Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Plant J ; 114(2): 338-354, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36789486

RESUMO

Cytidine diphosphate diacylglycerol (CDP-DAG), an important intermediate for glycerolipid biosynthesis, is synthesized under the catalytic activity of CDP-DAG synthase (CDS) to produce anionic phosphoglycerolipids such as phosphatidylglycerol (PG) and cardiolipin (CL). Previous studies showed that Arabidopsis CDSs are encoded by a small gene family, termed CDS1-CDS5, the members of which are integral membrane proteins in endoplasmic reticulum (ER) and in plastids. However, the details on how CDP-DAG is provided for mitochondrial membrane-specific phosphoglycerolipids are missing. Here we present the identification of a mitochondrion-specific CDS, designated CDS6. Enzymatic activity of CDS6 was demonstrated by the complementation of CL synthesis in the yeast CDS-deficient tam41Δ mutant. The Arabidopsis cds6 mutant lacking CDS6 activity showed decreased mitochondrial PG and CL biosynthesis capacity, a severe growth deficiency finally leading to plant death. These defects were rescued partly by complementation with CDS6 or supplementation with PG and CL. The ultrastructure of mitochondria in cds6 was abnormal, missing the structures of cristae. The degradation of triacylglycerol (TAG) in lipid droplets and starch in chloroplasts in the cds6 mutant was impaired. The expression of most differentially expressed genes involved in the mitochondrial electron transport chain was upregulated, suggesting an energy-demanding stage in cds6. Furthermore, the contents of polar glycerolipids in cds6 were dramatically altered. In addition, cds6 seedlings lost the capacity for cell proliferation and showed a higher oxidase activity. Thus, CDS6 is indispensable for the biosynthesis of PG and CL in mitochondria, which is critical for establishing mitochondrial structure, TAG degradation, energy production and seedling development.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Glicogênio Sintase/metabolismo , Cistina Difosfato/metabolismo , Diglicerídeos/metabolismo , Diacilglicerol Colinofosfotransferase/metabolismo , Mitocôndrias/metabolismo , Fosfatidilgliceróis/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
Sci Bull (Beijing) ; 67(3): 299-314, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36546079

RESUMO

Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of pathologies, ranging from steatosis to nonalcoholic steatohepatitis (NASH). The factors promoting the progression of steatosis to NASH are still unclear. Recent studies suggest that mitochondrial lipid composition is critical in NASH development. Here, we showed that CDP-DAG synthase 2 (Cds2) was downregulated in genetic or diet-induced NAFLD mouse models. Liver-specific deficiency of Cds2 provoked hepatic steatosis, inflammation and fibrosis in five-week-old mice. CDS2 is enriched in mitochondria-associated membranes (MAMs), and hepatic Cds2 deficiency impaired mitochondrial function and decreased mitochondrial PE levels. Overexpression of phosphatidylserine decarboxylase (PISD) alleviated the NASH-like phenotype in Cds2f/f;AlbCre mice and abnormal mitochondrial morphology and function caused by CDS2 deficiency in hepatocytes. Additionally, dietary supplementation with an agonist of peroxisome proliferator-activated receptor alpha (PPARα) attenuated mitochondrial defects and ameliorated the NASH-like phenotype in Cds2f/f;AlbCre mice. Finally, Cds2 overexpression protected against high-fat diet-induced hepatic steatosis and obesity. Thus, Cds2 modulates mitochondrial function and NASH development.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Diacilglicerol Colinofosfotransferase , Dieta Hiperlipídica , Fibrose , Mitocôndrias/patologia , Hepatopatia Gordurosa não Alcoólica/genética
3.
Plant Physiol ; 189(4): 2001-2014, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35522031

RESUMO

Castor bean (Ricinus communis) seed oil (triacylglycerol [TAG]) is composed of ∼90% of the industrially important ricinoleoyl (12-hydroxy-9-octadecenoyl) groups. Here, phosphatidylcholine (PC):diacylglycerol (DAG) cholinephosphotransferase (PDCT) from castor bean was biochemically characterized and compared with camelina (Camelina sativa) PDCT. DAGs with ricinoleoyl groups were poorly used by Camelina PDCT, and their presence inhibited the utilization of DAG with "common" acyl groups. In contrast, castor PDCT utilized DAG with ricinoleoyl groups similarly to DAG with common acyl groups and showed a 10-fold selectivity for DAG with one ricinoleoyl group over DAG with two ricinoleoyl groups. Castor DAG acyltransferase2 specificities and selectivities toward different DAG and acyl-CoA species were assessed and shown to not acylate DAG without ricinoleoyl groups in the presence of ricinoleoyl-containing DAG. Eighty-five percent of the DAG species in microsomal membranes prepared from developing castor endosperm lacked ricinoleoyl groups. Most of these species were predicted to be derived from PC, which had been formed by PDCT in exchange with DAG with one ricinoleoyl group. A scheme of the function of PDCT in castor endosperm is proposed where one ricinoleoyl group from de novo-synthesized DAG is selectivity transferred to PC. Nonricinoleate DAG is formed and ricinoleoyl groups entering PC are re-used either in de novo synthesis of DAG with two ricinoleoyl groups or in direct synthesis of triricinoleoyl TAG by PDAT. The PC-derived DAG is not used in TAG synthesis but is proposed to serve as a substrate in membrane lipid biosynthesis during oil deposition.


Assuntos
Brassicaceae , Ricinus communis , Óleo de Rícino , Diacilglicerol Colinofosfotransferase , Diglicerídeos , Fosfatidilcolinas , Ricinus/genética , Sementes , Triglicerídeos
4.
Oncogene ; 39(42): 6556-6571, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32917955

RESUMO

Next generation antiandrogens such as enzalutamide (Enz) are effective initially for the treatment of castration-resistant prostate cancer (CRPC). However, the disease often relapses and the underlying mechanisms remain elusive. By performing H3-lysine-27 acetylation (H3K27ac) ChIP-seq in Enz-resistant CRPC cells, we identified a group of super enhancers (SEs) that are abnormally activated in Enz-resistant CRPC cells and associated with enhanced transcription of a subset of tumor promoting genes such as CHPT1, which catalyzes phosphatidylcholine (PtdCho) synthesis and regulates choline metabolism. Increased CHPT1 conferred CRPC resistance to Enz in vitro and in mice. While androgen receptor (AR) primarily binds to a putative CHPT1 enhancer and mediates androgen-dependent expression of CHPT1 gene in Enz-sensitive prostate cancer cells, AR binds to a different enhancer within the CHPT1 SE locus and facilities androgen-independent expression of CHPT1 in Enz-resistant cells. We further identified a long-non coding RNA transcribed at CHPT1 enhancer (also known as enhancer RNA) that binds to the H3K27ac reader BRD4 and participates in regulating CHPT1 SE activity and CHPT1 gene expression. Our findings demonstrate that aberrantly activated SE upregulates CHPT1 expression and confers Enz resistance in CRPC, suggesting that SE-mediated expression of downstream effectors such as CHPT1 can be viable targets to overcome Enz resistance in PCa.


Assuntos
Antagonistas de Androgênios/farmacologia , Colina Quinase/genética , Diacilglicerol Colinofosfotransferase/genética , Resistencia a Medicamentos Antineoplásicos/genética , Fosfatidilcolinas/biossíntese , Neoplasias de Próstata Resistentes à Castração/terapia , Receptores Androgênicos/metabolismo , Antagonistas de Androgênios/uso terapêutico , Androgênios/metabolismo , Animais , Benzamidas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Quimioterapia Adjuvante/métodos , Colina Quinase/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Diacilglicerol Colinofosfotransferase/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Nitrilas , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Feniltioidantoína/uso terapêutico , Próstata/patologia , Prostatectomia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , RNA Longo não Codificante/genética , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Plant Physiol ; 180(3): 1351-1361, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31123096

RESUMO

Cyclopropane fatty acids (CPAs) are useful feedstocks for biofuels and bioproducts such as lubricants and biodiesel. Our goal is to identify factors that can facilitate the accumulation of CPA in seed triacylglycerol (TAG) storage oil. We hypothesized that the poor metabolism of CPA through the TAG biosynthetic network could be overcome by the addition of enzymes from species that naturally accumulate CPA in their seed oil, such as lychee (Litchi chinensis), which contains approximately 40% CPA in TAG. Our previous work on engineering CPA accumulation in crop and model plants identified a metabolic bottleneck between phosphatidylcholine (PC), the site of CPA biosynthesis, diacylglycerol (DAG), and TAG. Here, we report the cloning and heterologous expression in camelina (Camelina sativa) of a lychee PHOSPHATIDYLCHOLINE:DIACYLGLYCEROL CHOLINEPHOSPHOTRANSFERASE (PDCT), which encodes the enzyme that catalyzes the transfer of the phosphocholine headgroup from PC to DAG. Camelina lines coexpressing LcPDCT and Escherichia coli CYCLOPROPANE SYNTHASE (EcCPS) showed up to a 50% increase of CPA in mature seed, relative to the EcCPS background. Stereospecific lipid compositional analysis showed that the expression of LcPDCT strongly reduced the level of C18:1 substrate at PC-sn-1 and PC-sn-2 (i.e. the sites of CPA synthesis), while the levels of CPA increased in PC-sn-2, DAG-sn-1 and DAG-sn-2, and both sn-1/3 and sn-2 positions in TAG. Taken together, these data suggest that the addition of PDCT facilitates more efficient movement of CPA from PC to DAG and establishes LcPDCT as a useful factor to combine with others to enhance CPA accumulation in plant seed oil.


Assuntos
Brassicaceae/metabolismo , Diacilglicerol Colinofosfotransferase/metabolismo , Escherichia coli/enzimologia , Ácidos Graxos/biossíntese , Litchi/enzimologia , Metiltransferases/metabolismo , Sementes/metabolismo , Brassicaceae/genética , Ciclopropanos , Diacilglicerol Colinofosfotransferase/classificação , Diacilglicerol Colinofosfotransferase/genética , Diglicerídeos/biossíntese , Escherichia coli/genética , Regulação Enzimológica da Expressão Gênica , Litchi/genética , Engenharia Metabólica/métodos , Metiltransferases/genética , Fosfatidilcolinas/metabolismo , Filogenia , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reprodutibilidade dos Testes , Sementes/genética , Triglicerídeos/biossíntese
6.
Metabolomics ; 15(1): 6, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30830477

RESUMO

INTRODUCTION: Castor (Ricinus communis L.) seeds are valued for their production of oils which can comprise up to 90% hydroxy-fatty acids (ricinoleic acid). Castor oil contains mono-, di- and tri- ricinoleic acid containing triacylglycerols (TAGs). Although the enzymatic synthesis of ricinoleic acid is well described, the differential compartmentalization of these TAG molecular species has remained undefined. OBJECTIVES: To examine the distribution of hydroxy fatty acid accumulation within the endosperm and embryo tissues of castor seeds. METHODS: Matrix assisted laser desorption/ionization mass spectrometry imaging was used to map the distribution of triacylglycerols in tissue sections of castor seeds. In addition, the endosperm and embryo (cotyledons and embryonic axis) tissues were dissected and extracted for quantitative lipidomics analysis and Illumina-based RNA deep sequencing. RESULTS: This study revealed an unexpected heterogeneous tissue distribution of mono-, di- and tri- hydroxy-triacylglycerols in the embryo and endosperm tissues of castor seeds. Pathway analysis based on transcript abundance suggested that distinct embryo- and endosperm-specific mechanisms may exist for the shuttling of ricinoleic acid away from phosphatidylcholine (PC) and into hydroxy TAG production. The embryo-biased mechanism appears to favor removal of ricinoleic acid from PC through phophatidylcholine: diacylglycerol acyltransferase while the endosperm pathway appears to remove ricinoleic acid from the PC pool by preferences of phospholipase A (PLA2α) and/or phosphatidylcholine: diacylglycerol cholinephosphotransferase. CONCLUSIONS: Collectively, a combination of lipidomics and transcriptomics analyses revealed previously undefined spatial aspects of hydroxy fatty acid metabolism in castor seeds. These studies underscore a need for tissue-specific studies as a means to better understand the regulation of triacylglycerol accumulation in oilseeds.


Assuntos
Ácidos Ricinoleicos/metabolismo , Ricinus/metabolismo , Ricinus communis/metabolismo , Óleo de Rícino/metabolismo , Diacilglicerol Colinofosfotransferase , Ácidos Graxos/metabolismo , Fosfolipases A2 do Grupo IV , Fosfatidilcolinas , Ácidos Ricinoleicos/análise , Ricinus/química , Ricinus/genética , Sementes/química , Sementes/metabolismo , Análise de Sequência de RNA , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Triglicerídeos/metabolismo
7.
Appl Environ Microbiol ; 79(5): 1573-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23275500

RESUMO

The effective flux between phospholipids and neutral lipids is critical for a high level of biosynthesis and accumulation of very-long-chain polyunsaturated fatty acids (VLCPUFAs), such as arachidonic acid (ARA; 20:4n-6), eicosapentaenoic acid (EPA; 20:5n-3), and docosahexaenoic acid (DHA; 22:6n-3). Here we describe a cDNA (PiCPT1) from Phytophthora infestans, a VLCPUFA-producing oomycete, that may have a role in acyl trafficking between diacylglycerol (DAG) and phosphatidylcholine (PC) during the biosynthesis of VLCPUFAs. The cDNA encodes a polypeptide of 393 amino acids with a conserved CDP-alcohol phosphotransferase motif and approximately 27% amino acid identity to the Saccharomyces cerevisiae cholinephosphotransferase (ScCPT1). In vitro assays indicate that PiCPT1 has high cholinephosphotransferase (CPT) activity but no ethanolaminephosphotransferase (EPT) activity. Substrate specificity assays show that it prefers VLCPUFA-containing DAGs, such as ARA DAG and DHA DAG, as substrates. Real-time PCR analysis reveals that expression of PiCPT1 was upregulated in P. infestans organisms fed with exogenous VLCPUFAs. These results lead us to conclude that PiCPT1 is a VLCPUFA-specific CPT which may play an important role in shuffling VLCPUFAs from DAG to PC in the biosynthesis of VLCPUFAs in P. infestans.


Assuntos
Diacilglicerol Colinofosfotransferase/metabolismo , Ácidos Graxos Insaturados/metabolismo , Phytophthora infestans/enzimologia , Sequência de Aminoácidos , DNA Complementar/genética , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
8.
Blood ; 120(2): 489-98, 2012 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-22649102

RESUMO

Understanding the mechanisms that regulate angiogenesis and translating these into effective therapies are of enormous scientific and clinical interests. In this report, we demonstrate the central role of CDP-diacylglycerol synthetase (CDS) in the regulation of VEGFA signaling and angiogenesis. CDS activity maintains phosphoinositide 4,5 bisphosphate (PIP2) availability through resynthesis of phosphoinositides, whereas VEGFA, mainly through phospholipase Cγ1, consumes PIP2 for signal transduction. Loss of CDS2, 1 of 2 vertebrate CDS enzymes, results in vascular-specific defects in zebrafish in vivo and failure of VEGFA-induced angiogenesis in endothelial cells in vitro. Absence of CDS2 also results in reduced arterial differentiation and reduced angiogenic signaling. CDS2 deficit-caused phenotypes can be successfully rescued by artificial elevation of PIP2 levels, and excess PIP2 or increased CDS2 activity can promote excess angiogenesis. These results suggest that availability of CDS-controlled resynthesis of phosphoinositides is essential for angiogenesis.


Assuntos
Diacilglicerol Colinofosfotransferase/metabolismo , Fosfatidilinositóis/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Sequência de Bases , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/metabolismo , DNA Complementar/genética , Diacilglicerol Colinofosfotransferase/genética , Humanos , Mutação , Neovascularização Fisiológica/genética , RNA Interferente Pequeno/genética , Transdução de Sinais , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
9.
Lipids Health Dis ; 10: 213, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22087726

RESUMO

BACKGROUND: Platelet activating factor (PAF) has been proposed as a key factor and initial trigger in atherosclerosis. Recently, a modulation of PAF metabolism by bioactive food constituents has been suggested. In this study we investigated the effect of fish polar lipid consumption on PAF metabolism. RESULTS: The specific activities of four PAF metabolic enzymes; in leukocytes, platelets and plasma, and PAF concentration; either in blood cells or plasma were determined. Samples were acquired at the beginning and at the end of a previously conducted study in male New Zealand white rabbits that were fed for 45 days with atherogenic diet supplemented (group-B, n = 6) or not (group-A, n = 6) with gilthead sea bream (Sparus aurata) polar lipids.The specific activity of PAF-Acetylhydrolase (PAF-AH); a catabolic enzyme of PAF, was decreased in rabbits' platelets of both A and B groups and in rabbits' leukocytes of group A (p < 0.05). On the other hand the specific activity of Lipoprotein-associated Phospholipase A2 (Lp-PLA2); the catabolic enzyme of PAF in plasma was increased in both A and B groups in both leukocytes and platelets (p < 0.05). PAF-cholinephosphotransferase (PAF-CPT); a biosynthetic enzyme of PAF showed increased specific activity only in rabbits' leukocytes of group A (p < 0.05). Neither of the two groups showed any change in Lyso-PAF-acetyltransferase (Lyso-PAF-AT) specific activity (p > 0.05). Free and bound PAF levels increased in group A while decreased in group B (p < 0.05). CONCLUSIONS: Gilthead sea bream (Sparus aurata) polar lipids modulate PAF metabolism upon atherosclerotic conditions in rabbits leading to lower PAF levels and activity in blood of rabbits with reduced early atherosclerotic lesions compared to control group.


Assuntos
Aterosclerose/tratamento farmacológico , Ativadores de Enzimas/uso terapêutico , Óleos de Peixe/uso terapêutico , Regulação da Expressão Gênica/efeitos dos fármacos , Fator de Ativação de Plaquetas/biossíntese , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Animais , Aterosclerose/enzimologia , Aterosclerose/prevenção & controle , Plaquetas/enzimologia , Diacilglicerol Colinofosfotransferase/genética , Diacilglicerol Colinofosfotransferase/metabolismo , Dieta Mediterrânea , Ativadores de Enzimas/química , Ativadores de Enzimas/farmacologia , Ácidos Graxos/química , Óleos de Peixe/química , Óleos de Peixe/farmacologia , Expressão Gênica , Leucócitos/enzimologia , Masculino , Fator de Ativação de Plaquetas/metabolismo , Coelhos , Dourada
10.
Gene ; 356: 19-31, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16023307

RESUMO

Phototransduction in Drosophila is a phosphoinositide-mediated signalling pathway. Phosphatidylinositol 4,5-bisphosphate (PIP2) plays a central role in this process, and its levels are tightly regulated. A photoreceptor-specific form of the enzyme CDP-diacylglycerol synthase (CDS), which catalyzes the formation of CDP-diacylglycerol from phosphatidic acid, is a key regulator of the amount of PIP2 available for signalling. cds mutants develop light-induced retinal degeneration. We report here the isolation and characterization of two murine genes encoding this enzyme, Cds1 and Cds2. The genes encode proteins that are 73% identical and 92% similar but exhibit very different expression patterns. Cds1 shows a very restricted expression pattern but is expressed in the inner segments of the photoreceptors whilst Cds2 shows a ubiquitous pattern of expression. Using fluorescent in situ hybridization we have mapped Cds1 and Cds2 to chromosomes 5E3 and 2G1 respectively. These are regions of synteny with the corresponding human gene localization (4q21 and 20p13). Transient transfection experiments with epitope tagged proteins have also demonstrated that both are associated with the endoplasmic reticulum.


Assuntos
Diacilglicerol Colinofosfotransferase/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Células CHO , Mapeamento Cromossômico , Cromossomos de Mamíferos/genética , Cricetinae , Cricetulus , DNA Complementar/química , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Diacilglicerol Colinofosfotransferase/metabolismo , Retículo Endoplasmático/metabolismo , Éxons , Feminino , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Genes/genética , Hibridização in Situ Fluorescente , Íntrons , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Dados de Sequência Molecular , Plasmídeos/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Transfecção
11.
Artigo em Inglês | MEDLINE | ID: mdl-15820137

RESUMO

The substitution of fish oil with plant-derived oil in diets for carnivorous fish, such as Atlantic salmon, has previously revealed the potentially deleterious supranuclear accumulation of lipid droplets in intestinal cells (enterocytes) which may compromise gut integrity, and consequently, fish health. This suggests that unfamiliar dietary lipid sources may have a significant impact on intestinal lipid metabolism, however, the mode of lipid resynthesis is largely unknown in teleost fish intestine. The present study aimed at characterising three key lipogenic enzymes involved in the biosynthesis of triacylglycerol (TAG) and phosphatidylcholine (PC) in Atlantic salmon enterocytes: monoacylglycerol acyltransferase (MGAT), diacylglycerol acyltransferase (DGAT), and diacylglycerol cholinephosphotransferase (CPT). Furthermore, to investigate the dietary effect of plant oils on these enzymes, two experimental groups of fish were fed a diet with either capelin (fish oil) or vegetable oil (rapeseed oil:palm oil:linseed oil, 55:30:15 w/w) as the lipid source. The monoacylglycerol (MAG) pathway was highly active in the intestinal mucosa of Atlantic salmon as demonstrated by MGAT activity (7 nmol [1-(14)C]palmitoyl-CoA incorporated min(-1) mg protein(-1)) and DGAT activity (4 nmol [1-(14)C]palmitoyl-CoA incorporated min(-1) mg protein(-1)), with MGAT appearing to also provide adequate production of sn-1,2-diacylglycerol for potential utilisation in PC synthesis via CPT activity (0.4 nmol CDP-[(14)C]choline incorporated min(-1) mg protein(-1)). Both DGAT and CPT specific activity values were comparable to reported mammalian equivalents, although MGAT activity was lower. Nevertheless, MGAT appeared not to be the rate-limiting step in salmon intestinal TAG synthesis. The homology between piscine and mammalian enzymes was established by similar stimulation and inhibition profiles by a variety of tested cofactors and isomeric substrates. The low dietary n-3/n-6 PUFA ratio presented in the vegetable oil diet did not significantly affect the activities of MGAT, DGAT, or CPT under optimised assay conditions, or in vivo intestinal mucosa lipid class composition, when compared to a standard fish oil diet.


Assuntos
Enzimas/metabolismo , Mucosa Intestinal/metabolismo , Fosfatidilcolinas/biossíntese , Salmo salar/metabolismo , Triglicerídeos/biossíntese , Aciltransferases/metabolismo , Animais , Diacilglicerol Colinofosfotransferase/metabolismo , Diacilglicerol O-Aciltransferase , Dieta , Enterócitos/enzimologia , Enzimas/efeitos dos fármacos , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-6/farmacologia , Mucosa Intestinal/enzimologia , Metabolismo dos Lipídeos , Lipídeos/química , Microssomos/metabolismo , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Salmo salar/crescimento & desenvolvimento
12.
Metabolism ; 53(7): 842-6, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15254874

RESUMO

It is generally considered that genetic factors may contribute to the susceptibility of type 2 diabetic nephropathy. The purpose of the present study is to identify molecules that contribute to the development and/or progression of this disease. Differential display was performed to isolate genes in the kidney using the KK/Ta mouse model of type 2 diabetes. The differential expression of 8 randomly chosen candidate genes (DN1-8) were verified by reverse-transcriptase polymerase chain reaction (RT-PCR) or Northern blot analysis. DN1-3 (Zn-alpha2-glycoprotein, vascular endothelial growth factor receptor [VEGFR]-2, and lactate dehydrogenase [LDH]) were overexpressed and DN7-8 (peroxisome proliferator-activated receptor [PPAR]-interacting protein [PRIP], unknown) were underexpressed in the KK/Ta mouse kidney. DN4-6 (Ezrin, transcobalamin 2, aldo-ketoreductase) did not differ between KK/Ta and control (BALB/c) mice. DN8 only showed no significant sequence similarity to previously reported genes. Molecular cloning revealed that full-length DN8 shares 89% identity with human cholinephosphotransferase 1 (hCHPT1), and we designated it as "putative" mouse cholinephosphotransferase 1 (mCHPT1). The putative mCHPT1 gene was most closely mapped to the D10Mit94 locus with the highest logarithm of odds (lod) score. In situ hybridization revealed the levels of glomerular putative mCHPT1 in BALB/c mice tended to be slightly higher than those in KK/Ta mice. The altered renal mRNA expression of these genes may be involved in the development and/or progression of diabetic nephropathy.


Assuntos
Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/genética , Nefropatias Diabéticas/enzimologia , Nefropatias Diabéticas/genética , Diacilglicerol Colinofosfotransferase/biossíntese , Diacilglicerol Colinofosfotransferase/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Rim/enzimologia , Sequência de Aminoácidos , Animais , Northern Blotting , Mapeamento Cromossômico , Clonagem Molecular , DNA Complementar/biossíntese , DNA Complementar/genética , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , RNA Mensageiro/biossíntese , RNA Mensageiro/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Planta ; 217(4): 547-58, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12739150

RESUMO

Aminoalcoholphosphotransferases (AAPT, EC 2.7.8.1 and EC 2.7.8.2) catalyze the transfer of CDP-aminoalcohols to sn-1, 2 diacylglycerol (DAG) to form phosphatidylaminoalcohols with the release of CMP. The Brassica napus L. AAPT1 gene (designated BnAAPT1) was identified from cDNA libraries of seedlings and developing seeds. Functional characterization was accomplished by heterologous expression of BnAAPT1 in a yeast strain deficient in AAPT activities. BnAAPT1 exhibited a greater preference for utilizing CDP-choline as a substrate with Vmax of 35 [14C]phosphatidylcholine nmol h(-1) mg(-1) protein and apparent Km of 32 microM while CDP-ethanolamine had a Vmax of 13 [14C]phosphatidylethanolamine nmol h(-1) mg(-1)protein and an apparent Km of 127 microM. The enzyme was activated by Mg2+, Mn2+ and phospholipid mixtures, and inhibited by Ca2+. A CDP-alcohol phosphotransferase motif, Asp99-Gly100-(X2)-Ala103-Arg104-(X8)-Gly113-(X3)-Asp117-(X3)-Asp121, was completely conserved in BnAAPT1 and its catalytic role was confirmed by scanning alanine mutagenesis. Over-expression of BnAAPT1 under the control of the double 35S promoter in transgenic Arabidopsis thaliana (L.) Heynh. plants led to elevated levels of the corresponding transcript and enzyme activity. In four of the high over-expression transgenic lines, phospholipid and fatty acid composition analyses revealed that chloroplastidic and extrachloroplastidic membranes isolated from transgenic leaves had about a 25% increase in phosphatidylcholine and in the proportions of polyunsaturated fatty acids [18:2+18:3], relative to the control. There were also consistent, but small differences observed in the proportions of 18:3 in transgenic green siliques and in 20:1 in mature transgenic seeds of these lines. Induction of Arabidopsis AAPT transcription in response to (+)-abscisic acid and low-temperature treatments, and the cold tolerance in BnAAPT1 transgenic seedlings implies that AAPT may play a role in resistance to damage at low growth temperatures.


Assuntos
Ácido Abscísico/farmacologia , Arabidopsis/enzimologia , Brassica napus/enzimologia , Fosfotransferases/genética , Adaptação Fisiológica/genética , Sequência de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Brassica napus/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Clonagem Molecular , Temperatura Baixa , Sequência Conservada/genética , DNA Complementar/química , DNA Complementar/genética , Diacilglicerol Colinofosfotransferase/genética , Diacilglicerol Colinofosfotransferase/metabolismo , Indução Enzimática/efeitos dos fármacos , Etanolaminofosfotransferase/genética , Etanolaminofosfotransferase/metabolismo , Ácidos Graxos/análise , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lipídeos/análise , Dados de Sequência Molecular , Mutação , Fosfotransferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
14.
Proc Natl Acad Sci U S A ; 97(19): 10655-60, 2000 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-10984546

RESUMO

To investigate the role of phosphatidylglycerol (PG) in photosynthesis, we constructed a mutant defective in the CDP-diacylglycerol synthase gene from a cyanobacterium, Synechocystis sp. PCC6803. The mutant, designated as SNC1, required PG supplementation for growth. Growth was repressed in PG-free medium concomitantly with the decrease in cellular content of PG. These results indicate that PG is essential, and that SNC1 is defective in PG synthesis. Decrease in PG content was accompanied by a reduction in the cellular content of chlorophyll, but with little effect on the contents of phycobilisome pigments, which showed that levels of chlorophyll-protein complexes decreased without alteration of those of phycobilisomes. Regardless of the decrease in the PG content, CO(2)-dependent photosynthesis by SNC1 was similar to that by the wild type on a chlorophyll basis, but consequently became lower on a cell basis. Simultaneously, the ratio of oxygen evolution of photosystem II (PSII) measured with p-benzoquinone to that of CO(2)-dependent photosynthesis, which ranged between 1.3 and 1.7 in the wild type. However, it was decreased in SNC1 from 1.3 to 0.4 during the early growth phase where chlorophyll content and CO(2)-dependent photosynthesis were little affected, and then finally to 0.1, suggesting that PSII first lost its ability to reduce p-benzoquinone and then decreased in its level and actual activity. These results indicate that PG contributes to the accumulation of chlorophyll-protein complexes in thylakoid membranes, and also to normal functioning of PSII.


Assuntos
Cianobactérias/fisiologia , Fosfatidilgliceróis/fisiologia , Fotossíntese , Tilacoides/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Cianobactérias/enzimologia , Cianobactérias/genética , Primers do DNA , Diacilglicerol Colinofosfotransferase/genética , Dados de Sequência Molecular , Fenótipo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Ficobilissomas , Pigmentos Biológicos/metabolismo
15.
DNA Cell Biol ; 16(3): 281-9, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9115637

RESUMO

Phosphatidic acid (PA) is a phospholipid involved in signal transduction and in glycerolipid biosynthesis. CDP-diacylglycerol synthase (CDS) or CTP:phosphatidate cytidylyltransferase (EC 2.7.7.41) catalyzes the conversion of PA to CDP-diacylglycerol (CDP-DAG), an important precursor for the synthesis of phosphatidylinositol, phosphatidylglycerol, and cardiolipin. We describe in this study the isolation and characterization of a human cDNA clone that encodes amino acid sequences homologous to Escherichia coli, yeast, and Drosophila CDS sequences. Expression of this human cDNA under the control of a GAL1 promoter in a null cds1 mutant yeast strain complements its growth defect and produces CDS activity when induced with galactose. Transfection of this cDNA into mammalian cells leads to increased CDS activity in cell-free extracts using an in vitro assay that measures the conversion of [alpha-32P]CTP to [32P]CDP-DAG. This increase in CDS activity also leads to increased secretion of tumor necrosis factor-alpha and interleukin-6 from endothelial ECV304 cells upon stimulation with interleukin-1beta, suggesting that CDS overexpression may amplify cellular signaling responses from cytokines.


Assuntos
DNA Complementar/genética , Diacilglicerol Colinofosfotransferase/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA Complementar/isolamento & purificação , Diacilglicerol Colinofosfotransferase/isolamento & purificação , Diacilglicerol Colinofosfotransferase/metabolismo , Drosophila , Escherichia coli/genética , Humanos , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência
16.
Biochem Biophys Res Commun ; 241(2): 504-8, 1997 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-9425300

RESUMO

An alternative molecular biology strategy is needed to characterize cholinephosphotransferase (CPT) gene because of the complexity of the problem associated with the solubilization of the membrane-bound enzyme without denaturation. We have synthesized five heterologous oligonucleotide probes based on the published yeast CPT gene sequence. Each probe (24 to 30 mers) was used as either forward or reverse flanking primers in combination with lambda gt11 primers to amplify a segment of DNA from a guinea pig liver 5'cDNA library by polymerase chain reaction (PCR). We detected several clones of varied size (0.1 kb to 2.2 kb) by subjecting the PCR products to 1.2% agarose gel electrophoresis. Southern blot of a 0.7 kb PCR product did hybridize with a 32P-labeled internal probe. Slot blot hybridization of guinea pig liver total RNA with the 32P-labeled 0.7 kb PCR product yielded positive transcripts with intensities proportional to the concentration of RNA. Furthermore, a 0.1 kb clone was sequenced and the observed sequence shared 96% homology with the yeast CPT gene sequence.


Assuntos
Diacilglicerol Colinofosfotransferase/genética , Animais , Sequência de Bases , DNA Complementar/genética , Biblioteca Gênica , Cobaias , Fígado/enzimologia , Dados de Sequência Molecular , Sondas de Oligonucleotídeos , Reação em Cadeia da Polimerase , Análise de Sequência de DNA
17.
Plant Cell ; 6(10): 1495-507, 1994 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-7994181

RESUMO

Aminoalcoholphosphotransferases (AAPTases) utilize diacylglycerols and cytidine diphosphate (CDP)-aminoalcohols as substrates in the synthesis of the abundant membrane lipids phosphatidylcholine and phosphatidylethanolamine. A soybean cDNA encoding an AAPTase that demonstrates high levels of CDP-choline:sn-1,2-diacylglycerol cholinephosphotransferase activity was isolated by complementation of a yeast strain deficient in this function and was designated AAPT1. The deduced amino acid sequence of the soybean cDNA showed nearly equal similarity to each of the two characterized AAPTase sequences from yeast, cholinephosphotransferase and ethanolaminephosphotransferase (CDP-ethanolamine:sn-1,2-diacylglycerol ethanolaminephosphotransferase). Moreover, assays of soybean AAPT1-encoded enzyme activity in yeast microsomal membranes revealed that the addition of CDP-ethanolamine to the reaction inhibited incorporation of 14C-CDP-choline into phosphatidylcholine in a manner very similar to that observed using unlabeled CDP-choline. Although DNA gel blot analysis suggested that AAPT1-like sequences are represented in soybean as a small multigene family, the same AAPT1 isoform isolated from a young leaf cDNA library was also recovered from a developing seed cDNA library. Expression assays in yeast using soybean AAPT1 cDNAs that differed only in length suggested that sequences in the 5'leader of the transcript were responsible for the negative regulation of gene activity in this heterologous system. The inhibition of translation mediated by a short open reading frame located 124 bp upstream of the AAPT1 reading frame is one model proposed for the observed down-regulation of gene activity.


Assuntos
Diacilglicerol Colinofosfotransferase/genética , Genes de Plantas/genética , Glycine max/genética , Proteínas de Plantas/genética , Proteínas de Soja , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Cistina Difosfato/análogos & derivados , Cistina Difosfato/farmacologia , DNA Complementar/genética , Diacilglicerol Colinofosfotransferase/efeitos dos fármacos , Diacilglicerol Colinofosfotransferase/metabolismo , Escherichia coli/genética , Etanolaminofosfotransferase/deficiência , Etanolaminofosfotransferase/genética , Etanolaminas/farmacologia , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Dados de Sequência Molecular , Proteínas de Plantas/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Sementes/enzimologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos , Glycine max/enzimologia , Transcrição Gênica
18.
J Biol Chem ; 269(20): 14776-83, 1994 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-8182083

RESUMO

Multiple mechanisms of regulation in the CDP-choline pathway for phosphatidylcholine (PC) synthesis were revealed by exploring the effects of choline and inositol on this pathway in Saccharomyces cerevisiae. At exogenous choline concentrations below 100 microM, phosphocholine cytidylyltransferase was rate-limiting; at higher choline concentrations the conversion of choline to phosphocholine by choline kinase became rate-limiting. Choline and inositol were found to regulate choline uptake; this established another regulatory mechanism by which PC synthesis is regulated in yeast. Inositol addition did not immediately affect labeled choline uptake or its incorporation into PC in actively dividing cells; however, preculturing the cells in the presence of choline decreased the rate of choline uptake, and this effect was amplified by the concomitant addition of inositol and choline. Additionally, a growth phase dependent effect of inositol supplementation was observed. Inositol addition to stationary phase cells resulted in an increase in choline uptake and subsequent PC production in these cells. This increase was shown to be due to an increase in the rate of choline transport into the cell. In the presence of inositol, choline transport is the main regulatory mechanism controlling flux through the CDP-choline pathway in S. cerevisiae. Inositol supplementation resulted in changes in the levels of enzyme activity detected in vitro. However, the effects observed in vivo correlated exclusively with changes in choline uptake. Choline transporter assays were consistent with these results. Since both the CPT1 and EPT1 gene products catalyze the cholinephosphotransferase reaction in vitro (Hjelmstad, R. H., and Bell, R. M. (1991) J. Biol. Chem. 266, 4357-4365), the effect of inositol on these two separate routes for PC biosynthesis was investigated. The data revealed that only cells harboring a functional CPT1 gene synthesized PC in vivo. These cells (ept1-delta 1::URA3) also displayed an identical mode of regulation in response to inositol as did cells containing an intact EPT1 gene (wild type) indicating there is no requirement for an alternate functional CDP-amino-alcohol pathway for inositol to regulate PC synthesis via the CDP-choline pathway.


Assuntos
Citidina Difosfato Colina/metabolismo , Diacilglicerol Colinofosfotransferase/metabolismo , Proteínas de Membrana Transportadoras , Fosfatidilcolinas/biossíntese , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Transporte Biológico/efeitos dos fármacos , Proteínas de Transporte/biossíntese , Proteínas de Transporte/metabolismo , Colina/metabolismo , Colina Quinase/metabolismo , Colina-Fosfato Citidililtransferase , Cistina Difosfato/metabolismo , Primers do DNA , Diacilglicerol Colinofosfotransferase/biossíntese , Diacilglicerol Colinofosfotransferase/genética , Genes Fúngicos , Genótipo , Homeostase , Inositol/farmacologia , Cinética , Dados de Sequência Molecular , Nucleotidiltransferases/metabolismo , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
19.
J Biol Chem ; 269(15): 11018-24, 1994 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-8157627

RESUMO

Regulation of the 45- and 55-kDa forms of Saccharomyces cerevisiae membrane-associated phosphatidylinositol (PI) 4-kinase (ATP:phosphatidylinositol 4-phosphotransferase) by phospholipids was examined using Triton X-100/phospholipid-mixed micelles. CDP-diacylglycerol and phosphatidylglycerol inhibited 45-kDa PI 4-kinase activity in a dose-dependent manner. Kinetic analyses of the 45-kDa PI 4-kinase showed that phosphatidylglycerol was a competitive inhibitor with respect to PI (Ki = 2 mol %), and CDP-diacylglycerol was a mixed type of inhibitor with respect to PI (Ki = 4 mol %) and MgATP (Ki = 5 mol %). 55-kDa PI 4-kinase activity was not significantly affected by phospholipids. The physiological relevance of CDP-diacylglycerol inhibition of 45-kDa PI 4-kinase activity was examined using plasma membranes from inositol auxotrophic (ino1) cells. Immunoblot analysis showed that 45-kDa PI 4-kinase expression in plasma membranes was not affected by inositol starvation of ino1 cells. However, both 45-kDa PI 4-kinase activity and its product PI 4-phosphate were reduced in plasma membranes from inositol-starved ino1 cells. The CDP-diacylglycerol concentration (9.6 mol %) in plasma membranes of inositol-starved ino1 cells was 12-fold higher than its concentration (0.8 mol %) in plasma membranes of inositol-supplemented cells. Plasma membranes of inositol-starved ino1 cells also had increased levels of phosphatidate, phosphatidylserine, phosphatidylethanolamine, and cardiolipin. However, these phospholipids did not affect pure 45-kDa PI 4-kinase activity. The concentration of CDP-diacylglycerol in plasma membranes of inositol-starved ino1 cells was in the range of the inhibitor constants determined for CDP-diacylglycerol by kinetic analyses using pure 45-kDa PI 4-kinase. These results raised the suggestion that 45-kDa PI 4-kinase activity may be regulated in vivo by CDP-diacylglycerol.


Assuntos
Diglicerídeos de Citidina Difosfato/farmacologia , Diacilglicerol Colinofosfotransferase/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , 1-Fosfatidilinositol 4-Quinase , Fracionamento Celular , Membrana Celular/química , Membrana Celular/enzimologia , Membrana Celular/metabolismo , Inositol/metabolismo , Cinética , Lipídeos de Membrana/isolamento & purificação , Lipídeos de Membrana/metabolismo , Fosfatidilgliceróis/farmacologia , Fosfolipídeos/isolamento & purificação , Fosfolipídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/isolamento & purificação , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo
20.
Membr Biochem ; 10(1): 43-52, 1993.
Artigo em Inglês | MEDLINE | ID: mdl-8389973

RESUMO

Cholinephosphotransferase (CPT) and ethanolaminephosphotransferase (EPT) are the enzymes catalyzing the last step of the de novo pathway for phosphatidylcholine and phosphatidylethanolamine synthesis, respectively. A major limitation for the complete characterization of the reactions catalyzed by the two enzymes derives from their poor stability in detergent-containing buffers. CPT is heavily inactivated, when native membranes are solubilized using a series of detergents, whereas EPT activity is better preserved during solubilization. An investigation of the factors which could play a role in preserving both enzymes from inactivation was carried out. The dramatic loss of enzymatic activities occurring upon dilution of solubilized membranes with detergent-containing buffers can be reduced by supplementing the dilution medium with phospholipids. The addition of Mn2+ ions to the dispersion buffer increases the stability of both enzymes. The procedure previously described for solubilizing EPT from rat brain microsomes has been modified on the basis of this evidence. Microsomes were solubilized in buffered detergent solutions containing Mn2+ ions and both CPT and EPT were partially purified in their active form by anion-exchange chromatography.


Assuntos
Diacilglicerol Colinofosfotransferase/metabolismo , Etanolaminofosfotransferase/metabolismo , Animais , Encéfalo/enzimologia , Cromatografia por Troca Iônica , Detergentes , Diacilglicerol Colinofosfotransferase/antagonistas & inibidores , Diacilglicerol Colinofosfotransferase/isolamento & purificação , Estabilidade Enzimática , Membranas Intracelulares/enzimologia , Microssomos/enzimologia , Octoxinol , Polietilenoglicóis , Ratos , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA