Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci Methods ; 405: 110080, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38369027

RESUMO

BACKGROUND: The thalamic reuniens (Re) and rhomboid (Rh) nuclei are bidirectionally connected with the medial prefrontal cortex (mPFC) and the hippocampus (Hip). Fiber-sparing N-methyl-D-aspartate lesions of the ReRh disrupt cognitive functions, including persistence of certain memories. Because such lesions irremediably damage neurons interconnecting the ReRh with the mPFC and the Hip, it is impossible to know if one or both pathways contribute to memory persistence. Addressing such an issue requires selective, pathway-restricted and direction-specific disconnections. NEW METHOD: A recent method associates a retrograde adeno-associated virus (AAV) expressing Cre recombinase with an anterograde AAV expressing a Cre-dependent caspase, making such disconnection feasible by caspase-triggered apoptosis when both constructs meet intracellularly. We injected an AAVrg-Cre-GFP into the ReRh and an AAV5-taCasp into the mPFC. As expected, part of mPFC neurons died, but massive neurotoxicity of the AAVrg-Cre-GFP was found in ReRh, contrasting with normal density of DAPI staining. Other stainings demonstrated increasing density of reactive astrocytes and microglia in the neurodegeneration site. COMPARISON WITH EXISTING METHODS: Reducing the viral titer (by a 4-fold dilution) and injection volume (to half) attenuated toxicity substantially, still with evidence for partial disconnection between mPFC and ReRh. CONCLUSIONS: There is an imperative need to verify potential collateral damage inherent in this type of approach, which is likely to distort interpretation of experimental data. Therefore, controls allowing to distinguish collateral phenotypic effects from those linked to the desired disconnection is essential. It is also crucial to know for how long neurons expressing the Cre-GFP protein remain operational post-infection.


Assuntos
Dependovirus , Tálamo , Ratos , Animais , Dependovirus/genética , Tálamo/fisiologia , Núcleos da Linha Média do Tálamo/fisiologia , Hipocampo/fisiologia , Córtex Pré-Frontal/fisiologia , Neurônios , Caspases/farmacologia , Vias Neurais/fisiologia
2.
J Integr Med ; 22(1): 72-82, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38307819

RESUMO

OBJECTIVE: Melittin and its derivative have been developed to support effective gene delivery systems. Their ability to facilitate endosomal release enhances the delivery of nanoparticle-based gene therapy. Nevertheless, its potential application in the context of viral vectors has not received much attention. Therefore, we would like to optimize the rAAV vector by Melittin analog to improve the transduction efficiency of rAAV in liver cancer cells and explore the mechanism of Melittin analog on rAAV. METHODS: Various melittin-derived peptides were inserted into loop VIII of the capsid protein in recombinant adeno-associated virus vectors. These vectors carrying either gfp or fluc genes were subjected to quantitative polymerase chain reaction assays and transduction assays in human embryonic kidney 293 (HEK293T) cells to investigate the efficiency of vector production and gene delivery. In addition, the ability of a specific p5RHH-rAAV vector to deliver genes was examined through in vitro transduction of different cultured cells and in vivo tail vein administration to C57BL/6 mice. Finally, the intricate details of the vector-mediated transduction mechanisms were explored by using pharmacological inhibitors of every stage of the rAAV2 intracellular life cycle. RESULTS: A total of 76 melittin-related peptides were identified from existing literature. Among them, CMA-3, p5RHH and aAR3 were found to significantly inhibit transduction of rAAV2 vector crude lysate. The p5RHH-rAAV2 vectors efficiently transduced not only rAAV-potent cell lines but also cell lines previously considered resistant to rAAV. Mechanistically, bafilomycin A1, a vacuolar endosome acidification inhibitor, completely inhibited the transgene expression mediated by the p5RHH-rAAV2 vectors. Most importantly, p5RHH-rAAV8 vectors also increased hepatic transduction in vivo in C57BL/6 mice. CONCLUSION: The incorporation of melittin analogs into the rAAV capsids results in a significant improvement in rAAV-mediated transgene expression. While further modifications remain an area of interest, our studies have substantially broadened the pharmacological prospects of melittin in the context of viral vector-mediated gene delivery. Please cite this article as: Meng J, He Y, Yang H, Zhou L, Wang S, Feng X, Al-shargi OY, Yu X, Zhu L, Ling, C. Melittin analog p5RHH enhances recombinant adeno-associated virus transduction efficiency. J Integr Med. 2024; 22(1): 72-82.


Assuntos
Dependovirus , Meliteno , Camundongos , Masculino , Animais , Humanos , Dependovirus/genética , Meliteno/farmacologia , Meliteno/genética , Transdução Genética , Células HEK293 , Camundongos Endogâmicos C57BL , Vetores Genéticos
3.
N Engl J Med ; 389(7): 620-631, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37585628

RESUMO

BACKGROUND: Patients with the Crigler-Najjar syndrome lack the enzyme uridine diphosphoglucuronate glucuronosyltransferase 1A1 (UGT1A1), the absence of which leads to severe unconjugated hyperbilirubinemia that can cause irreversible neurologic injury and death. Prolonged, daily phototherapy partially controls the jaundice, but the only definitive cure is liver transplantation. METHODS: We report the results of the dose-escalation portion of a phase 1-2 study evaluating the safety and efficacy of a single intravenous infusion of an adeno-associated virus serotype 8 vector encoding UGT1A1 in patients with the Crigler-Najjar syndrome that was being treated with phototherapy. Five patients received a single infusion of the gene construct (GNT0003): two received 2×1012 vector genomes (vg) per kilogram of body weight, and three received 5×1012 vg per kilogram. The primary end points were measures of safety and efficacy; efficacy was defined as a serum bilirubin level of 300 µmol per liter or lower measured at 17 weeks, 1 week after discontinuation of phototherapy. RESULTS: No serious adverse events were reported. The most common adverse events were headache and alterations in liver-enzyme levels. Alanine aminotransferase increased to levels above the upper limit of the normal range in four patients, a finding potentially related to an immune response against the infused vector; these patients were treated with a course of glucocorticoids. By week 16, serum bilirubin levels in patients who received the lower dose of GNT0003 exceeded 300 µmol per liter. The patients who received the higher dose had bilirubin levels below 300 µmol per liter in the absence of phototherapy at the end of follow-up (mean [±SD] baseline bilirubin level, 351±56 µmol per liter; mean level at the final follow-up visit [week 78 in two patients and week 80 in the other], 149±33 µmol per liter). CONCLUSIONS: No serious adverse events were reported in patients treated with the gene-therapy vector GNT0003 in this small study. Patients who received the higher dose had a decrease in bilirubin levels and were not receiving phototherapy at least 78 weeks after vector administration. (Funded by Genethon and others; ClinicalTrials.gov number, NCT03466463.).


Assuntos
Síndrome de Crigler-Najjar , Terapia Genética , Glucuronosiltransferase , Humanos , Administração Intravenosa , Bilirrubina/sangue , Síndrome de Crigler-Najjar/sangue , Síndrome de Crigler-Najjar/complicações , Síndrome de Crigler-Najjar/genética , Síndrome de Crigler-Najjar/terapia , Dependovirus , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Glucuronosiltransferase/administração & dosagem , Glucuronosiltransferase/genética , Hiperbilirrubinemia/sangue , Hiperbilirrubinemia/etiologia , Hiperbilirrubinemia/genética , Hiperbilirrubinemia/terapia , Transplante de Fígado , Fototerapia
4.
Nat Commun ; 14(1): 3792, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365155

RESUMO

Viral tracers that enable efficient retrograde labeling of projection neurons are powerful vehicles for structural and functional dissections of the neural circuit and for the treatment of brain diseases. Currently, some recombinant adeno-associated viruses (rAAVs) based on capsid engineering are widely used for retrograde tracing, but display undesirable brain area selectivity due to inefficient retrograde transduction in certain neural connections. Here we developed an easily editable toolkit to produce high titer AAV11 and demonstrated that it exhibits potent and stringent retrograde labeling of projection neurons in adult male wild-type or Cre transgenic mice. AAV11 can function as a powerful retrograde viral tracer complementary to AAV2-retro in multiple neural connections. In combination with fiber photometry, AAV11 can be used to monitor neuronal activities in the functional network by retrograde delivering calcium-sensitive indicator under the control of a neuron-specific promoter or the Cre-lox system. Furthermore, we showed that GfaABC1D promoter embedding AAV11 is superior to AAV8 and AAV5 in astrocytic tropism in vivo, combined with bidirectional multi-vector axoastrocytic labeling, AAV11 can be used to study neuron-astrocyte connection. Finally, we showed that AAV11 allows for analyzing circuit connectivity difference in the brains of the Alzheimer's disease and control mice. These properties make AAV11 a promising tool for mapping and manipulating neural circuits and for gene therapy of some neurological and neurodegenerative disorders.


Assuntos
Astrócitos , Neurônios , Camundongos , Masculino , Animais , Camundongos Transgênicos , Interneurônios , Encéfalo , Dependovirus/genética , Vetores Genéticos/genética
5.
J Integr Med ; 21(1): 106-115, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36333178

RESUMO

OBJECTIVE: Melittin, a cell-penetrating peptide, improves the efficiency of many non-viral gene delivery vectors, yet its application in viral vectors has not been well studied. The non-pathogenic recombinant adeno-associated virus (rAAV) vector is an ideal in vivo gene delivery vector. However, its full potential will only be achieved after improvement of its transduction efficiency. To improve the transduction efficiency of rAAV2 vectors, we attempted to develop a melittin-based rAAV2 vector delivery strategy. METHODS: The melittin peptide was inserted into the rAAV2 capsid either in the loop VIII of all viral proteins (VPs) or at the N terminus of VP2. Various rAAV2-gfp or -fluc vectors were subjected to quantitative real-time polymerase chain reaction and Western blot assays to determine their titers and integrity of capsid proteins, respectively. Alternatively, the vectors based on wild-type capsid were pre-incubated with melittin, followed by transduction of cultured cells or tail vein administration of the mixture to C57BL/6 and BALB/c nude mice. In vivo bioluminescence imaging was performed to evaluate the transgene expression. RESULTS: rAAV2 vectors with melittin peptide inserted in the loop VIII of VPs had low transduction efficiency, probably due to dramatically reduced ability to bind to the target cells. Fusing the melittin peptide at the N-terminus of VP2 produced vectors without the VP2 subunit. Interestingly, among the commonly used rAAV vectors, pre-incubation of rAAV2 and rAAV6 vectors with melittin significantly enhanced their transduction efficiency in HEK293 and Huh7 cells in vitro. Melittin also had the ability to increase the rAAV2-mediated transgene expression in mouse liver in vivo. Mechanistically, melittin did not change the vector-receptor interaction. Moreover, cell counting kit-8 assays of cultured cells and serum transaminase levels indicated melittin had little cytotoxicity. CONCLUSION: Pre-incubation with melittin, but not insertion of melittin into the rAAV2 capsid, significantly enhanced rAAV2-mediated transgene expression. Although further in vivo evaluations are required, this research not only expands the pharmacological potential of melittin, but also provides a new strategy to improve gene therapy mediated by rAAV vectors.


Assuntos
Dependovirus , Meliteno , Camundongos , Animais , Humanos , Meliteno/farmacologia , Meliteno/genética , Dependovirus/genética , Sorogrupo , Células HEK293 , Camundongos Nus , Camundongos Endogâmicos C57BL , Transgenes , Vetores Genéticos/genética
6.
Curr Gene Ther ; 23(2): 81-95, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36111754

RESUMO

Hemophilia A, a single gene disorder leading to deficient Factor VIII (FVIII), is a suitable candidate for gene therapy. The aspiration is for single administration of a genetic therapy that would allow the production of endogenous FVIII sufficient to restore hemostasis and other biological processes. This would potentially result in reliable protection from bleeding and its associated physical and emotional impacts. Gene therapy offers the possibility of a clinically relevant improvement in disease phenotype and transformational improvement in quality of life, including an opportunity to engage in physical activities more confidently. Gene therapy products for hemophilia A in advanced clinical development use adeno-associated viral (AAV) vectors and a codon-optimized B-domain deleted FVIII transgene. However, the different AAV-based gene therapies have distinct design features, such as choice of vector capsid, enhancer and promoter regions, FVIII transgene sequence and manufacturing processes. These, in turn, impact patient eligibility, safety and efficacy. Ideally, gene therapy technology for hemophilia A should offer bleed protection, durable FVIII expression, broad eligibility and limited response variability between patients, and long-term safety. However, several limitations and challenges must be overcome. Here, we introduce the characteristics of the BAY 2599023 (AAVhu37.hFVIIIco, DTX 201) gene therapy product, including the low prevalence in the general population of anti-AAV-hu37 antibodies, as well as other gene therapy AAV products and approaches. We will examine how these can potentially meet the challenges of gene therapy, with the ultimate aim of improving the lives of patients with hemophilia A.


Assuntos
Hemofilia A , Animais , Humanos , Dependovirus/genética , Terapia Genética , Hemofilia A/genética , Hemofilia A/terapia , Qualidade de Vida
7.
Brain ; 145(10): 3405-3414, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36270002

RESUMO

Leigh disease, or subacute necrotizing encephalomyelopathy, a genetically heterogeneous condition consistently characterized by defective mitochondrial bioenergetics, is the most common oxidative-phosphorylation related disease in infancy. Both neurological signs and pathological lesions of Leigh disease are mimicked by the ablation of the mouse mitochondrial respiratory chain subunit Ndufs4-/-, which is part of, and crucial for, normal Complex I activity and assembly, particularly in the brains of both children and mice. We previously conveyed the human NDUFS4 gene to the mouse brain using either single-stranded adeno-associated viral 9 recombinant vectors or the PHP.B adeno-associated viral vector. Both these approaches significantly prolonged the lifespan of the Ndufs4-/- mouse model but the extension of the survival was limited to a few weeks by the former approach, whereas the latter was applicable to a limited number of mouse strains, but not to primates. Here, we exploited the recent development of new, self-complementary adeno-associated viral 9 vectors, in which the transcription rate of the recombinant gene is markedly increased compared with the single-stranded adeno-associated viral 9 and can be applied to all mammals, including humans. Either single intra-vascular or double intra-vascular and intra-cerebro-ventricular injections were performed at post-natal Day 1. The first strategy ubiquitously conveyed the human NDUFS4 gene product in Ndufs4-/- mice, doubling the lifespan from 45 to ≈100 days after birth, when the mice developed rapidly progressive neurological failure. However, the double, contemporary intra-vascular and intra-cerebroventricular administration of self-complementary-adeno-associated viral NDUFS4 prolonged healthy lifespan up to 9 months of age. These mice were well and active at euthanization, at 6, 7, 8 and 9 months of age, to investigate the brain and other organs post-mortem. Robust expression of hNDUFS4 was detected in different cerebral areas preserving normal morphology and restoring Complex I activity and assembly. Our results warrant further investigation on the translatability of self-complementary-adeno-associated viral 9 NDUFS4-based therapy in the prodromal phase of the disease in mice and eventually humans.


Assuntos
Doença de Leigh , Criança , Camundongos , Animais , Humanos , Doença de Leigh/genética , Doença de Leigh/terapia , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Dependovirus/genética , Fosforilação Oxidativa , Modelos Animais de Doenças , Camundongos Knockout , Mamíferos/metabolismo
8.
Anesth Analg ; 134(1): 204-215, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34652301

RESUMO

BACKGROUND: The main symptoms of chemotherapy-induced peripheral neuropathy (CIPN) include pain and numbness. Neuronal G protein-coupled receptor kinase 2 (GRK2) plays an important role in various pain models. Cisplatin treatment can induce the activation of proinflammatory microglia in spinal cord. The purpose of this study was to investigate the role of spinal neuronal GRK2 in cisplatin-induced CIPN and in the prevention of CIPN by electroacupuncture (EA). METHODS: The pain and sensory deficit behaviors of mice were examined by von Frey test and adhesive removal test. The expression of neuronal GRK2 in the spinal cord is regulated by intraspinal injection of adeno-associated virus (AAV) containing neuron-specific promoters. The protein levels of GRK2, triggering receptor expressed on myeloid cells 2 (TREM2), and DNAX-activating protein of 12 kDa (DAP12) in spinal dorsal horn were detected by Western blot, the density of intraepidermal nerve fibers (IENFs) was detected by immunofluorescence, and microglia activation were evaluated by real-time polymerase chain reaction (PCR). RESULTS: In this study, cisplatin treatment led to the decrease of GRK2 expression in the dorsal horn of spinal cord. Overexpression of neuronal GRK2 in spinal cord by intraspinal injection of an AAV vector expressing GRK2 with human synapsin (hSyn) promotor significantly inhibited the loss of IENFs and alleviated the mechanical pain and sensory deficits induced by cisplatin. Real-time PCR analysis showed that the overexpression of neuronal GRK2 significantly inhibited the messenger RNA (mRNA) upregulation of proinflammatory cytokine interleukin (IL)-1ß, IL-6, inducible nitric oxide synthase (iNOS), and M1 microglia marker cluster of differentiation (CD)16 induced by cisplatin. Furthermore, the TREM2 and DAP12, which has been demonstrated to play a role in microglia activation and in the development of CIPN, were also downregulated by overexpression of neuronal GRK2 in this study. Interestingly, preventive treatment with EA completely mimics the effect of overexpression of neuronal GRK2 in the spinal cord in this mouse model of cisplatin-induced CIPN. EA increased GRK2 level in spinal dorsal horn after cisplatin treatment. Intraspinal injection of AAV vector specifically downregulated neuronal GRK2, completely reversed the regulatory effect of EA on CIPN and microglia activation. All these indicated that the neuronal GRK2 mediated microglial activation contributed to the process of CIPN. CONCLUSIONS: Neuronal GRK2 in the spinal cord contributed to the preventive effect of EA on CIPN. The neuronal GRK2 may be a potential target for CIPN intervention.


Assuntos
Cisplatino , Eletroacupuntura , Quinase 2 de Receptor Acoplado a Proteína G/genética , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Medula Espinal/patologia , Animais , Comportamento Animal , Dependovirus , Humanos , Hiperalgesia/metabolismo , Inflamação , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Fibras Nervosas , Neuralgia/metabolismo , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Dor , Corno Dorsal da Medula Espinal/metabolismo , Fatores de Tempo
9.
J Neurosci Methods ; 365: 109382, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34637809

RESUMO

BACKGROUND: As a step towards clinical use of AAV-mediated gene therapy, brains of large animals are used to settle delivery parameters as most brain connections, and relative sizes in large animals and primates, are reasonably common. Prior to application in the clinic, approaches that have shown to be successful in rodent models are tested in larger animal species, such as dogs, non-human primates, and in this case, minipigs. NEW METHOD: We evaluated alternate delivery routes to target the basal ganglia by injections into the more superficial corona radiata, and, deeper into the brain, the thalamus. Anatomically known connections can be used to predict the expression of the transgene following infusion of AAV5. For optimal control over delivery of the vector with regards to anatomical location in the brain and spread in the tissue, we have used magnetic resonance image-guided convection-enhanced diffusion delivery. RESULTS: While the transduction of the cortex was observed, only partial transduction of the basal ganglia was achieved via the corona radiata. Thalamic administration, on the other hand, resulted in widespread transduction from the midbrain to the frontal cortex COMPARISON WITH EXISTING METHODS: Compared to other methods, such as delivery directly to the striatum, thalamic injection may provide an alternative when for instance, injection into the basal ganglia directly is not feasible. CONCLUSIONS: The study results suggest that thalamic administration of AAV5 has significant potential for indications where the transduction of specific areas of the brain is required.


Assuntos
Convecção , Tálamo , Animais , Dependovirus/genética , Cães , Terapia Genética/métodos , Vetores Genéticos , Imageamento por Ressonância Magnética , Suínos , Porco Miniatura/genética , Tálamo/diagnóstico por imagem
10.
Front Endocrinol (Lausanne) ; 12: 668193, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733235

RESUMO

Objective: This study aims to investigate whether hypoxia-inducible factor 1α (HIF1α) in the neurons of the mediobasal hypothalamus is involved in the regulation of body weight, glucose, and lipid metabolism in mice and to explore the underlying molecular mechanisms. Methods: HIF1α flox/flox mice were used. The adeno-associated virus that contained either cre, GFP and syn, or GFP and syn (controls) was injected into the mediobasal hypothalamus to selectively knock out HIF1α in the neurons of the mediobasal hypothalamus. The body weight and food intake were weighed daily. The levels of blood glucose, insulin, total cholesterol (TC), triglyceride (TG), free fatty acid (FFA), high-density lipoprotein (HDL), and low-density lipoprotein (LDL)were tested. Intraperitoneal glucose tolerance test (IPGTT) was performed. The insulin-stimulated Akt phosphorylation in the liver, epididymal fat, and skeletal muscle were examined. Also, the mRNA expression levels of HIF1α, proopiomelanocortin (POMC), neuropeptide Y (NPY), and glucose transporter protein 4 (Glut4) in the hypothalamus were checked. Results: After selectively knocking out HIF1α in the neurons of the mediobasal hypothalamus (HIF1αKOMBH), the body weights and food intake of mice increased significantly compared with the control mice (p < 0.001 at 4 weeks). Compared with that of the control group, the insulin level of HIF1αKOMBH mice was 3.5 times higher (p < 0.01). The results of the IPGTT showed that the blood glucose level of the HIF1αKOMBH group at 20-120 min was significantly higher than that of the control group (p < 0.05). The serum TC, FFA, HDL, and LDL content of the HIF1αKOMBH group was significantly higher than those of the control group (p < 0.05). Western blot results showed that compared with those in the control group, insulin-induced AKT phosphorylation levels in liver, epididymal fat, and skeletal muscle in the HIF1αKOMBH group were not as significantly elevated as in the control group. Reverse transcription-polymerase chain reaction (RT-PCR) results in the whole hypothalamus showed a significant decrease in Glut4 mRNA expression. And the mRNA expression levels of HIF1α, POMC, and NPY of the HIF1αKOMBH group decreased significantly in ventral hypothalamus. Conclusions: The hypothalamic neuronal HIF1α plays an important role in the regulation of body weight balance in mice under normoxic condition. In the absence of hypothalamic neuronal HIF1α, the mice gained weight with increased appetite, accompanied with abnormal glucose and lipid metabolism. POMC and Glut4 may be responsible for this effect of HIF1α.


Assuntos
Hipotálamo/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Resistência à Insulina , Metabolismo dos Lipídeos , Fígado/patologia , Neurônios/patologia , Animais , Apetite , Regulação do Apetite , Dependovirus/genética , Proteínas de Fluorescência Verde/genética , Hipotálamo/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo
11.
Brain Res ; 1773: 147698, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34655617

RESUMO

The cortical-thalamostriatal pathway constitutes the cortico-basal ganglia circuit and plays a critical role in the control of movement. Emerging evidence shows that center median/parafascicular (CM/Pf) neurons are lost in Parkinson's disease (PD) patients with motor deficits and CM/Pf neurons send massive and topographically organized projections to specific regions of the dorsal striatum, but provide only minor inputs to the cerebral cortex. However, anatomical connectivity in the cortical-thalamostriatal pathway are poorly understood at present. In the present study, we used a neural tracing method with adeno-associated virus (AAV) to monitor the cortical-thalamostriatal connectivity in rats. We found that parafascicular nucleus (PF) not only project directly to the striatum but send minor inputs to the cortical regions. It was manifested by green fluorescent protein (GFP) expressing fibers observed in dorsolateral striatum (DLS) and the primary motor cortex (M1) after adeno-associated virus serotype 2/9 (AAV2/9)-GFP injection into PF and GFP expressing cells observed in PF after injection AAV2/retro-GFP into M1. And the PF also receive projections from the DLS and it was demonstrated by GFP expressing fibers in PF after AAV2/9-GFP injection into DLS and GFP expressing cells in DLS after injection AAV2/retro-GFP into PF. Histological and behavioral analysis revealed that AAV vector transduction cause damage in neurons on the injection sites and also damage motor activity of rats suggesting caution in clinical application.


Assuntos
Córtex Cerebral/fisiologia , Corpo Estriado/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia , Animais , Dependovirus , Masculino , Vias Neurais/fisiologia , Ratos , Ratos Wistar
12.
Front Immunol ; 12: 704408, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489954

RESUMO

On murine T cells, mono-ADP ribosyltransferase ARTC2.2 catalyzes ADP-ribosylation of various surface proteins when nicotinamide adenine dinucleotide (NAD+) is released into the extracellular compartment. Covalent ADP-ribosylation of the P2X7 receptor by ARTC2.2 thereby represents an additional mechanism of activation, complementary to its triggering by extracellular ATP. P2X7 is a multifaceted receptor that may represents a potential target in inflammatory, and neurodegenerative diseases, as well as in cancer. We present herein an experimental approach using intramuscular injection of recombinant AAV vectors (rAAV) encoding nanobody-based biologics targeting ARTC2.2 or P2X7. We demonstrate the ability of these in vivo generated biologics to potently and durably block P2X7 or ARTC2.2 activities in vivo, or in contrast, to potentiate NAD+- or ATP-induced activation of P2X7. We additionally demonstrate the ability of rAAV-encoded functional heavy chain antibodies to elicit long-term depletion of T cells expressing high levels of ARTC2.2 or P2X7. Our approach of using rAAV to generate functional nanobody-based biologics in vivo appears promising to evaluate the role of ARTC2.2 and P2X7 in murine acute as well as chronic disease models.


Assuntos
ADP Ribose Transferases , Produtos Biológicos/imunologia , Dependovirus , Vetores Genéticos , Depleção Linfocítica , Receptores Purinérgicos P2X7/imunologia , Anticorpos de Domínio Único , ADP Ribose Transferases/antagonistas & inibidores , ADP Ribose Transferases/imunologia , Animais , Camundongos , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/imunologia
13.
J Inherit Metab Dis ; 44(6): 1382-1392, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34528713

RESUMO

Cystathionine ß-synthase (CBS) deficiency is a recessive inborn error of sulfur metabolism characterized by elevated blood levels of total homocysteine (tHcy). Patients diagnosed with CBS deficiency are currently treated by a combination of vitamin supplementation and restriction of foods containing the homocysteine precursor methionine, but the effectiveness of this therapy is limited due to poor compliance. A mouse model for CBS deficiency (Tg-I278T Cbs-/- ) was used to evaluate a potential gene therapy approach to treat CBS deficiency utilizing an AAVrh.10-based vector containing the human CBS cDNA downstream of the constitutive, strong CAG promoter (AAVrh.10hCBS). Mice were administered a single dose of virus and followed for up to 1 year. The data demonstrated a dose-dependent increase in liver CBS activity and a dose-dependent decrease in serum tHcy. Liver CBS enzyme activity at 1 year was similar to Cbs+/- control mice. Mice given the highest dose (5.6 × 1011 genomes/mouse) had mean serum tHcy decrease of 97% 1 week after injection and an 81% reduction 1 year after injection. Treated mice had either full- or substantial correction of alopecia, bone loss, and fat mass phenotypes associated with Cbs deficiency in mice. Our findings show that AAVrh.10-based gene therapy is highly effective in treating CBS deficiency in mice and supports additional pre-clinical testing for eventual use human trials.


Assuntos
Cistationina beta-Sintase/genética , Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética , Homocistinúria/genética , Homocistinúria/terapia , Animais , Cistationina beta-Sintase/sangue , Cistationina beta-Sintase/deficiência , Modelos Animais de Doenças , Feminino , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Homocistinúria/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Knockout , Fenótipo
14.
J Integr Med ; 19(6): 515-525, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34538767

RESUMO

OBJECTIVE: Plant-derived cytotoxic transgene expression, such as trichosanthin (tcs), regulated by recombinant adeno-associated virus (rAAV) vector is a promising cancer gene therapy. However, the cytotoxic transgene can hamper the vector production in the rAAV producer cell line, human embryonic kidney (HEK293) cells. Here, we explored microRNA-122 (miR122) and its target sequence to limit the expression of the cytotoxic gene in the rAAV producer cells. METHODS: A miR122 target (122T) sequence was incorporated into the 3' untranslated region of the tcs cDNA sequence. The firefly luciferase (fluc) transgene was used as an appropriate control. Cell line HEK293-mir122 was generated by the lentiviral vector-mediated genome integration of the mir122 gene in parental HEK293 cells. The effects of miR122 overexpression on cell growth, transgene expression, and rAAV production were determined. RESULTS: The presence of 122T sequence significantly reduced transgene expression in the miR122-enriched Huh7 cell line (in vitro), fresh human hepatocytes (ex vivo), and mouse liver (in vivo). Also, the normal liver physiology was unaffected by delivery of 122T sequence by rAAV vectors. Compared with the parental cells, the miR122-overexpressing HEK293-mir122 cell line showed similar cell growth rate and expression of transgene without 122T, as well as the ability to produce liver-targeting rAAV vectors. Fascinatingly, the yield of rAAV vectors carrying the tcs-122T gene was increased by 77.7-fold in HEK293-mir122 cells. Moreover, the tcs-122T-containing rAAV vectors significantly reduced the proliferation of hepatocellular carcinoma cells without affecting the normal liver cells. CONCLUSION: HEK293-mir122 cells along with the 122T sequence provide a potential tool to attenuate the cytotoxic transgene expression, such as tcs, during rAAV vector production.


Assuntos
MicroRNAs , Tricosantina , Animais , Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética , Células HEK293 , Humanos , Camundongos , MicroRNAs/genética
15.
Mol Genet Metab ; 134(1-2): 139-146, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34454844

RESUMO

Maple syrup urine disease (MSUD) is a rare, inherited metabolic disorder characterized by a dysfunctional mitochondrial enzyme complex, branched-chain alpha-keto acid dehydrogenase (BCKDH), which catabolizes branched-chain amino acids (BCAAs). Without functional BCKDH, BCAAs and their neurotoxic alpha-keto intermediates can accumulate in the blood and tissues. MSUD is currently incurable and treatment is limited to dietary restriction or liver transplantation, meaning there is a great need to develop new treatments for MSUD. We evaluated potential gene therapy applications for MSUD in the intermediate MSUD (iMSUD) mouse model, which harbors a mutation in the dihydrolipoamide branched-chain transacylase E2 (DBT) subunit of BCKDH. Systemic delivery of an adeno-associated virus (AAV) vector expressing DBT under control of the liver-specific TBG promoter to the liver did not sufficiently ameliorate all aspects of the disease phenotype. These findings necessitated an alternative therapeutic strategy. Muscle makes a larger contribution to BCAA metabolism than liver in humans, but a muscle-specific approach involving a muscle-specific promoter for DBT expression delivered via intramuscular (IM) administration only partially rescued the MSUD phenotype in mice. Combining the muscle-tropic AAV9 capsid with the ubiquitous CB7 promoter via IM or IV injection, however, substantially increased survival across all assessed doses. Additionally, near-normal serum BCAA levels were achieved and maintained in the mid- and high-dose cohorts throughout the study; this approach also protected these mice from a lethal high-protein diet challenge. Therefore, administration of a gene therapy vector that expresses in both muscle and liver may represent a viable approach to treating patients with MSUD.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Doença da Urina de Xarope de Bordo/genética , Doença da Urina de Xarope de Bordo/terapia , Fenótipo , Administração Intravenosa , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Vetores Genéticos/administração & dosagem , Masculino , Camundongos , Mutação
16.
Int J Mol Sci ; 22(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202651

RESUMO

Dieting is a common but often ineffective long-term strategy for preventing weight gain. Similar to humans, adult rats exhibit progressive weight gain. The adipokine leptin regulates appetite and energy expenditure but hyperleptinemia is associated with leptin resistance. Here, we compared the effects of increasing leptin levels in the hypothalamus using gene therapy with conventional caloric restriction on weight gain, food consumption, serum leptin and adiponectin levels, white adipose tissue, marrow adipose tissue, and bone in nine-month-old female Sprague-Dawley rats. Rats (n = 16) were implanted with a cannula in the 3rd ventricle of the hypothalamus and injected with a recombinant adeno-associated virus, encoding the rat gene for leptin (rAAV-Lep), and maintained on standard rat chow for 18 weeks. A second group (n = 15) was calorically-restricted to match the weight of the rAAV-Lep group. Both approaches prevented weight gain, and no differences in bone were detected. However, calorically-restricted rats consumed 15% less food and had lower brown adipose tissue Ucp-1 mRNA expression than rAAV-Lep rats. Additionally, calorically-restricted rats had higher abdominal white adipose tissue mass, higher serum leptin and adiponectin levels, and higher marrow adiposity. Caloric restriction and hypothalamic leptin gene therapy, while equally effective in preventing weight gain, differ in their effects on energy intake, energy expenditure, adipokine levels, and body composition.


Assuntos
Restrição Calórica , Metabolismo Energético , Terapia Genética , Hipotálamo/metabolismo , Leptina/genética , Adipocinas/sangue , Adipocinas/genética , Adipocinas/metabolismo , Adiponectina/genética , Adiponectina/metabolismo , Tecido Adiposo Branco/metabolismo , Adiposidade/genética , Animais , Biomarcadores , Peso Corporal , Medula Óssea/metabolismo , Dependovirus/genética , Ingestão de Energia , Metabolismo Energético/genética , Feminino , Expressão Gênica , Terapia Genética/métodos , Vetores Genéticos , Leptina/metabolismo , Ratos , Transgenes
17.
Front Immunol ; 12: 658038, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868303

RESUMO

Recombinant adeno-associated virus (rAAV) has attracted a significant research focus for delivering genetic therapies to target cells. This non-enveloped virus has been trialed in many clinical-stage therapeutic strategies but important obstacle in clinical translation is the activation of both innate and adaptive immune response to the protein capsid, vector genome and transgene product. In addition, the normal population has pre-existing neutralizing antibodies against wild-type AAV, and cross-reactivity is observed between different rAAV serotypes. While extent of response can be influenced by dosing, administration route and target organ(s), these pose concerns over reduction or complete loss of efficacy, options for re-administration, and other unwanted immunological sequalae such as local tissue damage. To reduce said immunological risks, patients are excluded if they harbor anti-AAV antibodies or have received gene therapy previously. Studies have incorporated immunomodulating or suppressive regimens to block cellular and humoral immune responses such as systemic corticosteroids pre- and post-administration of Luxturna® and Zolgensma®, the two rAAV products with licensed regulatory approval in Europe and the United States. In this review, we will introduce the current pharmacological strategies to immunosuppress or immunomodulate the host immune response to rAAV gene therapy.


Assuntos
Dependovirus/genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Imunomodulação , Animais , Terapia Baseada em Transplante de Células e Tecidos , Estudos Clínicos como Assunto , Terapia Combinada , Avaliação Pré-Clínica de Medicamentos , Técnicas de Transferência de Genes , Terapia Genética/métodos , Humanos , Imunidade Celular , Imunidade Humoral , Fatores Imunológicos/farmacologia , Fatores Imunológicos/uso terapêutico , Imunomodulação/efeitos dos fármacos , Transgenes/genética
18.
Mol Ther ; 29(8): 2499-2513, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-33839322

RESUMO

Recurrent episodes of decompensated heart failure (HF) represent an emerging cause of hospitalizations in developed countries with an urgent need for effective therapies. Recently, the pregnancy-related hormone relaxin (RLN) was found to mediate cardio-protective effects and act as a positive inotrope in the cardiovascular system. RLN binds to the RLN family peptide receptor 1 (RXFP1), which is predominantly expressed in atrial cardiomyocytes. We therefore hypothesized that ventricular RXFP1 expression might exert potential therapeutic effects in an in vivo model of cardiac dysfunction. Thus, mice were exposed to pressure overload by transverse aortic constriction and treated with AAV9 to ectopically express RXFP1. To activate RXFP1 signaling, RLN was supplemented subcutaneously. Ventricular RXFP1 expression was well tolerated. Additional RLN administration not only abrogated HF progression but restored left ventricular systolic function. In accordance, upregulation of fetal genes and pathological remodeling markers were significantly reduced. In vitro, RLN stimulation of RXFP1-expressing cardiomyocytes induced downstream signaling, resulting in protein kinase A (PKA)-specific phosphorylation of phospholamban (PLB), which was distinguishable from ß-adrenergic activation. PLB phosphorylation corresponded to increased calcium amplitude and contractility. In conclusion, our results demonstrate that ligand-activated cardiac RXFP1 gene therapy represents a therapeutic approach to attenuate HF with the potential to adjust therapy by exogenous RLN supplementation.


Assuntos
Terapia Genética/métodos , Insuficiência Cardíaca/terapia , Receptores Acoplados a Proteínas G/genética , Receptores de Peptídeos/genética , Relaxina/administração & dosagem , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Vetores Genéticos/administração & dosagem , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Humanos , Injeções Subcutâneas , Ligantes , Masculino , Camundongos , Fosforilação , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Resultado do Tratamento , Função Ventricular
19.
Blood ; 137(21): 2902-2906, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33735915

RESUMO

Sustained expression of therapeutic factor IX (FIX) levels has been achieved after adeno-associated viral (AAV) vector-based gene therapy in patients with hemophilia B. Nevertheless, patients are still at risk of vector dose-limiting toxicity, particularly liver inflammation, justifying the need for more efficient vectors and a lower dosing regimen. A novel increased potency FIX (designated as CB 2679d-GT), containing 3 amino acid substitutions (R318Y, R338E, T343R), significantly outperformed the R338L-Padua variant after gene therapy. CB 2679d-GT demonstrated a statistically significant approximately threefold improvement in clotting activity when compared with R338L-Padua after AAV-based gene therapy in hemophilic mice. Moreover, CB 2679d-GT gene therapy showed significantly reduced bleeding time (approximately fivefold to eightfold) and total blood loss volume (approximately fourfold) compared with mice treated with the R338L-Padua, thus achieving more rapid and robust hemostatic correction. FIX expression was sustained for at least 20 weeks with both CB 2679d-GT and R338L-Padua whereas immunogenicity was not significantly increased. This is a novel gene therapy study demonstrating the superiority of CB 2679d-GT, highlighting its potential to obtain higher FIX activity levels and superior hemostatic efficacy following AAV-directed gene therapy in hemophilia B patients than what is currently achievable with the R338L-Padua variant.


Assuntos
Terapia Genética , Hemofilia B/terapia , Substituição de Aminoácidos , Animais , Tempo de Sangramento , Dependovirus/genética , Avaliação Pré-Clínica de Medicamentos , Fator IX/química , Fator IX/genética , Fator IX/uso terapêutico , Mutação com Ganho de Função , Dosagem de Genes , Vetores Genéticos/uso terapêutico , Humanos , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/uso terapêutico
20.
Mol Brain ; 14(1): 33, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33588899

RESUMO

GABAergic interneurons play a critical role in tuning neural networks in the central nervous system, and their defects are associated with neuropsychiatric disorders. Currently, the mDlx enhancer is solely used for adeno-associated virus (AAV) vector-mediated transgene delivery into cortical interneurons. Here, we developed a new inhibitory neuron-specific promoter (designated as the mGAD65 promoter), with a length of 2.5 kb, from a mouse genome upstream of exon 1 of the Gad2 gene encoding glutamic acid decarboxylase (GAD) 65. Intravenous infusion of blood-brain barrier-penetrating AAV-PHP.B expressing an enhanced green fluorescent protein under the control of the mGAD65 promoter transduced the whole brain in an inhibitory neuron-specific manner. The specificity and efficiency of the mGAD65 promoter for GABAergic interneurons, which was assessed at the motor cortex, were almost identical to or slightly higher than those of the mDlx enhancer. Immunohistochemical analysis revealed that the mGAD65 promoter preferentially transduced parvalbumin (PV)-expressing interneurons. Notably, the mGAD65 promoter transduced chandelier cells more efficiently than the mDlx enhancer and robustly labeled their synaptic boutons, called the cartridge, targeting the axon initial segments of excitatory pyramidal neurons. To test the ability of the mGAD65 promoter to express a functional molecule, we virally expressed G-CaMP, a fluorescent Ca2+ indicator, in the motor cortex, and this enabled us to monitor spontaneous and drug-induced Ca2+ activity in GABAergic inhibitory neurons. These results suggest that the mGAD65 promoter is useful for AAV-mediated targeting and manipulation of GABAergic neurons with the dominance of cortical PV-expressing neurons, including chandelier cells.


Assuntos
Encéfalo/metabolismo , Dependovirus/metabolismo , Neurônios GABAérgicos/metabolismo , Plasmídeos/metabolismo , Transdução Genética , Animais , Cálcio/metabolismo , Glutamato Descarboxilase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Injeções Intravenosas , Interneurônios/metabolismo , Camundongos Endogâmicos C57BL , Córtex Motor/metabolismo , Neurônios/metabolismo , Parvalbuminas/metabolismo , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA