Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.046
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(5): e0026824, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38619268

RESUMO

A new variant of Methanothermobacter wolfeii was isolated from an anaerobic digester using enrichment cultivation in anaerobic conditions. The new isolate was taxonomically identified via 16S rRNA gene sequencing and tagged as M. wolfeii BSEL. The whole genome of the new variant was sequenced and de novo assembled. Genomic variations between the BSEL strain and the type strain were discovered, suggesting evolutionary adaptations of the BSEL strain that conferred advantages while growing under a low concentration of nutrients. M. wolfeii BSEL displayed the highest specific growth rate ever reported for the wolfeii species (0.27 ± 0.03 h-1) using carbon dioxide (CO2) as unique carbon source and hydrogen (H2) as electron donor. M. wolfeii BSEL grew at this rate in an environment with ammonium (NH4+) as sole nitrogen source. The minerals content required to cultivate the BSEL strain was relatively low and resembled the ionic background of tap water without mineral supplements. Optimum growth rate for the new isolate was observed at 64°C and pH 8.3. In this work, it was shown that wastewater from a wastewater treatment facility can be used as a low-cost alternative medium to cultivate M. wolfeii BSEL. Continuous gas fermentation fed with a synthetic biogas mimic along with H2 in a bubble column bioreactor using M. wolfeii BSEL as biocatalyst resulted in a CO2 conversion efficiency of 97% and a final methane (CH4) titer of 98.5%v, demonstrating the ability of the new strain for upgrading biogas to renewable natural gas.IMPORTANCEAs a methanogenic archaeon, Methanothermobacter wolfeii uses CO2 as electron acceptor, producing CH4 as final product. The metabolism of M. wolfeii can be harnessed to capture CO2 from industrial emissions, besides producing a drop-in renewable biofuel to substitute fossil natural gas. If used as biocatalyst in new-generation CO2 sequestration processes, M. wolfeii has the potential to accelerate the decarbonization of the energy generation sector, which is the biggest contributor of CO2 emissions worldwide. Nonetheless, the development of CO2 sequestration archaeal-based biotechnology is still limited by an uncertainty in the requirements to cultivate methanogenic archaea and the unknown longevity of archaeal cultures. In this study, we report the adaptation, isolation, and phenotypic characterization of a novel variant of M. wolfeii, which is capable of maximum growth with minimal nutrients input. Our findings demonstrate the potential of this variant for the production of renewable natural gas, paving the way for the development of more efficient and sustainable CO2 sequestration processes.


Assuntos
Dióxido de Carbono , Methanobacteriaceae , Methanobacteriaceae/genética , Methanobacteriaceae/metabolismo , Methanobacteriaceae/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , RNA Ribossômico 16S/genética , Genoma Arqueal , Filogenia , Fenótipo , Águas Residuárias/microbiologia , Metano/metabolismo , Nutrientes/metabolismo
2.
Lasers Med Sci ; 39(1): 107, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635085

RESUMO

To investigate the in vivo and in situ effect of different types of lasers in prevention of enamel demineralization in high caries risk cases (around orthodontic brackets, around restoration and in caries susceptible pits and fissures). PubMed was searched using the following keyword sequence; (Laser therapy OR laser irradiation OR laser application) AND (enamel caries prevention OR enamel demineralization OR enamel remineralization OR early enamel caries OR early-enamel caries OR enamel resistance OR enamel decalcification OR white spot lesions WSLs OR incipient lesion OR enamel decay OR enamel Dissolution OR enamel microhardness) AND (clinical trial OR Randomized clinical trial OR In situ study). The latest literature search was ended by "30 January 2023". PubMed was used as a primary data base for study selection. Scopus, EBSCO, and Google scholar are checked in our study after results of systematic search on PubMed. Only duplicates were found. Two meta-analyses were carried out. The first, clinical meta-analysis on incidence of white spot lesions (WSLs) following CO2 laser irradiation of enamel. The second meta-analysis on ex-vivo/in situ effect of CO2 laser on microhardness of enamel. In each meta-analysis three studies were included. Risk of bias was assessed. The search identified eight studies (four ex-vivo and four clinical trials). Regarding the clinical meta-analysis, the overall standardized mean difference was 0.21 [ 95% confidence interval (CI): 0.15-0.30, p < 0.00001]. This indicates that the incidence of new WSLs in patients who received low power CO2 laser treatment was highly significantly lower than placebo groups. The heterogeneity was considerable (I2 = 71%). In the second meta-analysis, the overall standardized mean difference was 49.55 [ 95% confidence interval (CI): 37.74, 61.37, p < 0.00001]. This indicates that microhardness of enamel receiving low power (0.4-5 W) CO2 laser irradiation is highly significantly lower than control untreated enamel. The heterogeneity was substantial (I2 = 48%). Within the limitations of this study, Low level laser therapy concept with CO2 laser seems to be effective in preventing enamel caries.Prospero registration number: CRD42023437379.


Assuntos
Cárie Dentária , Terapia com Luz de Baixa Intensidade , Humanos , Dióxido de Carbono , Suscetibilidade à Cárie Dentária , Lasers , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
Ecol Appl ; 34(3): e2967, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38469663

RESUMO

The future ecosystem carbon cycle has important implications for biosphere-climate feedback. The magnitude of future plant growth and carbon accumulation depends on plant strategies for nutrient uptake under the stresses of nitrogen (N) versus phosphorus (P) limitations. Two archetypal theories have been widely acknowledged in the literature to represent N and P limitations on ecosystem processes: Liebig's Law of the Minimum (LLM) and the Multiple Element Limitation (MEL) approach. LLM states that the more limiting nutrient controls plant growth, and commonly leads to predictions of dramatically dampened ecosystem carbon accumulation over the 21st century. Conversely, the MEL approach recognizes that plants possess multiple pathways to coordinate N and P availability and invest resources to alleviate N or P limitation. We implemented these two contrasting approaches in the E3SM model, and compiled 98 in situ forest N or P fertilization experiments to evaluate how terrestrial ecosystems will respond to N and P limitations. We find that MEL better captured the observed plant responses to nutrient perturbations globally, compared with LLM. Furthermore, LLM and MEL diverged dramatically in responses to elevated CO2 concentrations, leading to a two-fold difference in CO2 fertilization effects on Net Primary Productivity by the end of the 21st century. The larger CO2 fertilization effects indicated by MEL mainly resulted from plant mediation on N and P resource supplies through N2 fixation and phosphatase activities. This analysis provides quantitative evidence of how different N and P limitation strategies can diversely affect future carbon and nutrient dynamics.


Assuntos
Dióxido de Carbono , Ecossistema , Dióxido de Carbono/metabolismo , Nitrogênio/metabolismo , Fósforo/análise , Plantas , Carbono/metabolismo , Solo
4.
PLoS One ; 19(3): e0297350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512947

RESUMO

The question of whether productive capacities and institutional quality facilitate or impede progress towards sustainable development is a significant issue that has not been extensively explored in prior literature. Despite their importance, these variables are often overlooked in the literature on sustainable development, yet they play a crucial role in enabling efforts to achieve sustainable development. In this study, we examined how productive capacities affect sustainable development, with a moderating impact of institutional quality. The sample was comprised of 44 Belt and Road Initiative (BRI) economies, covering the period from 2000 to 2018. Using a two-step system GMM, we found that the relation between productive capacities and sustainable development is dynamic, positive, and significant. Additionally, institutional quality played a moderating role in achieving sustainable development, especially among regionally connected countries. Our findings suggest that sustainable development is strongly linked to a country's productive capacities. Therefore, improving productive capacities and institutional quality may lead to long-term development and sustainability. These results are valuable to academia as they provide new thought regarding the influence of productive capacities and institutional quality on sustainable development, and policymakers may benefit from the suggestions presented regarding productive capacities and institutional quality.


Assuntos
Impulso (Psicologia) , Desenvolvimento Sustentável , Instalações de Saúde , Sugestão , Desenvolvimento Econômico , Dióxido de Carbono
5.
Environ Sci Pollut Res Int ; 31(17): 25706-25720, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483716

RESUMO

The existing scholarly discourse surrounding the energy transition has long operated on the assumption of perfect displacement of non-renewable energy. However, an evolving set of studies highlights an intricate web of inefficiencies and complexities that prevent the perfect displacement of fossil fuel energy with renewable energy production. Since this could carry serious implications for the environmental targets of several economies, it is crucial to accurately and continuously measure the actual extent of fossil fuel displacement. Within this framework, this study empirically investigates the extent of non-renewable energy displacement by renewable energy for a balanced panel of seven Asia-Pacific (APAC) countries between 1989 and 2015. The outcome function also controls for globalisation, real GDP per capita, and crude oil prices. After implementing the necessary diagnostics, the panel cointegration establishes a significant long-run relationship among the selected variables. The PMG-ARDL estimation indicates that renewable energy production and globalisation significantly reduce the fossil fuel energy production, whereas real GDP per capita and crude oil prices induce it positively. However, the coefficient of renewable energy production is only - 0.39, indicating that more than 2.5 units of renewable electricity are necessary to displace a unit of non-renewable energy. As such, this study concludes that the current energy transition in Asia-Pacific region is not perfect. These results are robust to the usage of the FGLS estimation technique. The study suggests the adoption of a new energy transition that allows greater displacement of fossil fuel energy as well as gradual reduction in overall energy use.


Assuntos
Desenvolvimento Econômico , Petróleo , Dióxido de Carbono/análise , Ásia , Energia Renovável , Combustíveis Fósseis
6.
Chemosphere ; 354: 141700, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490615

RESUMO

Wastewater treatment plants play a crucial role in water security and sanitation, ensuring ecosystems balance and avoiding significant negative effects on humans and environment. However, they determine also negative pressures, including greenhouse gas and odourous emissions, which should be minimized to mitigate climate changes besides avoiding complaints. The research has been focused on the validation of an innovative integrated biological system for the sustainable treatment of complex gaseous emissions from wastewater treatment plants. The proposed system consists of a moving bed biofilm reactor coupled with an algal photobioreactor, with the dual objective of: i) reducing the inlet concentration of the odourous contaminants (in this case, hydrogen sulphide, toluene and p-xylene); ii) capturing and converting the carbon dioxide emissions produced by the degradation process into exploitable algal biomass. The first reactor promoted the degradation of chemical compounds up to 99.57% for an inlet load (IL) of 22.97 g m-3 d-1 while the second allowed the capture of the CO2 resulting from the degradation of gaseous compounds, with biofixation rate up to 81.55%. The absorbed CO2 was converted in valuable feedstocks, with a maximum algal biomass productivity in aPBR of 0.22 g L-1 d-1. Dairy wastewater has been used as alternative nutrient source for both reactors, with a view of reusing wastewater while cultivating biomass, framing the proposed technology in a context of a biorefinery within a circular economy perspective. The biomass produced in the algal photobioreactor was indeed characterized by a high lipid content, with a maximum percentage of lipids per dry weight biomass of 35%. The biomass can therefore be exploited for the production of alternative and clean energy carrier. The proposed biotechnology represents an effective tool for shifiting the conventional plants in carbon neutral platform for implementing principles of ecological transition while achieving high levels of environmental protection.


Assuntos
Microalgas , Purificação da Água , Humanos , Águas Residuárias , Dióxido de Carbono/metabolismo , Ecossistema , Odorantes , Microalgas/metabolismo , Biotecnologia , Purificação da Água/métodos , Biomassa , Nutrientes
7.
J Environ Manage ; 356: 120631, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38522275

RESUMO

In this work the effects of nutrient availability and light conditions on CO2 utilization and lipid production in Micractinium pusillum KMC8 is reported. The study investigated the ideal nitrogen concentrations for growth and nitrogen utilization in a 15% CO2 environment. Logistic and Gompertz models were employed to analyze the kinetics of KMC8 cell growth. Compared to 17.6 mmol L-1 control nitrogen, which generated 1.6 g L-1 growth, doubling and quadrupling nitrogen concentrations boosted biomass growth by 12.5% and 28.78%. At 8.6 mmol L-1 nitrogen, the growth decreased but lipid productivity increased to 18.62 mg L-1 day-1. At 70.6 mmol L-1 nitrogen, elevated nitrogen levels maintained an alkaline pH above 7 and enhanced CO2 mitigation, achieving 2.27% CO2 utilization efficiency. Nitrogen shows a positive correlation with higher rates of carbon and nitrogen fixation. The investigation extends to find out the influence of phosphorus and light conditions on microalgae. Increasing light intensity incrementally from 150 to 1200 µmol m-2 s-1 with more phosphorus increased biomass productivity by 85% (255 mg L-1 day-1) and lipid productivity by 2.5-fold (84.76 mg L-1 day-1), with 3.3% CO2 utilization efficiency compared to directly using 1200 µmol m-2 s-1. This study suggests a water recycling-fed batch cycle with gradual light feeding, which results in high CO2 fixation (1.1 g L-1 day-1), 7% CO2 utilization, and significant biomass and lipid productivity (577.23 and 150 mg L-1 day-1). This approach promotes lipid synthesis, maintains carbon fixation, and minimizes biomass loss, thus supporting sustainable bioenergy development in a circular bio-economy framework.


Assuntos
Microalgas , Microalgas/metabolismo , Dióxido de Carbono/metabolismo , Biomassa , Nitrogênio/metabolismo , Fósforo/metabolismo , Nutrientes , Lipídeos
8.
Environ Toxicol ; 39(5): 3188-3197, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38356236

RESUMO

Yin chai hu (Radix Stellariae) is a root medicine that is frequently used in Chinese traditional medicine to treat fever and malnutrition. In modern medicine, it has been discovered to have anti-inflammatory, anti-allergic, and anticancer properties. In a previous study, we were able to extract lipids from Stellariae Radix using supercritical CO2 extraction (SRE), and these sterol lipids accounted for up to 88.29% of the extract. However, the impact of SRE on the development of atopic dermatitis (AD) has not yet been investigated. This study investigates the inhibitory effects of SRE on AD development using a 2,4-dinitrochlorobenzene (DNCB)-induced AD mouse model. Treatment with SRE significantly reduced the dermatitis score and histopathological changes compared with the DNCB group. The study found that treatment with SRE resulted in a decrease of pro-inflammatory cytokines TNF-α, CXC-10, IL-12, and IL-1ß in skin lesions. Additionally, immunohistochemical analysis revealed that SRE effectively suppressed M1 macrophage infiltration into the AD lesion. Furthermore, the anti-inflammatory effect of SRE was evaluated in LPS + INF-γ induced bone marrow-derived macrophages (BMDMs) M1 polarization, SRE inhibited the production of TNF-α, CXC-10, IL-12, and IL-1ß and decreased the expression of NLRP3. Additionally, SRE was found to increase p-AMPKT172, but had no effect on total AMPK expression, after administration of the AMPK inhibitor Compound C, the inhibitory effect of SRE on M1 macrophages was partially reversed. The results indicate that SRE has an inhibitory effect on AD, making it a potential therapeutic agent for this atopic disorder.


Assuntos
Dermatite Atópica , Animais , Camundongos , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Dinitroclorobenzeno/toxicidade , Dinitroclorobenzeno/uso terapêutico , Proteínas Quinases Ativadas por AMP , Dióxido de Carbono/toxicidade , Dióxido de Carbono/uso terapêutico , Fator de Necrose Tumoral alfa , Citocinas/metabolismo , Macrófagos/metabolismo , Anti-Inflamatórios/uso terapêutico , Interleucina-12/toxicidade , Interleucina-12/uso terapêutico , Lipídeos , Camundongos Endogâmicos BALB C , Pele
9.
Isotopes Environ Health Stud ; 60(2): 103-121, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38344763

RESUMO

The biogeochemical consequences of dihydrogen (H2) underground storage in porous aquifers are poorly understood. Here, the effects of nutrient limitations on anaerobic H2 oxidation of an aquifer microbial community in sediment microcosms were determined in order to evaluate possible responses to high H2 partial pressures. Hydrogen isotope analyses of H2 yielded isotope depletion in all biotic setups indicating microbial H2 consumption. Carbon isotope analyses of carbon dioxide (CO2) showed isotope enrichment in all H2-supplemented biotic setups indicating H2-dependent consumption of CO2 by methanogens or homoacetogens. Homoacetogenesis was indicated by the detection of acetate and formate. Consumption of CO2 and H2 varied along the differently nutrient-amended setups, as did the onset of methane production. Plotting carbon against hydrogen isotope signatures of CH4 indicated that CH4 was produced hydrogenotrophically and fermentatively. The putative hydrogenotrophic Methanobacterium sp. was the dominant methanogen. Most abundant phylotypes belonged to typical ferric iron reducers, indicating that besides CO2, Fe(III) was an important electron acceptor. In summary, our study provides evidence for the adaptability of subsurface microbial communities under different nutrient-deficient conditions to elevated H2 partial pressures.


Assuntos
Água Subterrânea , Microbiota , Anaerobiose , Metano/análise , Dióxido de Carbono , Compostos Férricos , Isótopos de Carbono/análise , Hidrogênio
10.
Molecules ; 29(4)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38398623

RESUMO

Zingiber officinale Roscoe (ginger) is a plant from the Zingiberaceae family, and its extracts have been found to contain several compounds with beneficial bioactivities. Nowadays, the use of environmentally friendly and sustainable extraction methods has attracted considerable interest. The main objective of this study was to evaluate subcritical propane (scPropane), supercritical CO2 (scCO2), and supercritical CO2 with ethanol (scCO2 + EtOH) as co-solvent methods for the extraction of high value products from ginger. In addition, the reuse/recycling of the secondary biomass in a second extraction as a part of the circular economy was evaluated. Both the primary and the secondary biomass led to high yield percentages, ranging from 1.23% to 6.42%. The highest yield was observed in the scCO2 + EtOH, with biomass prior used to scCO2 extraction. All extracts presented with high similarities as far as their total phenolic contents, antioxidant capacity, and chemical composition. The most abundant compounds, identified by the two different gas chromatography-mass spectrometry (GC-MS) systems present, were a-zingiberene, ß- sesquiphellandrene, a-farnesene, ß-bisabolene, zingerone, gingerol, a-curcumene, and γ-muurolene. Interestingly, the reuse/recycling of the secondary biomass was found to be promising, as the extracts showed high antioxidant capacity and consisted of significant amounts of compounds with beneficial properties.


Assuntos
Sesquiterpenos , Zingiber officinale , Antioxidantes/farmacologia , Biomassa , Dióxido de Carbono/análise , Extratos Vegetais/química
11.
Environ Sci Pollut Res Int ; 31(12): 18856-18870, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351356

RESUMO

Solid waste management is a critical issue worldwide. Effectively utilizing these solid waste resources presents a viable solution. This study focuses on Iron ore tailings (IOTs), a solid waste generated during iron ore processing, which can be used as supplementary cementitious materials (SCMs) but have low reactivity, hindering their large-scale application in concrete production. To address this, ternary SCMs were prepared using ceramic powder (CP) and steel slag (SS) to enhance the performance of concrete incorporating IOTs. The study found that the synergistic effect of CP and SS significantly improved the compressive strength of concrete, with a notable increase of up to 21% compared to concrete with IOTs alone. Mercury intrusion porosimetry (MIP) and backscattering electron (BSE) analyses revealed that the ternary SCMs significantly optimized the characteristics of the interfacial transition zone (ITZ), which in turn enhanced the compressive properties of the concrete. This contributed to maintaining the structural integrity of the concrete, even amidst variations in the pore structure. Importantly, the incorporation of ternary SCMs led to a 23% reduction in carbon emissions, from 400.01 kg CO2/m3 to 307.48 kg CO2/m3, and elevated eco-strength efficiency from 0.1 to 0.14. The study highlights the role of multi-material synergy in developing composite SCMs systems, fostering the sustainable advancement of green building materials.


Assuntos
Dióxido de Carbono , Aço , Pós , Resíduos Sólidos , Cerâmica , Ferro
12.
Appl Environ Microbiol ; 90(2): e0201523, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38299812

RESUMO

Fungi have the capacity to assimilate a diverse range of both inorganic and organic sulfur compounds. It has been recognized that all sulfur sources taken up by fungi are in soluble forms. In this study, we present evidence that fungi can utilize gaseous carbonyl sulfide (COS) for the assimilation of a sulfur compound. We found that the filamentous fungus Trichoderma harzianum strain THIF08, which has constitutively high COS-degrading activity, was able to grow with COS as the sole sulfur source. Cultivation with 34S-labeled COS revealed that sulfur atom from COS was incorporated into intracellular metabolites such as glutathione and ergothioneine. COS degradation by strain THIF08, in which as much of the moisture derived from the agar medium as possible was removed, indicated that gaseous COS was taken up directly into the cell. Escherichia coli transformed with a COS hydrolase (COSase) gene, which is clade D of the ß-class carbonic anhydrase subfamily enzyme with high specificity for COS but low activity for CO2 hydration, showed that the COSase is involved in COS assimilation. Comparison of sulfur metabolites of strain THIF08 revealed a higher relative abundance of reduced sulfur compounds under the COS-supplemented condition than the sulfate-supplemented condition, suggesting that sulfur assimilation is more energetically efficient with COS than with sulfate because there is no redox change of sulfur. Phylogenetic analysis of the genes encoding COSase, which are distributed in a wide range of fungal taxa, suggests that the common ancestor of Ascomycota, Basidiomycota, and Mucoromycota acquired COSase at about 790-670 Ma.IMPORTANCEThe biological assimilation of gaseous CO2 and N2 involves essential processes known as carbon fixation and nitrogen fixation, respectively. In this study, we found that the fungus Trichoderma harzianum strain THIF08 can grow with gaseous carbonyl sulfide (COS), the most abundant and ubiquitous gaseous sulfur compound, as a sulfur source. When the fungus grew in these conditions, COS was assimilated into sulfur metabolites, and the key enzyme of this assimilation process is COS hydrolase (COSase), which specifically degrades COS. Moreover, the pathway was more energy efficient than the typical sulfate assimilation pathway. COSase genes are widely distributed in Ascomycota, Basidiomycota, and Mucoromycota and also occur in some Chytridiomycota, indicating that COS assimilation is widespread in fungi. Phylogenetic analysis of these genes revealed that the acquisition of COSase in filamentous fungi was estimated to have occurred at about 790-670 Ma, around the time that filamentous fungi transitioned to a terrestrial environment.


Assuntos
Hypocreales , Óxidos de Enxofre , Trichoderma , Gases , Dióxido de Carbono , Solo , Filogenia , Compostos de Enxofre , Enxofre/metabolismo , Hypocreales/genética , Hypocreales/metabolismo , Hidrolases/metabolismo , Sulfatos , Trichoderma/genética , Trichoderma/metabolismo
13.
J Chromatogr A ; 1719: 464774, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38422707

RESUMO

Ginseng is beneficial in the prevention of many diseases and provides benefits for proper growth and development owing to the presence of various useful bioactive substances of diverse chemical heterogeneity (e.g., triterpenoid saponins, polysaccharides, volatile oils, and amino acids). As a result, understanding the therapeutic advantages of ginseng requires an in-depth compositional evaluation employing a simple and rapid analytical technique. In this work, three types of surface-activated carbon fibers (ACFs) were prepared by gas-phase oxidation, strong acid treatment, and Plasma treatment to obtain CO2-ACFs, acidified-ACFs, and plasma-ACFs, respectively. Three prepared ACFs were compared in terms of their physicochemical characterization (i.e., surface roughness and functional groups). A separation system was built using a column with modified ACFs, followed by mass spectrometry detection to investigate and determine substances of different polarities. Among the three columns, CO2-ACFs showed the optimum separation effect. 13 strong polar compounds (12 amino acids and1 oligosaccharide) and 15 lesser polar compounds (ginsenosides) were separated and identified successfully within 4 min in the ginseng sample. The data obtained by CO2-ACFs-TOF-MS/MS and UHPLC-TOF-MS/MS were compared. Our approach was found to be faster (4 min vs. 36 min) and greener, requiring much less solvent (1 mL vs. 10.8 mL), and power (0.06 vs. 0.6 kWh). The developed methodology can provide a faster, eco-friendly, and more reliable tool for the high-throughput screening of complex natural matrices and the simultaneous evaluation of several compounds in diverse samples.


Assuntos
Ginsenosídeos , Panax , Ginsenosídeos/análise , Espectrometria de Massas em Tandem/métodos , Carvão Vegetal , Fibra de Carbono , Dióxido de Carbono/análise , Extratos Vegetais/química , Aminoácidos , Panax/química , Cromatografia Líquida de Alta Pressão/métodos
14.
Environ Pollut ; 345: 123456, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38307241

RESUMO

The role of rhizobia in alleviating cadmium (Cd) stress in woody legumes is still unclear. Therefore, two types of black locust (Robinia pseudoacacia L.) with high and low Cd accumulation abilities were selected from 11 genotypes in China, and the effects of rhizobium (Mesorhizobium huakuii GP1T11) inoculation on the growth, CO2 and H2O gas exchange parameters, Cd accumulation, and the absorption of mineral elements of the high (SX) and low Cd-accumulator (HB) were compared. The results showed that rhizobium-inoculation significantly increased biomass, shoot Cd contents, Cd accumulation, root-to-shoot translocation factor (TF) and the absorption and accumulation of mineral elements in both SX and HB. Rhizobium-inoculation increased chlorophyll a and carotenoid contents, and the intercellular carbon dioxide concentrations in HB plants. Under Cd exposure, the high-accumulator SX exhibited a significant decrease in photosynthetic CO2 fixation (Pn) and an enhanced accumulation of Cd in leaves, but coped with Cd exposure by increasing chlorophyll synthesis, regulating stomatal aperture (Gs), controlling transpiration (Tr), and increasing the absorption and accumulation of mineral elements. In contrast, the low-accumulator HB was more sensitive to Cd exposure despite preferential accumulation of Cd in roots, with decreased chlorophyll and carotenoid contents, but significantly increased root biomass. Compared to the low-accumulator HB, non-inoculated Cd-exposed SX plants had higher chlorophyll contents, and rhizobium-inoculated Cd-exposed SX plants had higher Pn, Tr, and Gs as well as higher levels of P, K, Fe, Ca, Zn, and Cu. In conclusion, the high- and low-Cd-accumulator exhibited different physiological responses to Cd exposure. Overall, rhizobium-inoculation of black locust promoted the growth and heavy metal absorption, providing an effective strategy for the phytoremediation of heavy metal-contaminated soils by this woody legume.


Assuntos
Metais Pesados , Rhizobium , Robinia , Poluentes do Solo , Cádmio/toxicidade , Robinia/fisiologia , Clorofila A , Dióxido de Carbono/análise , Metais Pesados/farmacologia , Clorofila , Minerais , Carotenoides , Biodegradação Ambiental , Poluentes do Solo/análise
15.
J Environ Manage ; 353: 120241, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38301473

RESUMO

With global population growth and climate change, food security and global warming have emerged as two major challenges to agricultural development. Plastic film mulching (PM) has long been used to improve yields in rain-fed agricultural systems, but few studies have focused on soil gas emissions from mulched rainfed potatoes on a long-term and regional scale. This study integrated field data with the Denitrification-Decomposition (DNDC) model to evaluate the impacts of PM on potato yields, greenhouse gas (GHG) and ammonia (NH3) emissions in rainfed agricultural systems in China. We found that PM increased potato yield by 39.7 % (1505 kg ha-1), carbon dioxide (CO2) emissions by 15.4 % (123 kg CO2 eq ha-1), nitrous oxide (N2O) emissions by 47.8 % (1016 kg CO2 eq ha-1), and global warming potential (GWP) by 38.9 % (1030 kg CO2 eq ha-1), while NH3 volatilization decreased by 33.9 % (8.4 kg NH3 ha-1), and methane (CH4) emissions were little changed compared to CK. Specifically, the yield after PM significantly increased in South China (SC), North China (NC), and Northwest China (NWC), with increases of 66.1 % (2429 kg ha-1), 44.1 % (1173 kg ha-1), and 43.6 % (956 kg ha-1) compared to CK, respectively. The increase in GWP and greenhouse gas emission intensity (GHGI) under PM was more pronounced in the Northeast China (NEC) and NWC regions, with respective increases of 57.1 % and 60.2 % in GWP, 16.9 % and 10.3 % in GHGI. While in the Middle and Lower reaches of the Yangtze River (MLYR) and SC, PM decreased GHGI with 10.2 % and 31.1 %, respectively. PM significantly reduced NH3 emissions in all regions and these reductions were most significant in Southwest China (SWC), SCand MLYR, which were 41 %, 38.0 %, and 38.0 % lower than CK, respectively. In addition, climatic and edaphic variables were the main contributors to GHG and NH3 emissions. In conclusion, it is appropriate to promote the use of PM in the MLYR and SC regions, because of the ability to increase yields while reducing environmental impacts (lower GHGI and NH3 emissions). The findings provide a theoretical basis for sustainable agricultural production of PM potatoes.


Assuntos
Gases de Efeito Estufa , Solanum tuberosum , Gases de Efeito Estufa/análise , Amônia , Dióxido de Carbono/análise , Agricultura , Solo , China , Metano/análise , Óxido Nitroso/análise , Fertilizantes/análise
16.
J Environ Sci (China) ; 140: 292-305, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331509

RESUMO

Integrated CO2 capture and utilization (ICCU) technology requires dual functional materials (DFMs) to carry out the process in a single reaction system. The influence of the calcination atmosphere on efficiency of 4% Ru-8% Na2CO3-8% CaO/γ-Al2O3 DFM is studied. The adsorbent precursors are first co-impregnated onto alumina and calcined in air. Then, Ru precursor is impregnated and four aliquotes are subjected to different calcination protocols: static air in muffle or under different mixtures (10% H2/N2, 50% H2/N2 and N2) streams. Samples are characterized by XRD, N2 adsorption-desorption, H2 chemisorption, TEM, XPS, H2-TPD, H2-TPR, CO2-TPD and TPSR. The catalytic behavior is evaluated, in cycles of CO2 adsorption and hydrogenation to CH4, and temporal evolution of reactants and products concentrations is analyzed. The calcination atmosphere influences the physicochemical properties and, ultimately, activity of DFMs. Characterization data and catalytic performance discover the acccomodation of Ru nanoparticles disposition and basic sites is mostly influencing the catalytic activity. DFM calcined under N2 flow (RuNaCa-N2) shows the highest CH4 production (449 µmol/g at 370°C), because a well-controlled decomposition of precursors which favors the better accomodation of adsorbent and Ru phases, maximizing the specific surface area, the Ru-basic sites interface and the participation of different basic sites in the CO2 methanation reaction. Thus, the calcination in a N2 flow is revealed as the optimal calcination protocol to achieve highly efficient DFM for integrated CO2 adsorption and hydrogenation applications.


Assuntos
Óxido de Alumínio , Dióxido de Carbono , Adsorção , Hidrogenação , Atmosfera , Íons
17.
Carbohydr Polym ; 331: 121874, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38388060

RESUMO

This study focuses on the development of bioactive materials using environmentally friendly techniques, renewable, biocompatible, and biodegradable polysaccharide, as well as natural bioactive compounds (NBCs) found in plant extracts. First, cornstarch aerogels with a porosity of 86 % and a specific surface area of 225 m2/g were produced via supercritical CO2- assisted drying. Further, thymol, citronellol, carvacrol, and eugenol were incorporated into the aerogels by supercritical CO2- assisted impregnation, which allowed variation in loadings of NBCs (12.8-17.6 %). Interaction between cornstarch aerogels and NBCs determined impregnation rate, pore wall thickness (in the range 18-95 nm), liquid absorption capacity (from 265 to 569 %), dehydration mass loss, and release in phosphate-buffered saline. Controlled release of NBCs was maintained over a 3-day period. Moreover, impregnated aerogels showed a significant antioxidant effect with the highest value for DPPH radical inhibition of 25.5 % determined for the aerogels impregnated with eugenol. Notable antimicrobial activity against tested Gram-negative bacteria, Gram-positive bacteria, and fungi was also observed, being the highest for thymol-loaded aerogel with the diameter of the inhibition zones of up to 37.5 mm. This work shows a promising green approach for the production of bioactive two-component starch-based materials for potential applications in skin infection treatment.


Assuntos
Monoterpenos Acíclicos , Cimenos , Amido , Timol , Amido/química , Timol/farmacologia , Eugenol/farmacologia , Dióxido de Carbono/química , Géis/química
18.
J Zoo Wildl Med ; 54(4): 825-829, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38252008

RESUMO

Little research has taken place on the effect of euthanasia methods on biophysical and biochemical changes at the time of euthanasia in fish. These changes are used in multiple species to determine stress levels before death. Koi (Cyprinus carpio) are an important fish species often used in laboratory research, kept in backyard ponds, and managed in zoological and aquarium collections. The current study evaluated euthanasia of koi by immersion in 0.5 g/L tricaine methanesulfonate (MS-222) (n = 10), 0.5 g/L clove oil (n = 8), 1 g/L clove oil (n = 10), and CO2 (n = 7) on time to cessation of opercular movement, plasma lactate levels, and plasma cortisol levels. CO2 had the longest mean time to cessation of opercular movement, and MS-222 had the shortest (mean CO2: 24.9 min, range 13.18-31.35 min; MS-222: 2.68 min, range 1.33-4.5 min). The difference was not significant between any of the groups for plasma cortisol or lactate levels. MS-222 demonstrated the highest cortisol levels, and CO2 had the lowest (mean CO2: 108.7 ng/ml, range 33.9-195.8 ng/ml; MS-222: 650.6 ng/ml, range 77.3-2374.9 ng/ml). Average lactate levels were highest for 1 g/L clove oil and lowest for 0.5 g/L clove oil (mean 0.5 g/L clove oil: 5.1 mmol/L, range 1.8-8.1 mmol/L; 1 g/L clove oil: 7.4 mmol/L, range 5.6-10.5 mmol/L).


Assuntos
Aminobenzoatos , Carpas , Ácido Láctico , Animais , Dióxido de Carbono , Óleo de Cravo/farmacologia , Hidrocortisona , Água , Imersão , Anestésicos Locais , Ésteres , Mesilatos
19.
Chemosphere ; 350: 141104, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171400

RESUMO

The loss of active components, weak acid resistance, and low recover efficiency of common Ca-based catalysts limited its further development and application. In this study, to effectively produce biodiesel from waste cooking oil (WCO), a green and recyclable magnetic acid-base bifunctional CoFe/biochar/CaO catalyst was prepared from sargassum and river snail shell waste via hydrothermal method. The catalysts' structure and properties were investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), CO2/NH3 temperature programmed desorption (CO2/NH3 TPD), etc., The prepared catalyst mainly consisted of the carbon skeleton, CoFe alloy, and CaO. CoFe alloy provided catalyst's ferromagnetism for magnetic separation as well as acid sites for transesterification of WCO. Ca and other metal species with nanoscale (∼5.64 nm) were dispersively anchored on sargassum biochar surface, thereby leading to good catalytic activity (99.21% biodiesel yield) and stability (91.70% biodiesel yield after the 5th cycle). In addition, response surface methodology-Box-Behnken design (RSM-BBD) revealed the optimal operational conditions were 16:1 methanol/oil molar ratio, 3 wt% catalyst dosage, 73 °C for 157 min. The maximum biodiesel yield predicted value was 98.29% and the experimental value was 99.21%, indicating good satisfaction of the established model. Moreover, the quality of WCO biodiesel met the ASTM D6751 standards. This study benefits magnetic waste-derived acid-base bifunctional catalysts for the disposal of WCO towards sustainable biodiesel production.


Assuntos
Biocombustíveis , Carvão Vegetal , Óleos de Plantas , Óleos de Plantas/química , Biocombustíveis/análise , Dióxido de Carbono , Esterificação , Culinária , Catálise , Ligas , Fenômenos Magnéticos
20.
Arch Gynecol Obstet ; 309(4): 1575-1583, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38253692

RESUMO

PURPOSE: Breast cancer survivors (BCS) suffer severe vulvo-vaginal atrophy (VVA) and some of the most effective therapies are contraindicated. In literature we have no data about the non-ablative CO2 laser on these women. The aim of this study was to examine its efficacy, safety and acceptability in BCS. MATERIALS AND METHODS: The enrolled women underwent 3 sessions of laser therapy (t0, t1, t2) and a one-month follow up examination (t3). At each time point we measured objective signs of VVA via VHI (Vaginal Health Index) and VuHI (Vulvar Health Index) and subjective parameters (Dryness, Burning, Itching, Dysuria) via visual analog scales (VAS). In sexually active women we evaluated the sexual function with FSFI (Female Sexual Function Index), FSDS (Female Sexual Distress Score) scores and MENQOL (menopause quality of life questionnaire). RESULTS: We enrolled 26 BCS. The mean VHI, VuVHI, dryness and burning VAS scores improved significantly and this improvement was not influenced by the initial VVA grade. MENQOL sexual domain, Lubrication, Orgasm and Pain domains and FSFI total score improved significantly, while Desire, Arousal and Satisfaction domains of FSFI and FSDS did not. At t0 women using Aromatase Inhibitors suffered more severe vaginal dryness than women using Tamoxifen or no therapy, but the three subgroups improved without differences. No adverse event and minimum discomfort were reported. CONCLUSIONS: The non-ablative CO2 laser is a safe and effective treatment of VVA and has positive effects on sexual function in BCS regardless the use of adjuvant therapies and the initial grade of VVA.


Assuntos
Neoplasias da Mama , Lasers de Gás , Doenças Vaginais , Feminino , Humanos , Dióxido de Carbono , Neoplasias da Mama/complicações , Neoplasias da Mama/cirurgia , Neoplasias da Mama/patologia , Qualidade de Vida , Pós-Menopausa , Doenças Vaginais/etiologia , Doenças Vaginais/cirurgia , Doenças Vaginais/patologia , Vagina/cirurgia , Vagina/patologia , Resultado do Tratamento , Atrofia/patologia , Lasers de Gás/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA