Focus forming unit (FFU), cell-based immunofluorescence (IFA) assays, and quantitative RT-PCR, were used to determine and confirm antiviral activity against DENV and CHIKV. The antiparasitic activity of LFSA was carried out against P. falciparum strain 3D7 grown in fresh O+ human erythrocytes culture. RESULTS: Twelve compounds were identified in LFSA using GC/MS. The most abundant compound was squalene (36.9%), followed by vitamin E (12.5%) and linolenic acid (10.2%). Significant reduction in DENV titre was observed under pre- and post-infection treatment conditions at a concentration of 31.25 µg/ml, but no anti-malarial and anti-CHIKV activity was observed. The Autodock-Vina-based in-silico docking study revealed that ß-sitosterol could form a strong interaction with the DENV E glycoprotein. CONCLUSION: Our findings suggest that LFSA can inhibit DENV infection and might act as a potent prophylactic/therapeutic agent against DENV-2. In-silico results suggested that ß-sitosterol may block the viral entry by inhibiting the fusion process.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Vírus da Dengue , Dengue , Malpighiales , Humanos , Dengue/tratamento farmacológico , Febre de Chikungunya/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico
10.
Medicine (Baltimore) ; 102(52): e36773, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38206728

RESUMO

Dengue fever is a frequently occurring infectious disease caused by the Dengue virus, prevalent in tropical and subtropical regions. Chaishi Jiedu Granules (CSJD) is an empirical prescription of the Eighth Affiliated Hospital of Guangzhou Medical University in the treatment of dengue fever, which has been widely used in the treatment of dengue fever, and has shown good efficacy in improving the clinical symptoms of patients. This study aims to explore the molecular mechanism of CSJD in treating dengue fever using network pharmacology, molecular docking techniques, and virtual screening methods. The results showed that luteolin, quercetin and other compounds in CSJD could target important targets related to dengue virus, including STAT3, AKT1, TNF, IL-6, and other key genes, thus playing an antiviral role. Among them, luteolin and wogonin in CSJD also inhibited dengue virus replication and reduced inflammation, and showed good binding force with IL-6 and TNF. Therefore, this study provides an important reference for the development of CSJD as a potential drug for dengue fever treatment and a new perspective for research and development in this field.


Assuntos
Dengue , Medicamentos de Ervas Chinesas , Humanos , Farmacologia em Rede , Interleucina-6 , Luteolina , Simulação de Acoplamento Molecular , Dengue/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
11.
J Mol Model ; 28(11): 365, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36274116

RESUMO

Dengue fever has been a global health concern. Mitigation is a challenging problem due to non-availability of workable treatments. The most difficult objective is to design a perfect anti-dengue agent capable of inhibiting infections caused by all four serotypes. Various tactics have been employed in the past to discover dengue antivirals, including screening of chemical compounds against dengue virus enzymes. The objective of the current study is to investigate phytocompounds as anti-dengue remedies that target the non-structural 2B and non-structural 3 protease (NS2B-NS3pro), a possible therapeutic target for dengue fever. Initially, 300 + antiviral phytocompounds were collected from Duke's phytochemical and ethnobotanical database and 30 phytocompounds with anti-dengue properties were identified from previously reported studies, which were virtually screened against NS2B-NS3pro using molecular docking and toxicity evaluation. The top five most screened ligands were naringin, hesperidin, gossypol, maslinic acid and rhodiolin with binding affinities of - 8.7 kcal/mol, - 8.5 kcal/mol, - 8.5 kcal/mol, - 8.5 kcal/mol and - 8.1 kcal/mol, respectively. The finest docked compounds complexed with NS2B-NS3pro were subjected for molecular dynamics (MD) simulations and binding free energy estimations through molecular mechanics generalized born surface area-based calculations. The results of the study are intriguing in the context of computer-aided screening and the binding affinities of the phytocompounds, proposing maslinic acid (MAS) as a potent bioactive antiviral for the development of phytocompound-based anti-dengue agent.


Assuntos
Vírus da Dengue , Dengue , Gossipol , Hesperidina , Humanos , Simulação de Acoplamento Molecular , Antivirais/farmacologia , Antivirais/química , Simulação de Dinâmica Molecular , Proteínas não Estruturais Virais/química , Vírus da Dengue/metabolismo , Peptídeo Hidrolases/metabolismo , Compostos Fitoquímicos , Dengue/tratamento farmacológico , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química
12.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293162

RESUMO

Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS) cause serious public health problems, with nearly 390 million people affected and 20,000 deaths per year in tropical and subtropical countries. Despite numerous attempts, no antiviral drug or vaccine is currently available to combat the manifestation. The challenge of discovering an efficient vaccine is enhanced by the surplus presence of efficient vectors and drug resistance from the virus. For centuries, papaya (Carica papaya) extracts have been traditionally used to treat DF, DHF, and DSS. In the present study, we systematically investigated seven compounds isolated from papaya leaf extract with regard to their potential as inhibitors for non-structural (NS) proteins, NS3 and NS5, which play a crucial role in viral RNA replication. The computational tools applied stretched across classical molecular docking, molecular dynamics (MD) simulations and SwissADME used to calculate binding affinities; binding free energies; Absorption, Distribution, Metabolism, and Excretion (ADME); and drug-likeness properties, thus, identifying Kaempferol, Chlorogenic acid, and Quercetin as potential candidates, with Kaempferol and Quercetin scoring best. Therefore, for the Kaempferol and Quercetin complexes, hybrid quantum mechanical/molecular mechanical (QM/MM) geometry and frequency calculations were performed, followed by the local mode analysis developed in our group to quantify Kaempferol-NS and Quercetin-NS hydrogen bonding. Given the non-toxic nature and the wide availability of the Kaempferol and Quercetin papaya extract in almost all of the susceptible regions, and our results showing high NS3 and NS5 binding affinities and energies, strong hydrogen bonding with both NS3 and NS5, and excellent ADME properties, we suggest Kaempferol and Quercetin as a strong NS3 and NS5 inhibitor to be further investigated in vitro.


Assuntos
Carica , Vírus da Dengue , Dengue , Humanos , Carica/química , Dengue/tratamento farmacológico , Quempferóis/uso terapêutico , Simulação de Acoplamento Molecular , Quercetina/uso terapêutico , Ácido Clorogênico/uso terapêutico , RNA Viral , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , Extratos Vegetais/uso terapêutico , Proteínas não Estruturais Virais/química
13.
PeerJ ; 10: e13650, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35945938

RESUMO

Background: Dengue and Zika are two major vector-borne diseases. Dengue causes up to 25,000 deaths and nearly a 100 million cases worldwide per year, while the incidence of Zika has increased in recent years. Although Zika has been associated to fetal microcephaly and Guillain-Barré syndrome both it and dengue have common clinical symptoms such as severe headache, retroocular pain, muscle and join pain, nausea, vomiting, and rash. Currently, vaccines have been designed and antivirals have been identified for these diseases but there still need for more options for treatment. Our group previously obtained some fractions from medicinal plants that blocked dengue virus (DENV) infection in vitro. In the present work, we explored the possible targets by molecular docking a group of molecules contained in the plant fractions against DENV and Zika virus (ZIKV) NS3-helicase (NS3-hel) and NS3-protease (NS3-pro) structures. Finally, the best ligands were evaluated by molecular dynamic simulations. Methods: To establish if these molecules could act as wide spectrum inhibitors, we used structures from four DENV serotypes and from ZIKV. ADFR 1.2 rc1 software was used for docking analysis; subsequently molecular dynamics analysis was carried out using AMBER20. Results: Docking suggested that 3,5-dicaffeoylquinic acid (DCA01), quercetin 3-rutinoside (QNR05) and quercetin 3,7-diglucoside (QND10) can tightly bind to both NS3-hel and NS3-pro. However, after a molecular dynamics analysis, tight binding was not maintained for NS3-hel. In contrast, NS3-pro from two dengue serotypes, DENV3 and DENV4, retained both QNR05 and QND10 which converged near the catalytic site. After the molecular dynamics analysis, both ligands presented a stable trajectory over time, in contrast to DCA01. These findings allowed us to work on the design of a molecule called MOD10, using the QND10 skeleton to improve the interaction in the active site of the NS3-pro domain, which was verified through molecular dynamics simulation, turning out to be better than QNR05 and QND10, both in interaction and in the trajectory. Discussion: Our results suggests that NS3-hel RNA empty binding site is not a good target for drug design as the binding site located through docking is too big. However, our results indicate that QNR05 and QND10 could block NS3-pro activity in DENV and ZIKV. In the interaction with these molecules, the sub-pocket-2 remained unoccupied in NS3-pro, leaving opportunity for improvement and drug design using the quercetin scaffold. The analysis of the NS3-pro in complex with MOD10 show a molecule that exerts contact with sub-pockets S1, S1', S2 and S3, increasing its affinity and apparent stability on NS3-pro.


Assuntos
Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Humanos , Zika virus/metabolismo , Simulação de Acoplamento Molecular , Flavonoides/farmacologia , Infecção por Zika virus/tratamento farmacológico , Peptídeo Hidrolases/química , Quercetina/farmacologia , Vírus da Dengue/química , Serina Endopeptidases/química , Dengue/tratamento farmacológico
14.
Front Cell Infect Microbiol ; 12: 866452, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463636

RESUMO

Dengue and chikungunya are two important mosquito-borne infections which are known to occur extensively in tropical and subtropical areas. Presently, there is no treatment for these viral diseases. In vitro antiviral screening of 25 extracts prepared from the plants of Vitex negundo, Plumeria alba, Ancistrocladus heyneanus, Bacopa monnieri, Anacardium occidentale, Cucurbita maxima, Simarouba glauca, and Embelia ribes using different solvents and four purified compounds (anacardic acid, chloroquinone, glaucarubinone, and methyl gallate) were carried out for their anti-dengue virus (DENV) and anti-chikungunya virus (CHIKV) activities. Maximum nontoxic concentrations of the chloroform, methanol, ethyl acetate, petroleum ether, dichloromethane, and hydroalcoholic extracts of eight plants were used. The antiviral activity was assessed by focus-forming unit assay, quantitative real-time RT-PCR, and immunofluorescence assays. Extracts from Plumeria alba, Ancistrocladus heyneanus, Bacopa monnieri, and Cucurbita maxima showed both anti-DENV and CHIKV activity while extract from Vitex negundo showed only anti-DENV activity. Among the purified compounds, anacardic acid, chloroquinone and methyl gallate showed anti-dengue activity while only methyl gallate had anti-chikungunya activity. The present study had identified the plant extracts with anti-dengue and anti-chikungunya activities, and these extracts can be further characterized for finding effective phytopharmaceutical drugs against dengue and chikungunya.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Vírus da Dengue , Dengue , Plantas Medicinais , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Febre de Chikungunya/tratamento farmacológico , Dengue/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
15.
Nutrients ; 14(8)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35458146

RESUMO

The potential therapeutic effect of Carica papaya leaf juice has attracted wide interest from the public and scientists in relieving dengue related manifestations. Currently, there is a lack of evaluated evidence on its juice form. Therefore, this scoping review aims to critically appraise the available scientific evidence related to the efficacy of C. papaya leaf juice in dengue. A systematic search was performed using predetermined keywords on two electronic databases (PubMed and Google Scholar). Searched results were identified, screened and appraised to establish the association between C. papaya and alleviating dengue associated conditions. A total of 28 articles (ethnobotanical information: three, in vitro studies: three, ex vivo studies: one, in vivo study: 13, clinical studies: 10) were included for descriptive analysis, which covered study characteristics, juice preparation/formulations, study outcomes, and toxicity findings. Other than larvicidal activity, this review also reveals two medicinal potentials of C. papaya leaf juice on dengue infection, namely anti-thrombocytopenic and immunomodulatory effects. C. papaya leaf juice has the potential to be a new drug candidate against dengue disease safely and effectively.


Assuntos
Carica , Dengue , Dengue/tratamento farmacológico , Alimentos , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta
16.
Sci Rep ; 12(1): 4765, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-35306526

RESUMO

Mosquito borne diseases are on the rise because of their fast spread worldwide and the lack of effective treatments. Here we are focusing on the development of a novel anti-malarial and virucidal agent with biocidal effects also on its vectors. We have synthesized a new quinoline (4,7-dichloroquinoline) derivative which showed significant larvicidal and pupicidal properties against a malarial and a dengue vector and a lethal toxicity ranging from 4.408 µM/mL (first instar larvae) to 7.958 µM/mL (pupal populations) for Anopheles stephensi and 5.016 µM/mL (larva 1) to 10.669 µM/mL (pupae) for Aedes aegypti. In-vitro antiplasmodial efficacy of 4,7-dichloroquinoline revealed a significant growth inhibition of both sensitive strains of Plasmodium falciparum with IC50 values of 6.7 nM (CQ-s) and 8.5 nM (CQ-r). Chloroquine IC50 values, as control, were 23 nM (CQ-s), and 27.5 nM (CQ-r). In vivo antiplasmodial studies with P. falciparum infected mice showed an effect of 4,7-dichloroquinoline compared to chloroquine. The quinoline compound showed significant activity against the viral pathogen serotype 2 (DENV-2). In vitro conditions and the purified quinoline exhibited insignificant toxicity on the host system up to 100 µM/mL. Overall, 4,7-dichloroquinoline could provide a good anti-vectorial and anti-malarial agent.


Assuntos
Antimaláricos , Dengue , Inseticidas , Malária , Nanopartículas Metálicas , Animais , Antimaláricos/farmacologia , Cloroquina/farmacologia , Dengue/tratamento farmacológico , Inseticidas/farmacologia , Larva , Malária/tratamento farmacológico , Camundongos , Mosquitos Vetores , Extratos Vegetais/farmacologia , Pupa
17.
Virol J ; 19(1): 31, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35193667

RESUMO

BACKGROUND: The worldwide epidemics of diseases as dengue and Zika have triggered an intense effort to repurpose drugs and search for novel antivirals to treat patients as no approved drugs for these diseases are currently available. Our aim was to screen plant-derived extracts to identify and isolate compounds with antiviral properties against dengue virus (DENV) and Zika virus (ZIKV). METHODS: Seven thousand plant extracts were screened in vitro for their antiviral properties against DENV-2 and ZIKV by their viral cytopathic effect reduction followed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method, previously validated for this purpose. Selected extracts were submitted to bioactivity-guided fractionation using high- and ultrahigh-pressure liquid chromatography. In parallel, high-resolution mass spectrometric data (MSn) were collected from each fraction, allowing compounds into the active fractions to be tracked in subsequent fractionation procedures. The virucidal activity of extracts and compounds was assessed by using the plaque reduction assay. EC50 and CC50 were determined by dose response experiments, and the ratio (EC50/CC50) was used as a selectivity index (SI) to measure the antiviral vs. cytotoxic activity. Purified compounds were used in nuclear magnetic resonance spectroscopy to identify their chemical structures. Two compounds were associated in different proportions and submitted to bioassays against both viruses to investigate possible synergy. In silico prediction of the pharmacokinetic and toxicity (ADMET) properties of the antiviral compounds were calculated using the pkCSM platform. RESULTS: We detected antiviral activity against DENV-2 and ZIKV in 21 extracts obtained from 15 plant species. Hippeastrum (Amaryllidaceae) was the most represented genus, affording seven active extracts. Bioactivity-guided fractionation of several extracts led to the purification of lycorine, pretazettine, narciclasine, and narciclasine-4-O-ß-D-xylopyranoside (NXP). Another 16 compounds were identified in active fractions. Association of lycorine and pretazettine did not improve their antiviral activity against DENV-2 and neither to ZIKV. ADMET prediction suggested that these four compounds may have a good metabolism and no mutagenic toxicity. Predicted oral absorption, distribution, and excretion parameters of lycorine and pretazettine indicate them as candidates to be tested in animal models. CONCLUSIONS: Our results showed that plant extracts, especially those from the Hippeastrum genus, can be a valuable source of antiviral compounds against ZIKV and DENV-2. The majority of compounds identified have never been previously described for their activity against ZIKV and other viruses.


Assuntos
Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Animais , Antivirais/química , Chlorocebus aethiops , Dengue/tratamento farmacológico , Humanos , Células Vero
18.
Future Microbiol ; 17: 143-155, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34913374

RESUMO

Dengue is a mosquito-borne viral infection, with its prevention and control depending on effective vector control measures. At present, dengue virus (DENV) is an epidemic in more than 100 countries of Southeast Asia, Africa, Eastern Mediterranean, the Americas and the Western Pacific. Several alkaloids isolated from natural herbs can serve as a reservoir for antiDENV drug development. Traditionally, plant extracts rich in alkaloids are used for the treatment of fever and have also revealed antimicrobial activity against various pathogenic bacteria, fungi and virus. The present narrative review collates the literature-based scenario of alkaloids and derivatives acting on DENV. The mechanism of action of such alkaloids with antiDENV and vector activity is also discussed.


Assuntos
Aedes , Alcaloides , Vírus da Dengue , Dengue , Alcaloides/farmacologia , Animais , Dengue/tratamento farmacológico , Dengue/epidemiologia , Mosquitos Vetores
19.
Microrna ; 10(4): 240-249, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34939557

RESUMO

BACKGROUND: The pathogenesis associated with Dengue virus (DENV) infection is marked by the impairment of host immune response. Consequently, the modulation of immune response has emerged as an important therapeutic target for the control of DENV infection. Vitamin D has been shown to regulate the immune response in DENV infection, although the molecular mechanism remains poorly understood. Post-transcriptional regulation of mRNA by miRNAs offers an opportunity to gain insight into the immunomodulation mediated by vitamin D. OBJECTIVE: Previously, it has been observed that a high dose of vitamin D (4000 IU) decreased DENV-2 infection and inflammatory response in monocyte-derived macrophages (MDMs). Here, we examine whether high or low doses of vitamin D supplements exert differential effect on miRNA expression in DENV-infected macrophages. METHODS: We analyzed miRNA expression profiles in MDMs isolated from healthy individuals who were given either 1000 or 4000 IU/day of vitamin D for 10 days. MDMs before or after vitamin D supplementation were challenged with DENV-2, and miRNAs profiles were analyzed by qPCR arrays. RESULTS: DENV-2 infected MDMs supplemented with 4000 IU, showed up-regulation of miR-374a-5p, miR-363-3p, miR-101-3p, miR-9-5p, miR-34a-5p, miR-200a-3p, and the family of miRNAs miR-21-5p, and miR-590-p. The miRNA profile and predicted target mRNAs suggested regulatory pathways in MDMs obtained from healthy donors who received higher doses of vitamin D. These DENV-2 infected MDMs expressed a unique set of miRNAs that target immune and cellular stress response genes. CONCLUSION: The results suggest vitamin D dose-dependent differential expression of miRNAs target key signaling pathways of the pathogenesis of dengue disease.


Assuntos
Vírus da Dengue , Dengue , MicroRNAs , Dengue/tratamento farmacológico , Dengue/genética , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Humanos , Macrófagos , MicroRNAs/genética , Replicação Viral , Vitamina D/metabolismo , Vitamina D/farmacologia , Vitamina D/uso terapêutico
20.
Molecules ; 26(23)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34885964

RESUMO

Amaryllidaceae plants are rich in alkaloids with biological properties. Pancratium trianthum is an Amaryllidaceae species widely used in African folk medicine to treat several diseases such as central nervous system disorders, tumors, and microbial infections, and it is used to heal wounds. The current investigation explored the biological properties of alkaloid extracts from bulbs of P. trianthum collected in the Senegalese flora. Alkaloid extracts were analyzed and identified by chromatography and mass spectrometry. Alkaloid extracts from P. trianthum displayed pleiotropic biological properties. Cytotoxic activity of the extracts was determined on hepatocarcinoma Huh7 cells and on acute monocytic leukemia THP-1 cells, while agar diffusion and microdilution assays were used to evaluate antibacterial activity. Antiviral activity was measured by infection of extract-treated cells with dengue virus (DENVGFP) and human immunodeficiency virus-1 (HIV-1GFP) reporter vectors. Cytotoxicity and viral inhibition were the most striking of P. trianthum's extract activities. Importantly, non-cytotoxic concentrations were highly effective in completely preventing DENVGFP replication and in reducing pseudotyped HIV-1GFP infection levels. Our results show that P. trianthum is a rich source of molecules for the potential discovery of new treatments against various diseases. Herein, we provide scientific evidence to rationalize the traditional uses of P. trianthum for wound treatment as an anti-dermatosis and antiseptic agent.


Assuntos
Alcaloides de Amaryllidaceae/química , Alcaloides de Amaryllidaceae/farmacologia , Amaryllidaceae/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Antivirais/química , Antivirais/farmacologia , Linhagem Celular Tumoral , Dengue/tratamento farmacológico , Vírus da Dengue/efeitos dos fármacos , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA