Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Phytochemistry ; 219: 113975, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215811

RESUMO

Two previously undescribed chain diarylheptanoid derivatives (2-3), five previously undescribed dimeric diarylheptanoids (4-8), together with one known cyclic diarylheptanoid (1) were isolated from Zingiber officinale. Their structures were elucidated by extensive spectroscopic analyses (HR-ESI-MS, IR, UV, 1D and 2D NMR) and ECD calculations. Biological evaluation of compounds 1-8 revealed that compounds 2, 3 and 4 could inhibit nitrite oxide and IL-6 production in lipopolysaccharide induced RAW264.7 cells in a dose-dependent manner.


Assuntos
Zingiber officinale , Diarileptanoides/farmacologia , Diarileptanoides/química , Espectroscopia de Ressonância Magnética , Anti-Inflamatórios/farmacologia , Estrutura Molecular
2.
Fitoterapia ; 167: 105502, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37023930

RESUMO

Five new diarylheptanoids, kaemgalangins A-E (1-5), and seven known ones were isolated from the rhizomes of Kaempferia galanga. The structures of new compounds were identified by spectroscopic analyses involving 1D and 2D NMR, HRESIMS, IR, UV, [α]D, ECD calculations, and chemical methods. All compounds were tested for their hypoglycemic effects against α-glucosidase, Gpa and PTP1B enzymes, and stimulative effects on GLP-1 secretion. Kaemgalangins A (1) and E (5) showed significant inhibition on α-glucosidase with IC50 values of 45.3 and 116.0 µM; renealtin B (8) showed inhibition on GPa with an IC50 value of 68.1 µM; whereas all compounds were inactive to PTP1B. Docking study manifested that 1 well located in the catalytic pocket of α-glucosidase and OH-4″ played important roles in maintaining activity. Moreover, all compounds showed obviously stimulative effects on GLP-1 with promoting rates of 826.9%-1738.3% in NCI-H716 cells. This study suggests that the diarylheptanoids in K. galanga have antidiabetic potency by inhibiting α-glucosidase and Gpa enzymes, and promoting GLP-1 secretion.


Assuntos
Alpinia , Zingiberaceae , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , alfa-Glucosidases , Rizoma/química , Estrutura Molecular , Zingiberaceae/química , Espectroscopia de Ressonância Magnética , Diarileptanoides/farmacologia , Diarileptanoides/química , Inibidores de Glicosídeo Hidrolases/farmacologia
3.
Can J Physiol Pharmacol ; 101(6): 304-315, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36867858

RESUMO

Medicinal properties of curcumin are widely published. Previously, researchers used curcuminoid mixture comprising three chemical forms, out of which, the highest quantity is the most active molecule-dimethoxy curcumin (DMC). Reduced bioavailability, poor aqueous solubility, and quick hydrolytic degradation of DMC have projected challenges limiting its therapeutic value. However, selective conjugation of DMC with human serum albumin (HSA) enhances drug stability and solubility by several folds. Studies using animal models demonstrated potential anti-cancer/anti-inflammatory effects of DMCHSA; both studies showed results of local administration in peritoneal cavity and rabbit knee joint. DMC has prospects as intravenous therapeutic agent because carrier is HSA. However, before in vivo testing, important preclinical data required are toxicological safety and bioavailability of soluble forms of DMC. This study evaluated absorption, distribution, metabolism, and excretion of DMCHSA. Imaging technology and molecular analysis proved bio-distribution. The study also assessed the pharmacological safety of DMCHSA in mice in terms of its acute and sub-acute toxicity, complying with regulatory toxicology. Overall, the study demonstrated the safety pharmacology of DMCHSA upon intravenous infusion. This is a novel study establishing the safety of highly soluble and stable formulation of DMCHSA, qualifying it for intravenous administration and further efficacy evaluation in suitable disease models.


Assuntos
Curcumina , Humanos , Camundongos , Animais , Coelhos , Curcumina/farmacologia , Albumina Sérica Humana , Diarileptanoides/química , Solubilidade , Disponibilidade Biológica
4.
J Pharm Biomed Anal ; 214: 114727, 2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35306436

RESUMO

An experimentally proven novel analytical approach for chromatographic analysis of diarylheptanoids in grey alder (Alnus incana) and black alder (Alnus glutinosa) bark matrices was established. A method for qualitative and quantitative determination of oregonin (dominant diarylheptanoid) and semiquantitative analysis of related diarylheptanoids from alder bark using a photodiode array (PDA) detector coupled to a high-resolution mass spectrometer (QTOF-MS) was developed. A comparison of different liquid chromatography detectors (UV, MS and ELS) showed that only a combination of them is applicable for comprehensive analysis of multicomponent extracts. A total of sixteen different diarylheptanoids were simultaneously identified and semi-quantified in alder bark extracts. This is the first report of the method for individual and total diarylheptanoid determination in alder bark extracts, discussed in detail. The liquid chromatography complex is suggested as a tool for the reliable identification and quality control of the diarylheptanoids containing extracts isolated from the Alnus species and their dominant component - oregonin. The semiquantitative methodology established, and the dominant compound quantification provided means for assessing comparative sample complexities.


Assuntos
Alnus , Ilex , Alnus/química , Diarileptanoides/química , Casca de Planta/química , Extratos Vegetais/análise
5.
Bioorg Chem ; 120: 105653, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35149263

RESUMO

Ten new diarylheptanoid dimers, katsumadainols C1 - C10 (1-10), were isolated from the seeds of Alpinia katsumada and elucidated by extensive spectroscopic methods, ECD calculations, and single-crystal X-ray diffraction. Their antidiabetic effects were evaluated by the stimulation of GLP-1 secretion in STC-1 cells and inhibition against four diabetes-related enzymes, GPa, α-glucosidase, PTP1B, and DPP4. Compounds 1-5 and 7-10 significantly stimulated GLP-1 secretion by 267.5-433.1% (25.0 µM) and 117.8-348.2% (12.5 µM). Compounds 1-4 exhibited significant inhibition on GPa with IC50 values of 18.0-31.3 µM; compounds 1-5 showed obvious inhibition on α-glucosidase with IC50 values of 6.9-18.2 µM; compounds 1-5 and 10 possessed PTP1B inhibitory activity with IC50 values ranging from 35.5 to 80.1 µM. This investigation first disclosed compounds 1-4 as intriguing GLP-1 secretagogues and GPa, α-glucosidase, and PTP1B inhibitors, which provided valuable clues for searching multiple-target antidiabetic candidates from Zingiberaceae plants.


Assuntos
Alpinia , Alpinia/química , Diarileptanoides/química , Diarileptanoides/farmacologia , Inibidores Enzimáticos/farmacologia , Peptídeo 1 Semelhante ao Glucagon , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Extratos Vegetais/química , Secretagogos , alfa-Glucosidases
6.
Bol. latinoam. Caribe plantas med. aromát ; 21(1): 51-65, ene. 2022. tab, ilus
Artigo em Inglês | LILACS | ID: biblio-1372343

RESUMO

Epidemiological evidence indicates that plant antioxidants activity can treat or help to prevent the development of various diseases. One species with great potential as an antioxidant is Curcuma longa. However, different extraction techniquescan influence isolated chemical compounds. This study investigated chemical composition and antioxidant activity of two rhizome extracts of C. longa: hydroethanolic, obtained by exhaustion (HECLex); and dried by a spray dryer (HECLsd). The phytochemical composition was evaluated by GC/MS. Antioxidant activity was evaluated using DPPH and FRAP assays. Total phenolic compounds and soil analyses were performed. The main components of HECLex were ar-turmerone, γ-curcumene, α-turmerone, and ß-sesquiphellandrene. The main components of HECLsd were 9,12,15-octadecatrienoic acid, 2, 3-bis([trimethylsilyl]oxy) propyl ester, verrucarol, and 1-monolinoleoylglycerol trimethylsilyl ether. HECLsd had significantly higher levels of phenolic compounds and higher antioxidant capacity compared with HECLex. In conclusion, processes of the preparation of C. longarhizomes alter the chemical components and consequently their biological activity.


La evidencia epidemiológica indica que la actividad de los antioxidantes de las plantas pueden tratar o ayudar a prevenir el desarrollo de diversas enfermedades. Una especie con gran potencial como antioxidante es Curcuma longa. Sin embargo, diferentes técnicas de extracción pueden influir en los compuestos químicos aislados. Este estudio investigó la composición química y la actividad antioxidante de dos extractos de rizoma de C. longa: hidroetanólico, obtenido por agotamiento (HECLex); y se seca con un secador por pulverización (HECLsd). La composición fitoquímica se evaluó mediante GC/MS. La actividad antioxidante se evaluó mediante ensayos DPPH y FRAP. Se realizaron análisis de suelos y compuestos fenólicos totales. Los componentes principales de HECLex fueron ar-turmerona, γ-curcumene, α-turmerone y ß-sesquiphellandrene. Los componentes principales de HECLsd fueron ácido 9,12,15-octadecatrienoico, éster 2,3-bis ([trimetilsilil] oxi) propílico, verrucarol y éter 1-monolinoleoilglicerol trimetilsilil. HECLsd tenía niveles significativamente más altos de compuestos fenólicos y mayor capacidad antioxidante en comparación con HECLex. En conclusión, los procesos de preparación de los rizomas de C. longa alteran los componentes químicos y consecuentemente su actividad biológica.


Assuntos
Extratos Vegetais/farmacologia , Curcuma/química , Antioxidantes/farmacologia , Extratos Vegetais/química , Suplementos Nutricionais , Diarileptanoides/química , Compostos Fenólicos/análise , Radicais Livres , Cromatografia Gasosa-Espectrometria de Massas , Fitoterapia , Antioxidantes/química
7.
Fitoterapia ; 157: 105109, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34954262

RESUMO

Four new diarylheptanoid glycosides (1-4), (1S,3R,5S)-2-(4-hydroxy-3- methoxyphenyl)-6-[2-(4-hydroxyphenyl)ethyl]-tetrahydropyran-4-ol-4'-O-ß-D-glucopyranoside (1), (1S,3R,5S)-2-(4,5-dihydroxy-3-methoxyphenyl)-6-[2-(4-hydroxyphenyl) ethyl]-tetrahydropyran-4-ol-4'-O-ß-D-glucopyranoside (2), (1S,3R,5S)-2-(4-hydroxy- 3,5-dimethoxyphenyl)-6-[2-(4-hydroxy-3-methoxyphenyl)ethyl]-tetrahydropyran-4-ol-4'-O-ß-D-glucopyranoside (3), and (1R,3R,5R)-2-(4-hydroxy-3,5-dimethoxyphenyl)- 6-[2-(4-hydroxy-3-methoxyphenyl)ethyl]-tetrahydropyran-4-ol-3-O-ß-D-glucopyranoside (4) were isolated from the 50% ethanol extract of Zingiber officinale peel. The structures of the isolated compounds were determined by HR-ESI-MS and extensive spectroscopic techniques (UV, IR, 1D-NMR, and 2D-NMR). Compounds 1-4 significantly increased the survival rate of human normal lung bronchial epithelial cells (BEAS-2B) induced by lipopolysaccharide (LPS) at the concentration of 10 µM.


Assuntos
Apoptose/efeitos dos fármacos , Diarileptanoides/farmacologia , Glicosídeos/farmacologia , Zingiber officinale/química , Sobrevivência Celular , Diarileptanoides/química , Diarileptanoides/isolamento & purificação , Glicosídeos/química , Glicosídeos/isolamento & purificação , Humanos , Hidrólise , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Infravermelho
8.
Nat Prod Res ; 36(21): 5499-5507, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34935543

RESUMO

Two undescribed (1-2) and five known cyclic diarylheptanoids (3-7) were isolated from the false heartwood of white birch (Betula pubescens Ehrh.). All structures were elucidated through extensive 1D and 2D NMR experiments and HR-ESI-MS data, along with comparison of their spectroscopic data with those reported in the literature. The two new cyclic diarylheptanoids are betuladiol (1) and betulondiol (2). Extracts from false heartwood were evaluated for their antimicrobial activity against Klebsiella pneumoniae, Escherichia coli, Proteus mirabilis, Staphylococcus aureus and Cutibacterium acnes together with their antifungal activity against Candida albicans and Candida glabrata.


Assuntos
Betula , Diarileptanoides , Diarileptanoides/química , Extratos Vegetais/química , Staphylococcus aureus , Escherichia coli
9.
Biomolecules ; 11(7)2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34356649

RESUMO

Curcumin is a known anti-adipogenic agent for alleviating obesity and related disorders. Comprehensive comparisons of the anti-adipogenic activity of curcumin with other curcuminoids is minimal. This study compared adipogenesis inhibition with curcumin, demethoxycurcumin (DMC), and bisdemethoxycurcumin (BDMC), and their underlying mechanisms. We differentiated 3T3-L1 cells in the presence of curcuminoids, to determine lipid accumulation and triglyceride (TG) production. The expression of adipogenic transcription factors and lipogenic proteins was analyzed by Western blot. A significant reduction in Oil red O (ORO) staining was observed in the cells treated with curcuminoids at 20 µM. Inhibition was increased in the order of curcumin < DMC < BDMC. A similar trend was observed in the detection of intracellular TG. Curcuminoids suppressed differentiation by downregulating the expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), leading to the downregulation of the lipogenic enzymes acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS). AMP-activated protein kinase α (AMPKα) phosphorylation was also activated by BDMC. Curcuminoids reduced the release of proinflammatory cytokines and leptin in 3T3-L1 cells in a dose-dependent manner, with BDMC showing the greatest potency. BDMC at 20 µM significantly decreased leptin by 72% compared with differentiated controls. Molecular docking computation indicated that curcuminoids, despite having structural similarity, had different interaction positions to PPARγ, C/EBPα, and ACC. The docking profiles suggested a possible interaction of curcuminoids with C/EBPα and ACC, to directly inhibit their expression.


Assuntos
Adipogenia/efeitos dos fármacos , Diarileptanoides/química , Diarileptanoides/farmacologia , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipogenia/fisiologia , Adipocinas/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcuma/química , Curcumina/análise , Curcumina/farmacologia , Enzimas/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , PPAR gama/química , PPAR gama/metabolismo , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Triglicerídeos/metabolismo
10.
Int J Mol Sci ; 22(6)2021 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-33804658

RESUMO

Neurodegenerative diseases represent a set of pathologies characterized by an irreversible and progressive, and a loss of neuronal cells in specific areas of the brain. Oxidative phosphorylation is a source of energy production by which many cells, such as the neuronal cells, meet their energy needs. Dysregulations of oxidative phosphorylation induce oxidative stress, which plays a key role in the onset of neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). To date, for most neurodegenerative diseases, there are no resolute treatments, but only interventions capable of alleviating the symptoms or slowing the course of the disease. Therefore, effective neuroprotection strategies are needed. In recent years, natural products, such as curcuminoids, have been intensively explored and studied for their therapeutic potentials in several neurodegenerative diseases. Curcuminoids are, nutraceutical compouns, that owen several therapeutic properties such as anti-oxidant, anti-inflammatory and neuroprotective effects. In this context, the aim of this review was to provide an overview of preclinical and clinical evidence aimed to illustrate the antioxidant effects of curcuminoids in neurodegenerative diseases. Promising results from preclinical studies encourage the use of curcuminoids for neurodegeneration prevention and treatment.


Assuntos
Antioxidantes/farmacologia , Diarileptanoides/farmacologia , Animais , Antioxidantes/química , Antioxidantes/uso terapêutico , Estudos Clínicos como Assunto , Diarileptanoides/química , Diarileptanoides/uso terapêutico , Gerenciamento Clínico , Modelos Animais de Doenças , Suscetibilidade a Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Relação Estrutura-Atividade , Resultado do Tratamento
11.
Future Med Chem ; 13(8): 701-714, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33648346

RESUMO

Aim: We report the synthesis and biological evaluation of a small library of 15 functionalized 3-styryl-2-pyrazolines and pyrazoles, derived from curcuminoids, as trypanosomicidal agents. Methods & results: The compounds were prepared via a cyclization reaction between the corresponding curcuminoids and the appropriate hydrazines. All of the derivatives synthesized were investigated for their trypanosomicidal activities. Compounds 4a and 4e showed significant activity against epimastigotes of Trypanosoma cruzi, with IC50 values of 5.0 and 4.2 µM, respectively, accompanied by no toxicity to noncancerous mammalian cells. Compound 6b was found to effectively inhibit T. cruzi triosephosphate isomerase. Conclusion: The up to 16-fold higher potency of these derivatives compared with their curcuminoid precursors makes them a promising new family of T. cruzi inhibitors.


Assuntos
Doença de Chagas/tratamento farmacológico , Curcumina/química , Inibidores Enzimáticos/síntese química , Pirazóis/síntese química , Triose-Fosfato Isomerase/antagonistas & inibidores , Tripanossomicidas/síntese química , Trypanosoma cruzi/efeitos dos fármacos , Animais , Ciclização , Diarileptanoides/química , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Humanos , Hidrazinas/química , Macrófagos/citologia , Camundongos , Simulação de Acoplamento Molecular , Testes de Sensibilidade Parasitária , Ligação Proteica , Pirazóis/farmacologia , Relação Estrutura-Atividade , Tripanossomicidas/farmacologia
12.
J Pharm Pharmacol ; 73(6): 816-823, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33755149

RESUMO

OBJECTIVES: The therapeutic utility of turmeric (Curcuma longa L., Zingiberaceae) is limited due to low bioavailability of its active principal curcuminoids. This study evaluates the pharmacokinetic characteristics of a natural, water-dispersible turmeric extract containing 60% curcuminoids (TurmXtra 60N), referred to as WDTE60N, compared to standard turmeric extract 95% (STE95). METHODS: This open-label, two-way crossover, single oral dose, comparative pharmacokinetic study, randomized 14 subjects to receive one capsule of WDTE60N (150 mg curcuminoids) or three capsules of STE95 (500 mg curcuminoids each). The resulting dose ratio of actives for WDTE60N:STE95 was 1:10. KEY FINDINGS: Peak plasma levels of free curcumin, total curcuminoids, tetrahydrocurcumin and demethoxycurcumin were similar (P > 0.05). Cmax of total curcumin was higher (P = 0.0253) for WDTE60N at a 10-fold lower dose compared to STE95 (43.5 ± 28.5 vs. 21.3 ± 10.7 ng/ml). Mean AUC0-t was higher (P < 0.001) for free curcumin and comparable for total curcumin and total curcuminoids with WDTE60N than with STE95. Five adverse events were reported in three subjects (mild in severity) and were unrelated to study products. CONCLUSION: WDTE60N showed higher absorption and comparable exposure for free curcumin, total curcumin and total curcuminoids at a 10-fold lower dose than STE95.


Assuntos
Curcumina/farmacocinética , Diarileptanoides/farmacocinética , Extratos Vegetais/farmacocinética , Administração Oral , Adulto , Área Sob a Curva , Disponibilidade Biológica , Estudos Cross-Over , Curcuma/efeitos adversos , Curcuma/química , Diarileptanoides/química , Humanos , Masculino , Extratos Vegetais/efeitos adversos , Extratos Vegetais/química , Índice de Gravidade de Doença , Adulto Jovem
13.
Molecules ; 26(5)2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33652694

RESUMO

Colorectal cancer (CRC) is the third most common type of cancer worldwide and a leading cause of cancer death. According to the Malaysian National Cancer Registry Report 2012-2016, colorectal cancer was the second most common cancer in Malaysia after breast cancer. Recent treatments for colon cancer cases have caused side effects and recurrence in patients. One of the alternative ways to fight cancer is by using natural products. Curcumin is a compound of the rhizomes of Curcuma longa that possesses a broad range of pharmacological activities. Curcumin has been studied for decades but due to its low bioavailability, its usage as a therapeutic agent has been compromised. This has led to the development of a chemically synthesized curcuminoid analogue, (2E,6E)-2,6-bis(2,3-dimethoxybenzylidine) cyclohexanone (DMCH), to overcome the drawbacks. This study aims to examine the potential of DMCH for cytotoxicity, apoptosis induction, and activation of apoptosis-related proteins on the colon cancer cell lines HT29 and SW620. The cytotoxic activity of DMCH was evaluated using the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] (MTT) cell viability assay on both of the cell lines, HT29 and SW620. To determine the mode of cell death, an acridine orange/propidium iodide (AO/PI) assay was conducted, followed by Annexin V/FITC, cell cycle analysis, and JC-1 assay using a flow cytometer. A proteome profiler angiogenesis assay was conducted to determine the protein expression. The inhibitory concentration (IC50) of DMCH in SW620 and HT29 was 7.50 ± 1.19 and 9.80 ± 0.55 µg/mL, respectively. The treated cells displayed morphological features characteristic of apoptosis. The flow cytometry analysis confirmed that DMCH induced apoptosis as shown by an increase in the sub-G0/G1 population and an increase in the early apoptosis and late apoptosis populations compared with untreated cells. A higher number of apoptotic cells were observed on treated SW620 cells as compared to HT29 cells. Human apoptosis proteome profiler analysis revealed upregulation of Bax and Bad proteins and downregulation of Livin proteins in both the HT29 and SW620 cell lines. Collectively, DMCH induced cell death via apoptosis, and the effect was more pronounced on SW620 metastatic colon cancer cells, suggesting its potential effects as an antimetastatic agent targeting colon cancer cells.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Curcumina/farmacologia , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/patologia , Curcuma/química , Curcumina/análogos & derivados , Curcumina/química , Diarileptanoides/química , Diarileptanoides/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia
14.
J Photochem Photobiol B ; 215: 112124, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33486396

RESUMO

Camptothecin (CPT), an alkaloid, was first discovered from plants and has potent anti-tumor activity. Since then, CPT analogs (namely Irinotecan and Topotecan) have been approved by the FDA for cancer treatments. Curcumin, on the other hand, is a widely used photosensitizer in photodynamic therapy (PDT) treatment. In our previous work, we have reported a straightforward strategy to construct a drug self-delivery system in which two-molecular species Irinotecan and Curcumin can self-assembly into a complex of ion pairs, namely ICN, through intermolecular non-covalent interactions. We found that ICN has slightly better chemotherapy efficacy than its individual components with much fewer side effects. In this paper, we aim to combine the chemotherapy and the PDT of ICN to further improve its anti-tumor performance. The efficient cellular uptake of ICNs was observed by confocal microscopy. Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay was used to detect the generation of singlet oxygen species. We found that the cell viability was 9% with both chemotherapy and PDT, and 31% with chemotherapy alone for the case with an ICN concentration of 10 µM, which demonstrated that the anti-tumor efficacy against the HT-29 cancer cell line was enhanced substantially with the combination therapy strategy. The study with an in vivo mouse model has further verified that the chemo-PDT dual therapy can inhibit tumor growth by 84% and 18.8% comparing with the control group and the chemotherapy group, respectively. Our results demonstrated that the new strategy using self-assembly and carrier-free nanoparticles with their chemo-PDT dual therapy may provide new opportunities to develop future combinatorial therapy methods in treating cancer.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Camptotecina/química , Camptotecina/farmacologia , Diarileptanoides/química , Fotoquimioterapia/métodos , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Terapia Combinada , Células HT29 , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Espaço Intracelular/efeitos da radiação
15.
Bioorg Med Chem ; 31: 115971, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33422907

RESUMO

Inflammation involving the innate and adaptive immune systems is a normal response to infection. However, if it becomes uncontrolled, inflammation may result in autoimmune or auto inflammatory disorders, neurodegenerative diseases or cancers. The currently available anti-inflammatory drug therapy is often not successful or induces severe side effects. Thus, the search of new therapeutic options for the treatment of inflammation is highly required. Medicinal plants have been an interesting source for obtaining new active compounds. Diarylheptanoids characterized by a 1, 7-diphenylheptane structural skeleton, are a class of secondary plant metabolites that have gained increasing interest over the last few decades due to a wide variety of biological activities. This review covers 182 natural linear or macrocyclic diarylheptanoids described in the period of 1982 to 2020 with anti-inflammatory activities evaluated using quantified in vitro and/or in vivo assays. All of these data highlight the pharmacological potential of these natural compounds to act as anti-inflammatory drugs.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Produtos Biológicos/uso terapêutico , Diarileptanoides/uso terapêutico , Inflamação/tratamento farmacológico , Anti-Inflamatórios não Esteroides/química , Produtos Biológicos/química , Diarileptanoides/química , Humanos , Estrutura Molecular
16.
Rapid Commun Mass Spectrom ; 35(8): e9029, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33326132

RESUMO

RATIONALE: Ginger pulp is the dried rhizome scraped off the skin which originates from Zingiber officinale Rosc., a Zingiberaceae plant. Ginger peel is the dried rhizome skin of Zingiber officinale Rosc. (Zingiberaceae). The present work aims to investigate the different chemical constituents that are related to the medicinal properties of the ginger pulp and ginger peel. METHODS: A rapid ultra-high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC/ESI-QTOF/MS) method was developed for qualitative analysis of the constituents in different polarity extracted fractions of the pulp and peel of ginger rhizomes. RESULTS: A total of 83 compounds were identified from the pulp and peel of ginger rhizomes, including 36 diarylheptanoids, 25 gingerols and 22 other compounds. Nine of these were new compounds. In total, 46, 27, 65 and 51 compounds were identified from the crude extract, petroleum ether, ethyl acetate, and n-butanol fractions of the ginger pulp, respectively, and 60, 30, 70 and 62 compounds were identified from the crude extract, petroleum ether, ethyl acetate, n-butanol fractions of the ginger peel, respectively. Each identified compound is marked on the corresponding chromatogram. CONCLUSIONS: The integrated method is sensitive and reliable for searching the different chemical constituents from different polarity extracted fractions of the ginger pulp and ginger peel. This work may provide a significant contribution to research into the medicinal properties of the ginger pulp and ginger peel.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Zingiber officinale/química , Catecóis/análise , Catecóis/química , Diarileptanoides/química , Álcoois Graxos/análise , Álcoois Graxos/química , Extratos Vegetais/análise , Plantas Medicinais/química , Rizoma/química
17.
Food Chem ; 341(Pt 2): 128646, 2021 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-33229161

RESUMO

Curcumin, together with demethoxycurcumin and bisdemethoxycurcumin as a whole called curcuminoids, is an active phytochemical constituent present in the turmeric. When it comes to their analysis, most will rely on UV-Visible spectroscopy, HPLC and LC-MS methods. Looking to improve productivity, time and simplicity, we are proposing a 1H NMR based approach for curcuminoids analysis and its applications to different geographical regions. In the present work, sample preparation protocol is reported for the simultaneous determination of curcuminoids using 1H NMR. For the quantification of curcuminoids, 6-7 ppm vinylic proton region in the 1H NMR spectrum was used, where acetone was observed as the suitable solvent in terms of curcuminoids solubility and proper resolution of peak. The result shows that curcumin (46.8-59.50%) was major among all varieties, followed by DMC (22.15-27.70%) and BDMC (17.52-30.29%) except in Andhrapradesh variety, where BDMC (30.29%) was more than DMC (22.89%). These studies were further supported by HPLC analysis.


Assuntos
Curcuma/química , Diarileptanoides/química , Espectroscopia de Prótons por Ressonância Magnética/métodos , Cromatografia Líquida de Alta Pressão , Limite de Detecção , Extratos Vegetais/química , Padrões de Referência , Solventes/química
18.
Food Chem ; 339: 128140, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33152894

RESUMO

Curcumin was extracted from Curcuma Longa employing a green, bio-based, and food-agreed surfactant-free microemulsion (SFME) consisting of water, ethanol, and triacetin. Concerning the high solubility of curcumin in the examined ternary mixtures, it was attempted to produce highly concentrated tinctures of up to a total of ~130 mg/mL curcuminoids in the solvent by repeatedly extracting fresh rhizomes in the same extraction mixture. The amount of water had a significant influence on the number of cycles that could be performed as well as on the extraction of the different curcuminoids. In addition, the purity of single extracts was enhanced to 94% by investigating several purification steps, e.g. vacuum distillation and lyophilization. Through purification before extraction, the water insoluble curcumin extract could be solubilized indefinitely in an aqueous environment. Additional stability tests showed that solutions of curcumin can be stable up to five months when concealed from natural light.


Assuntos
Curcuma/química , Curcumina/química , Emulsões/química , Extratos Vegetais/química , Curcumina/isolamento & purificação , Diarileptanoides/química , Etanol/química , Liofilização , Rizoma/química , Solventes/química , Tensoativos/química , Água/química
19.
Food Chem ; 336: 127660, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32771898

RESUMO

Curcumin is a powerful coloring agent widely used in the food industry. Its extraction from the plant Curcuma longa is commonly done with aqueous solvent solutions. In contrast to the conventional extraction methods, the present study aimed to compare two different green and bio-based surfactant-free microemulsion (SFME) extraction systems, which are approved for food and yield a higher extracting power of curcuminoids. Two SFMEs, water/ethanol/triacetin and water/diacetin/triacetin, were investigated via dynamic light scattering. Curcumin solubility in binary mixtures consisting of ethanol/triacetin or diacetin/triacetin was studied both experimentally and theoretically using UV-Vis measurements and COSMO-RS. The SFMEs were further examined and compared to a common ethanol/water (80/20) extraction mixture with respect to their extracting ability using high performance liquid chromatography. The SFMEs containing ethanol were found to extract ~18% more curcuminoids than the SFMEs containing diacetin and ~53% more than the ordinary ethanol/water mixture.


Assuntos
Curcuma/química , Curcumina/química , Curcumina/isolamento & purificação , Emulsões/química , Cromatografia Líquida de Alta Pressão/métodos , Curcumina/análise , Diarileptanoides/química , Difusão Dinâmica da Luz , Etanol/química , Química Verde , Extratos Vegetais/química , Solubilidade , Solventes/química , Espectrofotometria Ultravioleta , Tensoativos/química , Triacetina/química , Água/química
20.
Molecules ; 25(22)2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33238470

RESUMO

Curcuma comosa belongs to the Zingiberaceae family. In this study, two natural compounds were isolated from C. comosa, and their structures were determined using nuclear magnetic resonance. The isolated compounds were identified as 7-(3,4-dihydroxyphenyl)-5-hydroxy-1-phenyl-(1E)-1-heptene (1) and trans-1,7-diphenyl-5-hydroxy-1-heptene (2). Compound 1 showed the strongest cytotoxicity effect against HL-60 cells, while its antioxidant and anti-inflammatory properties were stronger than those of compound 2. Compound 1 proved to be a potent antioxidant, compared to ascorbic acid. Neither compounds had any effect on red blood cell haemolysis. Furthermore, compound 1 significantly decreased Wilms' tumour 1 protein expression and cell proliferation in KG-1a cells. Compound 1 decreased the WT1 protein levels in a time- and dose- dependent manner. Compound 1 suppressed cell cycle at the S phase. In conclusion, compound 1 has a promising chemotherapeutic potential against leukaemia.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Curcuma/química , Diarileptanoides/química , Diarileptanoides/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Rizoma/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antineoplásicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia/métodos , Diarileptanoides/isolamento & purificação , Relação Dose-Resposta a Droga , Citometria de Fluxo , Expressão Gênica , Hemólise , Humanos , Leucemia/genética , Leucemia/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Camundongos , Estrutura Molecular , Extratos Vegetais/isolamento & purificação , Células RAW 264.7 , Proteínas WT1/genética , Proteínas WT1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA