Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.541
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Conscious Cogn ; 121: 103694, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38657474

RESUMO

Mental rotation tasks are frequently used as standard measures of mental imagery. However, aphantasia research has brought such use into question. Here, we assessed a large group of individuals who lack visual imagery (aphantasia) on two mental rotation tasks: a three-dimensional block-shape, and a human manikin rotation task. In both tasks, those with aphantasia had slower, but more accurate responses than controls. Both groups demonstrated classic linear increases in response time and error-rate as functions of angular disparity. In the three-dimensional block-shape rotation task, a within-group speed-accuracy trade-off was found in controls, whereas faster individuals in the aphantasia group were also more accurate. Control participants generally favoured using object-based mental rotation strategies, whereas those with aphantasia favoured analytic strategies. These results suggest that visual imagery is not crucial for successful performance in classical mental rotation tasks, as alternative strategies can be effectively utilised in the absence of holistic mental representations.


Assuntos
Imaginação , Humanos , Imaginação/fisiologia , Masculino , Adulto , Feminino , Desempenho Psicomotor/fisiologia , Adulto Jovem , Percepção Espacial/fisiologia , Rotação , Pessoa de Meia-Idade , Reconhecimento Visual de Modelos/fisiologia , Tempo de Reação/fisiologia
2.
Cogn Affect Behav Neurosci ; 24(3): 527-551, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38351398

RESUMO

Over the past two decades, scientific interest in understanding the relationship between mindfulness and cognition has accelerated. However, despite considerable investigative efforts, pervasive methodological inconsistencies within the literature preclude a thorough understanding of whether or how mindfulness influences core cognitive functions. The purpose of the current study is to provide an initial "proof-of-concept" demonstration of a new research strategy and methodological approach designed to address previous limitations. Specifically, we implemented a novel fully within-subject state induction protocol to elucidate the neurobehavioral influence of discrete mindfulness states-focused attention (FA) and open monitoring (OM), compared against an active control-on well-established behavioral and ERP indices of executive attention and error monitoring assessed during the Eriksen flanker task. Bayesian mixed modeling was used to test preregistered hypotheses pertaining to FA and OM effects on flanker interference, the stimulus-locked P3, and the response-locked ERN and Pe. Results yielded strong but unexpected evidence that OM selectively produced a more cautious and intentional response style, characterized by higher accuracy, slower RTs, and reduced P3 amplitude. Follow-up exploratory analyses revealed that trait mindfulness moderated the influence of OM, such that individuals with greater trait mindfulness responded more cautiously and exhibited higher trial accuracy and smaller P3s. Neither FA nor OM modulated the ERN or Pe. Taken together, our findings support the promise of our approach, demonstrating that theoretically distinct mindfulness states are functionally dissociable among mindfulness-naive participants and that interactive variability associated with different operational facets of mindfulness (i.e., state vs. trait) can be modeled directly.


Assuntos
Atenção , Eletroencefalografia , Potenciais Evocados , Função Executiva , Atenção Plena , Humanos , Atenção Plena/métodos , Atenção/fisiologia , Masculino , Feminino , Adulto Jovem , Adulto , Função Executiva/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Cognição/fisiologia , Tempo de Reação/fisiologia , Teorema de Bayes , Adolescente , Encéfalo/fisiologia , Testes Neuropsicológicos , Desempenho Psicomotor/fisiologia
3.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-37991276

RESUMO

Despite the prevalence of visuomotor transformations in our motor skills, their mechanisms remain incompletely understood, especially when imagery actions are considered such as mentally picking up a cup or pressing a button. Here, we used a stimulus-response task to directly compare the visuomotor transformation underlying overt and imagined button presses. Electroencephalographic activity was recorded while participants responded to highlights of the target button while ignoring the second, non-target button. Movement-related potentials (MRPs) and event-related desynchronization occurred for both overt movements and motor imagery (MI), with responses present even for non-target stimuli. Consistent with the activity accumulation model where visual stimuli are evaluated and transformed into the eventual motor response, the timing of MRPs matched the response time on individual trials. Activity-accumulation patterns were observed for MI, as well. Yet, unlike overt movements, MI-related MRPs were not lateralized, which appears to be a neural marker for the distinction between generating a mental image and transforming it into an overt action. Top-down response strategies governing this hemispheric specificity should be accounted for in future research on MI, including basic studies and medical practice.


Assuntos
Córtex Motor , Desempenho Psicomotor , Humanos , Desempenho Psicomotor/fisiologia , Córtex Motor/fisiologia , Imaginação/fisiologia , Potenciais Evocados/fisiologia , Eletroencefalografia/métodos , Movimento/fisiologia , Potencial Evocado Motor/fisiologia
4.
Psychophysiology ; 60(12): e14401, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37515410

RESUMO

Previous research has investigated the degree of congruency in gaze metrics between action execution (AE) and motor imagery (MI) for similar manual tasks. Although eye movement dynamics seem to be limited to relatively simple actions toward static objects, there is little evidence of how gaze parameters change during imagery as a function of more dynamic spatial and temporal task demands. This study examined the similarities and differences in eye movements during AE and MI for an interception task. Twenty-four students were asked to either mentally simulate or physically intercept a moving target on a computer display. Smooth pursuit, saccades, and response time were compared between the two conditions. The results show that MI was characterized by higher smooth pursuit gain and duration while no meaningful differences were found in the other parameters. The findings indicate that eye movements during imagery are not simply a duplicate of what happens during actual performance. Instead, eye movements appear to vary as a function of the interaction between visuomotor control strategies and task demands.


Assuntos
Movimentos Oculares , Acompanhamento Ocular Uniforme , Humanos , Movimentos Sacádicos , Tempo de Reação , Imagens, Psicoterapia , Desempenho Psicomotor/fisiologia
5.
J Neurophysiol ; 130(1): 104-116, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37283453

RESUMO

Pupillary responses have been reliably identified for cognitive and motor tasks, but less is known about their relation to mentally simulated movements (known as motor imagery). Previous work found pupil dilations during the execution of simple finger movements, where peak pupillary dilation scaled with the complexity of the finger movement and force required. Recently, pupillary dilations were reported during imagery of grasping and piano playing. Here, we examined whether pupillary responses are sensitive to the dynamics of the underlying motor task for both executed and imagined reach movements. Participants reached or imagined reaching to one of three targets placed at different distances from a start position. Both executed and imagined movement times scaled with target distance, and they were highly correlated, confirming previous work and suggesting that participants did imagine the respective movement. Increased pupillary dilation was evident during motor execution compared with rest, with stronger dilations for larger movements. Pupil dilations also occurred during motor imagery, however, they were generally weaker than those during motor execution and they were not influenced by imagined movement distance. Instead, dilations during motor imagery resembled pupil responses obtained during a nonmotor imagery task (imagining a previously viewed painting). Our results demonstrate that pupillary responses can reliably capture the dynamics of an executed goal-directed reaching movement, but suggest that pupillary responses during imagined reaching movements reflect general cognitive processes, rather than motor-specific components related to the simulated dynamics of the sensorimotor system.NEW & NOTEWORTHY Pupil size is influenced by the performance of cognitive and motor tasks. Here, we demonstrate that pupil size increases not only during execution but also during mental simulation of goal-directed reaching movements. However, pupil dilations scale with movement amplitude of executed but not of imagined movement, whereas they are similar during motor imagery and a nonmotor imagery task.


Assuntos
Imaginação , Pupila , Humanos , Pupila/fisiologia , Imaginação/fisiologia , Movimento/fisiologia , Tempo , Extremidade Superior , Desempenho Psicomotor/fisiologia
6.
Hum Mov Sci ; 90: 103101, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37247540

RESUMO

While motor imagery (MI) is thought to be 'functionally equivalent' with motor execution (ME), the equivalence of feedforward and feedback mechanisms between the two modalities is unexplored. Here, we tested the equivalence of these mechanisms between MI and ME via two experiments designed to probe the role of somatosensory processing (Exp 1), and cognitive processing (Exp 2). All participants were engaged in a previously established force-matching task adapted for MI. A reference force was applied (on scale of 1-10, with higher numbers indicative of greater force) to one index finger while participants matched the force with their opposite index finger via ME or MI (control conditions). Participants then rated the force on the same scale of 1-10. Exp 1: Participants (N = 27) performed the task with tactile stimulation (ME+TAC, MI+TAC) in addition to control conditions. Exp 2: Participants (N = 26) performed the task in dual-task conditions (ME+COG, MI+COG) in addition to control conditions. Results indicate that (Exp 1) tactile stimulation impaired performance in ME but not MI. Dual-task conditions (Exp 2) were not shown to impair performance in either practice modality. Findings suggest that while somatosensory processing is critical for ME, it is not for MI. Overall we indicate a functional equivalence between feedforward/back mechanisms in MI and ME may not exist.


Assuntos
Imaginação , Desempenho Psicomotor , Humanos , Desempenho Psicomotor/fisiologia , Imaginação/fisiologia , Imagens, Psicoterapia , Dedos/fisiologia , Retroalimentação
7.
Sci Rep ; 13(1): 2609, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36788349

RESUMO

The systematic observation and imagination of actions promotes acquisition of motor skills. Furthermore, studies demonstrated that early sleep after practice enhances motor learning through an offline stabilization process. Here, we investigated behavioral effects and neurodynamical correlates of early sleep after action observation and motor imagery training (AO + MI-training) on motor learning in terms of manual dexterity. Forty-five healthy participants were randomized into three groups receiving a 3 week intervention consisting of AO + MI-training immediately before sleeping or AO + MI-training at least 12 h before sleeping or a control stimulation. AO + MI-training implied the observation and motor imagery of transitive manual dexterity tasks, whereas the control stimulation consisted of landscape video-clips observation. Manual dexterity was assessed using functional tests, kinematic and neurophysiological outcomes before and after the training and at 1-month follow-up. AO + MI-training improved manual dexterity, but subjects performing AO + MI-training followed by early sleep had significantly larger improvements than those undergoing the same training at least 12 h before sleeping. Behavioral findings were supported by neurodynamical correlates during motor performance and additional sleep-dependent benefits were also detected at 1 month follow-up. These findings introduce a new approach to enhance the acquisition of new motor skills or facilitate recovery in patients with motor impairments.


Assuntos
Imagens, Psicoterapia , Imaginação , Humanos , Imaginação/fisiologia , Atividade Motora/fisiologia , Desempenho Psicomotor/fisiologia , Sono
8.
Neurosci Res ; 191: 57-65, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36638915

RESUMO

Motor simulation theory proposes a functional equivalence between motor execution (ME) and its simulation, suggesting that motor imagery (MI) is the self-intentioned simulation of one's actions. This study used functional magnetic resonance imaging (fMRI) with multivoxel pattern analysis to test whether the direction of hand movement is represented with a similar neural code between ME and MI. In our study, participants used their right hand to move an on-screen cursor in the left-right direction with a joystick or imagined the same movement without execution. The results indicated that the left-right direction as well as their modality (ME or MI) could be decoded significantly above the chance level in the presupplementary motor area (pre-SMA) and primary visual cortex (V1). Next, we used activation patterns of ME as inputs to the decoder to predict hand move directions in MI sessions and found a significantly higher-than-chance accuracy only in V1, not in pre-SMA. Moreover, the representational similarity analysis showed similar activation patterns for the same directions between ME and MI in V1 but not in pre-SMA. This study's finding indicates distinct spatial activation patterns for movement directions between ME and MI in pre-SMA.


Assuntos
Córtex Motor , Humanos , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Imaginação/fisiologia , Mapeamento Encefálico/métodos , Imagens, Psicoterapia , Movimento/fisiologia , Mãos/fisiologia , Imageamento por Ressonância Magnética/métodos , Desempenho Psicomotor/fisiologia
9.
J Speech Lang Hear Res ; 66(2): 461-474, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36634237

RESUMO

PURPOSE: The purpose of this study was to examine a potential increased cognitive processing bottleneck within Parkinson disease (PD) by extending a previous overlapping task methodology. Additionally, this study extends previous overlapping task methodology in PD to examine the influence of modality (vocal vs. manual) on response delays in overlapping tasks in PD. METHOD: This study used the psychological refractory period (PRP) paradigm (overlapping-task paradigm) to study processing limitations as participants complete two tasks that increasingly overlap in time. Three levels of temporal overlap of tasks were utilized to vary cognitive demands on manual and vocal response time tasks. Ten participants with PD (PwPD) and 12 participants without PD were included in this study. RESULTS: Participants with PD demonstrated response time delays across temporal overlap conditions (likely indicating motor deficits) along with a larger increase in response delays in the most overlapped, cognitively taxing condition (likely indicating longer central processing bottleneck). Additionally, modality did not influence response times differently in overlapping task conditions or within participant groups. CONCLUSION: An extension of previous overlapping task methodologies within a complex task was successful in demonstrating an increased central processing deficit across manual and vocal response delays in PD, regardless of modality of response.


Assuntos
Doença de Parkinson , Período Refratário Psicológico , Humanos , Período Refratário Psicológico/fisiologia , Desempenho Psicomotor/fisiologia , Doença de Parkinson/complicações , Tempo de Reação/fisiologia , Percepção Auditiva/fisiologia
10.
J Sport Rehabil ; 31(8): 1023-1030, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35728805

RESUMO

CONTEXT: An Optimizing Performance through Intrinsic Motivation and Attention for Learning theory-based motor learning intervention delivering autonomy support and enhanced expectancies (EE) shows promise for reducing cognitive-motor dual-task costs, or the relative difference in primary task performance when completed with and without a secondary cognitive task, that facilitate adaptive injury-resistant movement response. The current pilot study sought to determine the effectiveness of an autonomy support versus an EE-enhanced virtual reality motor learning intervention to reduce dual-task costs during single-leg balance. DESIGN: Within-subjects 3 × 3 trial. METHODS: Twenty-one male and 24 female participants, between the ages of 18 and 30 years, with no history of concussion, vertigo, lower-extremity surgery, or lower-extremity injuries the previous 6 months, were recruited for training sessions on consecutive days. Training consisted of 5 × 8 single-leg squats on each leg, during which all participants mimicked an avatar through virtual reality goggles. The autonomy support group chose an avatar color, and the EE group received positive kinematic biofeedback. Baseline, immediate, and delayed retention testing consisted of single-leg balancing under single- and dual-task conditions. Mixed-model analysis of variances compared dual-task costs for center of pressure velocity and SD between groups on each limb. RESULTS: On the right side, dual-task costs for anterior-posterior center of pressure mean and SD were reduced in the EE group (mean Δ = -51.40, Cohen d = 0.80 and SD Δ = -66.00%, Cohen d = 0.88) compared with the control group (mean Δ = -22.09, Cohen d = 0.33 and SD Δ = -36.10%, Cohen d = 0.68) from baseline to immediate retention. CONCLUSIONS: These findings indicate that EE strategies that can be easily implemented in a clinic or sport setting may be superior to task-irrelevant AS approaches for influencing injury-resistant movement adaptations.


Assuntos
Biorretroalimentação Psicológica , Desempenho Psicomotor , Humanos , Masculino , Feminino , Recém-Nascido , Desempenho Psicomotor/fisiologia , Estudos de Viabilidade , Projetos Piloto , Análise e Desempenho de Tarefas
11.
Sci Rep ; 12(1): 2947, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194088

RESUMO

Many studies have associated mental imagery with motor control mechanisms by showing mutually active brain areas and functions, as well as similar temporal patterns of imagining and executing the same motor actions. One of the main conjectured mutual mechanisms is the Cerebellar forward-model, commonly believed to generate sensory predictions as part of both motor control and mental imagery processes. Nevertheless, trials to associate one's overall individual mental and motor capacities have shown only mild and inconsistent correlations, hence challenging the mutual mechanism assumption. We hypothesized that one cause to this inconsistency is the forward-model's dominance in the motor-planning stage only when adapting to novel sensorimotor environments, while the inverse-model is gradually taking the lead along the adaptation, and therefore biasing most attempts to measure motor-mental overlapping functions and correlate these measurements under regular circumstances. Our current study aimed to tackle and explore this gap using immersive virtual embodiment, by applying an experience of a fundamental sensorimotor conflict, thereby manipulating the sensory prediction mechanism, and presumably forcing an increased involvement of the forward-model in the motor planning stage throughout the experiment. In the study, two groups of subjects (n = 48) performed mental and manual rotation within an immersive, motion-captured, virtual reality environment, while the sensorimotor dynamics of only the test group were altered by physical-virtual speed re-mapping making the virtual hand move twice as fast as the physical hand controlling it. Individual mental imagery capacities were assessed before and after three blocks of manual-rotation, where motor planning durations were measured as the time until motion onset. The results show that virtual sensorimotor alteration extremely increases the correlation of mental imagery and motor planning (r = 0.9, p < .0001) and leads to higher mental imagery performance improvement following the physical blocks. We particularly show that virtual embodiment manipulation affects the motor planning stage to change and functionally overlap with imagery mechanisms, rather than the other way around, which supports our conjecture of an increased sensory-prediction forward-model involvement. Our results shed new light on the embodied nature of mental imagery, support the view of the predictive forward-model as a key mechanism mutually underlying motor control and imagery, and suggest virtual sensorimotor alteration as a novel methodology to increase physical-mental convergence. These findings also suggest the applicability of using existing motion-tracked virtual environments for continuous cognitive evaluation and treatment, through kinematic analysis of ongoing natural motor behaviors.


Assuntos
Encéfalo/fisiologia , Imaginação/fisiologia , Desempenho Psicomotor/fisiologia , Realidade Virtual , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
12.
Elife ; 102021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34874267

RESUMO

Dominant neuroanatomical models hold that humans regulate their movements via loop-like cortico-subcortical networks, which include the subthalamic nucleus (STN), motor thalamus, and sensorimotor cortex (SMC). Inhibitory commands across these networks are purportedly sent via transient, burst-like signals in the ß frequency (15-29 Hz). However, since human depth-recording studies are typically limited to one recording site, direct evidence for this proposition is hitherto lacking. Here, we present simultaneous multi-site recordings from SMC and either STN or motor thalamus in humans performing the stop-signal task. In line with their purported function as inhibitory signals, subcortical ß-bursts were increased on successful stop-trials. STN bursts in particular were followed within 50 ms by increased ß-bursting over SMC. Moreover, between-site comparisons (including in a patient with simultaneous recordings from SMC, thalamus, and STN) confirmed that ß-bursts in STN temporally precede thalamic ß-bursts. This highly unique set of recordings provides empirical evidence for the role of ß-bursts in conveying inhibitory commands along long-proposed cortico-subcortical networks underlying movement regulation in humans.


Assuntos
Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Córtex Sensório-Motor/fisiologia , Núcleo Subtalâmico/fisiologia , Tálamo/fisiologia , Idoso , Estimulação Encefálica Profunda , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/fisiopatologia , Tempo de Reação
13.
Neuroimage ; 245: 118681, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34728243

RESUMO

Ageing disrupts the finely tuned excitation/inhibition balance (E:I) across cortex via a natural decline in inhibitory tone (γ-amino butyric acid, GABA), causing functional decrements. However, in young adults, experimentally lowering GABA in sensorimotor cortex enhances a specific domain of sensorimotor function: adaptation memory. Here, we tested the hypothesis that as sensorimotor cortical GABA declines naturally with age, adaptation memory would increase, and the former would explain the latter. Results confirmed this prediction. To probe causality, we used brain stimulation to further lower sensorimotor cortical GABA during adaptation. Across individuals, how stimulation changed memory depended on sensorimotor cortical E:I. In those with low E:I, stimulation increased memory; in those with high E:I stimulation reduced memory. Thus, we identified a form of motor memory that is naturally strengthened by age, depends causally on sensorimotor cortex neurochemistry, and may be a potent target for motor skill preservation strategies in healthy ageing and neurorehabilitation.


Assuntos
Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Córtex Sensório-Motor/fisiologia , Adaptação Fisiológica , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/fisiologia , Potencial Evocado Motor , Humanos , Inibição Psicológica , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Destreza Motora , Inibição Neural/fisiologia , Estimulação Magnética Transcraniana , Ácido gama-Aminobutírico
14.
J Neurosci ; 41(43): 8917-8927, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34497152

RESUMO

Previous studies have shown that self-generated stimuli in auditory, visual, and somatosensory domains are attenuated, producing decreased behavioral and neural responses compared with the same stimuli that are externally generated. Yet, whether such attenuation also occurs for higher-level cognitive functions beyond sensorimotor processing remains unknown. In this study, we assessed whether cognitive functions such as numerosity estimations are subject to attenuation in 56 healthy participants (32 women). We designed a task allowing the controlled comparison of numerosity estimations for self-generated (active condition) and externally generated (passive condition) words. Our behavioral results showed a larger underestimation of self-generated compared with externally generated words, suggesting that numerosity estimations for self-generated words are attenuated. Moreover, the linear relationship between the reported and actual number of words was stronger for self-generated words, although the ability to track errors about numerosity estimations was similar across conditions. Neuroimaging results revealed that numerosity underestimation involved increased functional connectivity between the right intraparietal sulcus and an extended network (bilateral supplementary motor area, left inferior parietal lobule, and left superior temporal gyrus) when estimating the number of self-generated versus externally generated words. We interpret our results in light of two models of attenuation and discuss their perceptual versus cognitive origins.SIGNIFICANCE STATEMENT We perceive sensory events as less intense when they are self-generated compared with when they are externally generated. This phenomenon, called attenuation, enables us to distinguish sensory events from self and external origins. Here, we designed a novel fMRI paradigm to assess whether cognitive processes such as numerosity estimations are also subject to attenuation. When asking participants to estimate the number of words they had generated or passively heard, we found bigger underestimation in the former case, providing behavioral evidence of attenuation. Attenuation was associated with increased functional connectivity of the intraparietal sulcus, a region involved in numerosity processing. Together, our results indicate that the attenuation of self-generated stimuli is not limited to sensory consequences but is also impact cognitive processes such as numerosity estimations.


Assuntos
Estimulação Acústica/métodos , Cognição/fisiologia , Rede Nervosa/fisiologia , Lobo Parietal/fisiologia , Desempenho Psicomotor/fisiologia , Fala/fisiologia , Adolescente , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Rede Nervosa/diagnóstico por imagem , Lobo Parietal/diagnóstico por imagem , Projetos Piloto , Adulto Jovem
15.
Elife ; 102021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34505576

RESUMO

The strength of cortical connectivity to the striatum influences the balance between behavioral variability and stability. Learning to consistently produce a skilled action requires plasticity in corticostriatal connectivity associated with repeated training of the action. However, it remains unknown whether such corticostriatal plasticity occurs during training itself or 'offline' during time away from training, such as sleep. Here, we monitor the corticostriatal network throughout long-term skill learning in rats and find that non-rapid-eye-movement (NREM) sleep is a relevant period for corticostriatal plasticity. We first show that the offline activation of striatal NMDA receptors is required for skill learning. We then show that corticostriatal functional connectivity increases offline, coupled to emerging consistent skilled movements, and coupled cross-area neural dynamics. We then identify NREM sleep spindles as uniquely poised to mediate corticostriatal plasticity, through interactions with slow oscillations. Our results provide evidence that sleep shapes cross-area coupling required for skill learning.


Assuntos
Corpo Estriado/fisiologia , Aprendizagem/fisiologia , Córtex Motor/fisiologia , Destreza Motora/fisiologia , Sono de Ondas Lentas/fisiologia , Animais , Eletrodos Implantados , Masculino , Plasticidade Neuronal/fisiologia , Desempenho Psicomotor/fisiologia , Ratos , Ratos Long-Evans , Silício , Fatores de Tempo
16.
Sci Rep ; 11(1): 17274, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446791

RESUMO

Understanding and improving memory are vital to enhance human life. Theta rhythm is associated with memory consolidation and coding, but the trainability and effects on long-term memory of theta rhythm are unknown. This study investigated the ability to improve long-term memory using a neurofeedback (NFB) technique reflecting the theta/low-beta power ratio on an electroencephalogram (EEG). Our study consisted of three stages. First, the long-term memory of participants was measured. In the second stage, the participants in the NFB group received 3 days of theta/low-beta NFB training. In the third stage, the long-term memory was measured again. The NFB group had better episodic and semantic long-term memory than the control group and significant differences in brain activity between episodic and semantic memory during the recall tests were revealed. These findings suggest that it is possible to improve episodic and semantic long-term memory abilities through theta/low-beta NFB training.


Assuntos
Ritmo beta/fisiologia , Memória de Longo Prazo/fisiologia , Neurorretroalimentação/métodos , Desempenho Psicomotor/fisiologia , Semântica , Ritmo Teta/fisiologia , Adolescente , Adulto , Análise de Variância , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Memória de Curto Prazo/fisiologia , Avaliação de Resultados em Cuidados de Saúde/métodos , Avaliação de Resultados em Cuidados de Saúde/estatística & dados numéricos , Adulto Jovem
17.
J Chem Neuroanat ; 117: 102010, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34343596

RESUMO

Following severe Spinal Cord Injury (SCI), regeneration is inadequate, and functional recovery is incomplete. The occurrence of oxidative stress and the spread of inflammation play a crucial role in the failure to regenerate the injury site. In this way, we explored the neuroprotective effects of PhotoBioModulation (PBM), as the main factor in controlling these two destructive factors, on SCI. fifty-four female adult Wistar rats divided into three groups: sham group (just eliminate vertebra lamina, n = 18), SCI group (n = 18), and SCI-PBM group which exposed to PBM (150 MW, 50 min/day, 14 days, n = 18). After SCI induction at the endpoint of the study (the end of 8 week), we took tissue samples from the spinal cord for evaluating the biochemical profiles that include Catalase (CAT), Malondialdehyde (MDA), Superoxide Dismutase (SOD), Glutathione Peroxidase (GSH-PX) levels, immunohistochemistry for Caspase-3, gene expressions of Interleukin-1ß (IL-1ß), Tumor Necrosis Factor-alpha (TNF-α), and Interleukin (IL-10). Also, stereological assessments evaluated the spinal cord, central cavity volumes, and numerical density of the glial and neural cells in the traumatic area. The open-field test, rotarod test, Narrow Beam Test (NBT), Electromyography recording (EMG) test and the Basso-Beattie-Bresnehan (BBB) evaluated the neurological functions. Our results showed that the stereological parameters, biochemical profiles (except MDA), and neurological functions were markedly greater in the SCI-PBM group in comparison with SCI group. The transcript for the IL-10 gene was seriously upregulated in the SCI-PBM group compared to the SCI group. This is while gene expression of TNF-α and IL-1ß, also density of apoptosis cells in Caspase-3 evaluation decreased significantly more in the SCI-PBM group compared to the SCI group. Overall, using PBM treatment immediately after SCI has neuroprotective effects by controlling oxidative stress and inflammation and preventing the spread of damage.


Assuntos
Interleucina-10/biossíntese , Terapia com Luz de Baixa Intensidade/métodos , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/radioterapia , Animais , Feminino , Expressão Gênica , Interleucina-10/genética , Locomoção/fisiologia , Desempenho Psicomotor/fisiologia , Ratos , Ratos Wistar , Traumatismos da Medula Espinal/genética , Vértebras Torácicas
18.
Bull Exp Biol Med ; 171(3): 379-383, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34292446

RESUMO

This article discusses the contribution of fMRI- and fMRI-EEG-neurofeedback into recovery of motor function in two subacute stroke patients during the early post-stroke period. Premotor and supplementary motor zones of the cortex were chosen as the targets of voluntary control. Patient 1 received 6 sessions of motor imagery-based fMRI neurofeedback of secondary motor areas activity and Patient 2 received a similar course with the addition of µ- and ß-EEG activity suppression. Both reduced the motor deficit severity, improved on the quality of life, and increased the C3/C4 coherence to other central leads within EEG µ-band. Patient 1 reliably increased the fMRI signal in target areas and improved on the strength and speed of hand movements. Patient 2 (fMRI-EEG) mastered the EEG activity regulation to a greater degree. The authors conclude that pure fMRI neurofeedback and bi-modal fMRI-EEG neurofeedback produce different clinical effects in motor rehabilitation, which confirms the prospect of the closed-loop stroke treatment.


Assuntos
Imagens, Psicoterapia/métodos , Córtex Motor/fisiopatologia , Neurorretroalimentação/métodos , Reabilitação do Acidente Vascular Cerebral/métodos , Acidente Vascular Cerebral/terapia , Terapia por Estimulação Elétrica/instrumentação , Terapia por Estimulação Elétrica/métodos , Eletroencefalografia , Força da Mão/fisiologia , Humanos , Imagens, Psicoterapia/instrumentação , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Neurorretroalimentação/instrumentação , Desempenho Psicomotor/fisiologia , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/fisiopatologia , Reabilitação do Acidente Vascular Cerebral/instrumentação , Estimulação Magnética Transcraniana/instrumentação , Estimulação Magnética Transcraniana/métodos , Resultado do Tratamento
19.
J Neurosci ; 41(33): 7029-7047, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34244359

RESUMO

Not all movements require the motor cortex for execution. Intriguingly, dependence on motor cortex of a given movement is not fixed, but instead can dynamically change over the course of long-term learning. For instance, rodent forelimb movements that initially require motor cortex can become independent of the motor cortex after an extended period of training. However, it remains unclear whether long-term neural changes rendering the motor cortex dispensable are a simple function of the training length. To address this issue, we trained mice (both male and female) to perform two distinct forelimb movements, forward versus downward reaches with a joystick, concomitantly over several weeks, and then compared the involvement of the motor cortex between the two movements. Most mice achieved different levels of motor performance between the two movements after long-term training. Of the two movements, the one that achieved higher trial-to-trial consistency (i.e., consistent-direction movement) was significantly less affected by inactivation of motor cortex than the other (i.e., variable-direction movement). Two-photon calcium imaging of motor cortical neurons revealed that the consistent-direction movement activates fewer neurons, producing weaker and less consistent population activity than the variable-direction movement. Together, the motor cortex was less engaged and less necessary for learned movements that achieved higher levels of consistency. Thus, the long-term reorganization of neural circuits that frees the motor cortex from the learned movement is not a mere function of training length. Rather, this reorganization tracks the level of motor performance that the animal achieves during training.SIGNIFICANCE STATEMENT Long-term training of a movement reshapes motor circuits, disengaging motor cortex potentially for automatized execution of the learned movement. Acquiring new motor skills often involves learning of multiple movements (e.g., forehand and backhand strokes when learning tennis), but different movements do not always improve at the same time nor reach the same level of proficiency. Here we showed that the involvement of motor cortex after long-term training differs between similar yet distinct movements that reached different levels of expertise. Motor cortex was less engaged and less necessary for the more proficient movement. Thus, disengagement of motor cortex is not a simple function of training time, but instead tracks the level of expertise of a learned movement.


Assuntos
Membro Anterior/fisiologia , Força da Mão/fisiologia , Aprendizagem/fisiologia , Memória de Longo Prazo/fisiologia , Córtex Motor/fisiologia , Desempenho Psicomotor/fisiologia , Potenciais de Ação , Animais , Feminino , Masculino , Camundongos , Destreza Motora/fisiologia , Neurônios/fisiologia , Dinâmica não Linear , Análise de Célula Única
20.
J Integr Neurosci ; 20(2): 367-374, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34258935

RESUMO

Transcranial direct stimulation, a non-invasive neurostimulation technique for modulating cortical excitability, and yoga have both respectively been shown to positively affect cognition. While preliminary research has shown that combined transcranial direct stimulation and meditation may have synergistic effects on mood and cognition, this was the first study to explore the combination of transcranial direct stimulation and yoga. Twenty-two healthy volunteers with a regular yoga practice were randomized to receive either active transcranial direct stimulation (anodal left, cathodal right dorsolateral prefrontal cortex) followed by yoga intervention or sham transcranial direct stimulation followed by yoga intervention a double-blind, cross-over design over two separate intervention days. Outcome measures included working memory performance, measured with the n-back task and mindfulness state, measured with the Toronto Mindfulness Scale, and were conducted offline, with pre-post assessments. Twenty participants completed both days of the intervention. Active transcranial direct stimulation did not have a significant effect on working memory or levels of mindfulness. There was a significant placebo effect, with better performance on day 1 of the intervention, irrespective of whether participants received active or sham transcranial direct stimulation. There was no significant difference between active versus sham transcranial direct stimulation concerning working memory performance and mindfulness, which may be accounted by the small sample size, the transient nature of the intervention, the fact that yoga and transcranial direct stimulation concerning were not conducted simultaneously, and the specific site of stimulation.


Assuntos
Memória de Curto Prazo/fisiologia , Atenção Plena , Desempenho Psicomotor/fisiologia , Estimulação Transcraniana por Corrente Contínua , Yoga , Adulto , Terapia Combinada , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Masculino , Avaliação de Resultados em Cuidados de Saúde , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA