Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 538
Filtrar
Mais filtros

Medicinas Complementares
Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(35): e2300698, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37888866

RESUMO

The success of arsenic in degrading PML-RARα oncoprotein illustrates the great anti-leukemia value of inorganics. Inspired by this, the therapeutic effect of inorganic selenium on t(8; 21) leukemia is studied, which has shown promising anti-cancer effects on solid tumors. A leukemia-targeting selenium nanomedicine is rationally built with bioengineered protein nanocage and is demonstrated to be an effective epigenetic drug for inducing the differentiation of t(8;21) leukemia. The selenium drug significantly induces the differentiation of t(8;21) leukemia cells into more mature myeloid cells. Mechanistic analysis shows that the selenium is metabolized into bioactive forms in cells, which drives the degradation of the AML1-ETO oncoprotein by inhibiting histone deacetylases activity, resulting in the regulation of AML1-ETO target genes. The regulation results in a significant increase in the expression levels of myeloid differentiation transcription factors PU.1 and C/EBPα, and a significant decrease in the expression level of C-KIT protein, a member of the type III receptor tyrosine kinase family. This study demonstrates that this protein-nanocaged selenium is a potential therapeutic drug against t(8;21) leukemia through epigenetic regulation.


Assuntos
Leucemia Mieloide Aguda , Selênio , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Selênio/farmacologia , Selênio/metabolismo , Epigênese Genética , Proteína 1 Parceira de Translocação de RUNX1/genética , Proteína 1 Parceira de Translocação de RUNX1/metabolismo , Diferenciação Celular/genética
2.
Clin Transl Med ; 13(10): e1422, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37771187

RESUMO

BACKGROUND: A growing number of studies have shown that Yin Yang 1 (YY1) promotes the development of multiple tumours. The purpose of the current study was to determine the mechanism by which YY1 mediates neuroendocrine differentiation of prostate cancer (NEPC) cells undergoing cellular plasticity. METHODS: Using the Cancer Genome Atlas and Gene Expression Omnibus (GEO) databases, we bioinformatically analyzed YY1 expression in prostate cancer (PCa). Aberrant YY1 expression was validated in different PCa tissues and cell lines via quantitative reverse transcription polymerase chain reaction, western blotting, and immunohistochemistry. In vivo and in vitro functional assays verified the oncogenicity of YY1 in PCa. Further functional assays showed that ectopic expression of YY1 promoted cellular plasticity in PCa cells via epithelial-mesenchymal transition induction and neuroendocrine differentiation. RESULTS: Androgen deprivation therapy induced a decrease in YY1 protein ubiquitination, enhanced its stability, and thus enhanced the transcriptional activity of FZD8. Castration enhanced FZD8 binding to Wnt9A and mediated cellular plasticity by activating the non-canonical Wnt (FZD8/FYN/STAT3) pathway. CONCLUSIONS: We identified YY1 as a novel dysregulated transcription factor that plays an important role in NEPC progression in this study. We believe that an in-depth investigation of the mechanism underlying YY1-mediated disease may lead to improved NEPC therapies.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/metabolismo , Via de Sinalização Wnt/genética , Antagonistas de Androgênios , Yin-Yang , Diferenciação Celular/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
3.
Zhen Ci Yan Jiu ; 48(9): 890-7, 2023 Sep 25.
Artigo em Chinês | MEDLINE | ID: mdl-37730259

RESUMO

OBJECTIVE: To investigate the effect of electroacupuncture(EA) stimulation on proliferation and diffe-rentiation of endogenous neural stem cells as well as Jagged1/Notch1 pathway in AD model mice, so as to explore its mechanism underlying amelioration of AD. METHODS: A total of 40 6-week-old male APP/PS1 transgenic AD mice were randomly divided into EA group (n=20) and AD model group ( n=20), and other 20 normal C57BL/6J mice of the same age were used as the normal control group. The mice in the EA group received EA (10 Hz, 2 mA) at "Baihui"(GV20), "Fengfu"(GV16) and bilateral "Shenshu" (BL23) for 20 min, once daily, 6 days a week for 16 weeks. The mice's learning-memory ability was detected by Morris water maze tests. The Aß senile plaques in the hippocampal CA1 region were detected by Congo red staining, the immunofluorescence double label of BrdU, neuronal nuclear antigen (NeuN) and astrocyte specific protein GFAP in dentate gyrus of hippocampus was performed for detecting the proliferation and differentiation of the endogenous neural stem cells. The expression levels of Nestin (neuron specific protein) and GFAP were detected by Western blot, and those of Jagged1 and Notch1 mRNAs and proteins in the hippocampus were detected by real-time fluorescence quantifative PCR and Western blot. RESULTS: Compared with the normal control group, the escape latencies at 2nd, 3rd and 4th day, and Aß senile plaques were significantly increased (P<0.05, P<0.01), whereas the platform crossing times and time spent in the target quadrant, the expression levels of Jagged1 mRNA and Nestin protein were remarkably down-regulated (P<0.05) in the model group. Following EA intervention, the escape latencies at the 3rd and 4th day, Aß senile plaques, immunofluorescence density of BrdU/GFAP, and GFAP protein expression were pronouncedly decreased (P<0.05, P<0.01), while the platform crossing times, platform quadrant residence time, immunofluorescence density of BrdU/NeuN, expression levels of Jagged1 and Notch1 mRNAs and proteins and Nestin protein evidently increased (P<0.05, P<0.01), suggesting an enhancement of proliferation and diffe-rentiation of endogenous neural stem cells into neurons and a suppression of the proliferation and differentiation towards astrocytes in the hippocampus. CONCLUSION: EA at GV20, GV16 and BL23 can improve the learning-memory ability, promote the proliferation and differentiation of endogenous neural stem cells towards neurons and inhibit the proliferation and differentiation of endogenous neural stem cells towards astrocytes in the hippocampus, which may be achieved by regulating Jagged1/Notch1 pathway.


Assuntos
Eletroacupuntura , Células-Tronco Neurais , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Nestina , Bromodesoxiuridina , Placa Amiloide , Hipocampo , Diferenciação Celular/genética , Camundongos Transgênicos , Proliferação de Células
4.
In Vitro Cell Dev Biol Anim ; 59(6): 420-430, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37460875

RESUMO

Brevilin A (BA) is the primary component of Centipeda minima, which is widely used in Chinese traditional medicine. The anti-inflammatory and anti-tumor properties of BA have been established; however, its function in bone metabolism is not well understood. This study revealed that concentrations of BA below 1.0 µM did not inhibit the proliferation of bone marrow macrophages but did impede the differentiation and bone resorption activity of osteoclasts. Furthermore, BA suppressed the expression of osteoclast-specific genes Mmp9, Acp5, Dc-stamp, Ctsk, and Atp6v0d2. In addition, mTOR, ERK, and NFATc1 activation in bone marrow macrophages were suppressed by BA. As a whole, BA blocks the mTOR and ERK signaling pathways, which is responsible for the development and activity of osteoclasts, and the resorption of bone.


Assuntos
Reabsorção Óssea , Osteoclastos , Animais , Osteoclastos/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Serina-Treonina Quinases TOR/metabolismo , Ligante RANK/farmacologia , Ligante RANK/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Diferenciação Celular/genética , Osteogênese/genética
5.
Med Oncol ; 40(7): 185, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37212947

RESUMO

Non-Small Cell Lung Cancer (NSCLC) is the leading cause of death in all countries alike. In the current study, we have found out that Histone H3Lys4trimethylation is abnormal on YY1 in CD4+T Helper (TH) cells of NSCLC patients which is evident by Histone H3Lys27 trimethylation mediated via EZH2. We investigated the status of Yin Yang 1 (YY1) and the involvement of certain transcription factors that lead to tumorigenesis after depleting endogenous EZH2 in vitro by CRISPR/Cas9 in the CD4+TH1-or-TH2-polarized cells isolated initially as CD4+TH0 cells from the PBMC of the control subjects and patients suffering from NSCLC. After depletion of endogenous EZH2, RT-qPCR based mRNA expression analysis showed that there was an increase in the expression of TH1 specific genes and a decrease in the expression of TH2 specific genes in NSCLC patients CD4+TH cells. We can conclude that this group of NSCLC patients may have the tendency at least in vitro to elucidate adaptive/protective immunity through the depletion of endogenous EZH2 along with the reduction in the expression of YY1. Moreover, depletion of EZH2 not only suppressed the CD4+CD25+FOXP3+Regulatory T cells (Treg) but also it aided the generation of CD8+Cytotoxic T Lymphocytes (CTL) which were involved in killing of the NSCLC cells. Thus the transcription factors involved in EZH2 mediated T cell differentiation linked to malignancies offers us an appealing avenue of targeted therapeutic intervention for NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Fatores de Transcrição/genética , Histonas/metabolismo , Neoplasias Pulmonares/patologia , Epigênese Genética , Leucócitos Mononucleares , Yin-Yang , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Diferenciação Celular/genética , Fator de Transcrição YY1/genética , Fator de Transcrição YY1/metabolismo
6.
Clin Exp Med ; 23(7): 3125-3145, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37093450

RESUMO

Ever since the discovery of cancer stem cells (CSCs), they have progressively attracted more attention as a therapeutic target. Like the mythical hydra, this subpopulation of cells seems to contribute to cancer immortality, spawning more cells each time that some components of the cancer cell hierarchy are destroyed. Traditional modalities focusing on cancer treatment have emphasized apoptosis as a route to eliminate the tumor burden. A major problem is that cancer cells are often in varying degrees of dedifferentiation contributing to what is known as the CSCs hierarchy and cells which are known to be resistant to conventional therapy. Differentiation therapy is an experimental therapeutic modality aimed at the conversion of malignant phenotype to a more benign one. Hyperthermia therapy (HT) is a modality exploiting the changes induced in cells by the application of heat produced to aid in cancer therapy. While differentiation therapy has been successfully employed in the treatment of acute myeloid leukemia, it has not been hugely successful for other cancer types. Mounting evidence suggests that hyperthermia therapy may greatly augment the effects of differentiation therapy while simultaneously overcoming many of the hard-to-treat facets of recurrent tumors. This review summarizes the progress made so far in integrating hyperthermia therapy with existing modules of differentiation therapy. The focus is on studies related to the successful application of both hyperthermia and differentiation therapy when used alone or in conjunction for hard-to-treat cancer cell niche with emphasis on combined approaches to target the CSCs hierarchy.


Assuntos
Hydra , Hipertermia Induzida , Neoplasias , Animais , Humanos , Neoplasias/tratamento farmacológico , Diferenciação Celular/genética , Células-Tronco Neoplásicas/metabolismo
7.
In Vitro Cell Dev Biol Anim ; 59(2): 121-130, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36947388

RESUMO

Human periodontal ligament cells (hPDLCs) are known as ideal seed cells for the regeneration of periodontal tissues. Several factors (i.e., vitamin D3, luteolin, and 6-bromoindirubin-3'-oxime) have been shown to promote osteogenic differentiation of hPDLCs. In this study, we aim to investigate the effect of vitamin A on cell proliferation, migration, and osteogenic differentiation of hPDLCs. hPDLCs were cultured in osteogenic induction medium supplemented with different concentrations of vitamin A. Cell proliferation and migration assays were conducted after 24, 48, and 72 h of incubation, whereas osteogenic differentiation and osteogenesis-related gene expression were assessed after 21 d only. Our results demonstrated that 1-µM vitamin A stimulation exerted the most potent promotion effect on cell proliferation, migration, and osteogenic differentiation of hPDLCs. It also induced significant upregulation of osteogenic differentiation-related genes and mitochondrial complexes II and IV in hPDLCs. Vitamin A may serve as a promising potential candidate for periodontal tissue regeneration.


Assuntos
Osteogênese , Vitamina A , Humanos , Animais , Vitamina A/farmacologia , Ligamento Periodontal , Células Cultivadas , Diferenciação Celular/genética , Proliferação de Células
8.
Hypertension ; 80(4): 740-753, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36655574

RESUMO

BACKGROUND: Vascular smooth muscle cells (SMCs) plasticity is a central mechanism in cardiovascular health and disease. We aimed at providing cellular phenotyping, epigenomic and proteomic depiction of SMCs derived from induced pluripotent stem cells and evaluating their potential as cellular models in the context of complex diseases. METHODS: Human induced pluripotent stem cell lines were differentiated using RepSox (R-SMCs) or PDGF-BB (platelet-derived growth factor-BB) and TGF-ß (transforming growth factor beta; TP-SMCs), during a 24-day long protocol. RNA-Seq and assay for transposase accessible chromatin-Seq were performed at 6 time points of differentiation, and mass spectrometry was used to quantify proteins. RESULTS: Both induced pluripotent stem cell differentiation protocols generated SMCs with positive expression of SMC markers. TP-SMCs exhibited greater proliferation capacity, migration and lower calcium release in response to contractile stimuli, compared with R-SMCs. Genes involved in the contractile function of arteries were highly expressed in R-SMCs compared with TP-SMCs or primary SMCs. R-SMCs and coronary artery transcriptomic profiles were highly similar, characterized by high expression of genes involved in blood pressure regulation and coronary artery disease. We identified FOXF1 and HAND1 as key drivers of RepSox specific program. Extracellular matrix content contained more proteins involved in wound repair in TP-SMCs and higher secretion of basal membrane constituents in R-SMCs. Open chromatin regions of R-SMCs and TP-SMCs were significantly enriched for variants associated with blood pressure and coronary artery disease. CONCLUSIONS: Both induced pluripotent stem cell-derived SMCs models present complementary cellular phenotypes of high relevance to SMC plasticity. These cellular models present high potential to study functional regulation at genetic risk loci of main arterial diseases.


Assuntos
Doença da Artéria Coronariana , Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Transcriptoma , Proteômica , Doença da Artéria Coronariana/metabolismo , Diferenciação Celular/genética , Becaplermina/genética , Becaplermina/metabolismo , Becaplermina/farmacologia , Fator de Crescimento Transformador beta/metabolismo , Células Cultivadas , Miócitos de Músculo Liso/metabolismo , Cromatina/metabolismo
9.
Arch Physiol Biochem ; 129(1): 131-142, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32783745

RESUMO

Human induced pluripotent stem cells (hIPSCs) have initiated a higher degree of successes in disease modelling, preclinical evaluation of drug therapy and pharmaco-toxicological testing. Since the discovery of iPSCs in 2006, many advanced techniques have been introduced to differentiate iPSCs to cardiomyocytes, which have been progressively improved. The disease models from iPSC-induced cardiomyocytes (iPSC-CM) have been successfully helping to study a variety of cardiac diseases such as long QT syndrome, drug-induced long QT, different cardiomyopathies related to mutations in mitochondria or desmosomal proteins and other rare genetic diseases. IPSC-CMs have also been used to screen the role of chemicals in cardiovascular drug discovery and individualisation of drug dosages. In this review, the quality of current procedures for characterisation and maturation of iPSC-CM lines will be discussed. Also, we will focus on time efficiency and cost of standard differentiation methods after reprogramming.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos , Análise de Custo-Efetividade , Avaliação Pré-Clínica de Medicamentos , Diferenciação Celular/genética
10.
Phytother Res ; 37(2): 477-489, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36199227

RESUMO

Atractylodin (ATL) has been reported to exert anti-inflammatory effects. Osteogenic changes induced by inflammation in valve interstitial cells (VICs) play a key role in the development of calcified aortic valve disease (CAVD). This study aimed to investigate the anti-calcification effects of ATL on aortic valves. Human VICs (hVICs) were exposed to osteogenic induction medium (OM) containing ATL to investigate cell viability, osteogenic gene and protein expression, and anti-calcification effects. Gas chromatography-mass spectroscopy (GC-MS) metabolomics analysis was used to detect changes in the metabolites of hVICs stimulated with OM before and after ATL administration. The compound-reaction-enzyme-gene network was used to identify drug targets. Gene interference was used to verify the targets. ApoE-/- mice fed a high-fat (HF) diet were used to evaluate the inhibition of aortic valve calcification by ATL. Treatment with 20 µM ATL in OM prevented calcified nodule accumulation and decreases in the gene and protein expression levels of ALP, RUNX2, and IL-1ß. Differential metabolite analysis showed that D-mannose was highly associated with the anti-calcification effect of ATL. The addition of D-mannose prevented calcified nodule accumulation and inhibited succinate-mediated HIF-1α activation and IL-1ß production. The target of ATL was identified as GLA. Silencing of the GLA gene (si-GLA) reversed the anti-osteogenic differentiation of ATL. In vivo, ATL ameliorated aortic valve calcification by preventing decreases in GLA expression and the up-regulation of IL-1ß expression synchronously. In conclusion, ATL is a potential drug for the treatment of CAVD by targeting GLA to regulate D-mannose metabolism, thereby inhibiting succinate-mediated HIF-1α activation and IL-1ß production.


Assuntos
Valva Aórtica , Manose , Humanos , Camundongos , Animais , Manose/metabolismo , Manose/farmacologia , Camundongos Knockout para ApoE , Diferenciação Celular/genética , Células Cultivadas , Osteogênese
11.
Gene ; 849: 146902, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36169052

RESUMO

Different studies indicated that the enhancing the expression of germ cell markers improved the efficiency of stem cells in the generation of germ line cells. The aim of the present study was to investigate the effect of SAG-dihydrochloride on the expression of germ cell markers in the human bone marrow-mesenchymal stem cells (BM-MSCs). For this purpose, the human BM-MSCs were cultured in the medium containing different concentrations of SAG-dihydrochloride (10, 20 and 30 µM). After RNA extraction and cDNA synthesis, the expression level of PTCH1, GLI1, PLZF, DDX4 and STRA8 genes were determined by using SYBR Green Real time PCR. The analysis of the results obtained from PTCH1 and GLI1 expression indicated that SAG-dihydrochloride had the ability to enhance the expression of germ cell markers in a Gli-independent manner. Furthermore, the significant increased expression of STRA8 was observed in the BM-MSCs treated by 10 µM SAG-dihydrochloride for 4 and 6 days (p < 0.05). There was also the up-regulation of DDX4 in the BM-MSCs following treatment with 20 µM SAG-dihydrochloride for 4 and 6 days. The obtained results suggested that treatment with SAG-dihydrochloride increased the expression of germ cell markers in the human BM-MSCs through the activation of non-canonical sonic hedgehog signaling pathway.


Assuntos
Células da Medula Óssea , Células-Tronco Mesenquimais , Humanos , Células da Medula Óssea/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Diferenciação Celular/genética , DNA Complementar , Medula Óssea/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Células-Tronco Mesenquimais/metabolismo , Células Germinativas/metabolismo , RNA
12.
Sci Rep ; 12(1): 19021, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36347883

RESUMO

The self-organizing potential of induced pluripotent stem cells (iPSCs) represents a promising tool for bone tissue engineering. Shear stress promotes the osteogenic differentiation of mesenchymal stem cells, leading us to hypothesize that specific shear stress could enhance the osteogenic differentiation of iPSCs. For osteogenesis, embryoid bodies were formed for two days and then maintained in medium supplemented with retinoic acid for three days, followed by adherent culture in osteogenic induction medium for one day. The cells were then subjected to shear loading (0.15, 0.5, or 1.5 Pa) for two days. Among different magnitudes tested, 0.5 Pa induced the highest levels of osteogenic gene expression and greatest mineral deposition, corresponding to upregulated connexin 43 (Cx43) and phosphorylated Erk1/2 expression. Erk1/2 inhibition during shear loading resulted in decreased osteogenic gene expression and the suppression of mineral deposition. These results suggest that shear stress (0.5 Pa) enhances the osteogenic differentiation of iPSCs, partly through Cx43 and Erk1/2 signaling. Our findings shed light on the application of shear-stress technology to improve iPSC-based tissue-engineered bone for regenerative bone therapy.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Camundongos , Animais , Osteogênese/genética , Conexina 43/genética , Conexina 43/metabolismo , Diferenciação Celular/genética , Células Cultivadas
13.
Lasers Med Sci ; 37(9): 3681-3692, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36227520

RESUMO

The effect of near infrared (NIR) laser irradiation on proliferation and osteogenic differentiation of buccal fat pad-derived stem cells and the role of transient receptor potential (TRP) channels was investigated in the current research. After stem cell isolation, a 940 nm laser with 0.1 W, 3 J/cm2 was used in pulsed and continuous mode for irradiation in 3 sessions once every 48 h. The cells were cultured in the following groups: non-osteogenic differentiation medium/primary medium (PM) and osteogenic medium (OM) groups with laser-irradiated (L +), without irradiation (L -), laser treated + Capsazepine inhibitor (L + Cap), and laser treated + Skf96365 inhibitor (L + Skf). Alizarin Red staining and RT-PCR were used to assess osteogenic differentiation and evaluate RUNX2, Osterix, and ALP gene expression levels. The pulsed setting showed the best viability results (P < 0.05) and was used for osteogenic differentiation evaluations. The results of Alizarin red staining were not statistically different between the four groups. Osterix and ALP expression increased in the (L +) group. This upregulation abrogated in the presence of Capsazepine, TRPV1 inhibitor (L + Cap); however, no significant effect was observed with Skf96365 (L + Skf).


Assuntos
Tecido Adiposo , Células-Tronco , Canais de Potencial de Receptor Transitório , Humanos , Tecido Adiposo/efeitos da radiação , Diferenciação Celular/genética , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Células Cultivadas , Osteogênese/genética , Osteogênese/efeitos da radiação , Células-Tronco/efeitos da radiação , Canais de Potencial de Receptor Transitório/metabolismo , Raios Infravermelhos
14.
Nucleic Acids Res ; 50(19): 10981-10994, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36305821

RESUMO

Dendritic cells (DCs), the most potent antigen-presenting cells, are necessary for effective activation of naïve T cells. DCs' immunological properties are modulated in response to various stimuli. Active DNA demethylation is crucial for DC differentiation and function. Vitamin C, a known cofactor of ten-eleven translocation (TET) enzymes, drives active demethylation. Vitamin C has recently emerged as a promising adjuvant for several types of cancer; however, its effects on human immune cells are poorly understood. In this study, we investigate the epigenomic and transcriptomic reprogramming orchestrated by vitamin C in monocyte-derived DC differentiation and maturation. Vitamin C triggers extensive demethylation at NF-κB/p65 binding sites, together with concordant upregulation of antigen-presentation and immune response-related genes during DC maturation. p65 interacts with TET2 and mediates the aforementioned vitamin C-mediated changes, as demonstrated by pharmacological inhibition. Moreover, vitamin C increases TNFß production in DCs through NF-κB, in concordance with the upregulation of its coding gene and the demethylation of adjacent CpGs. Finally, vitamin C enhances DC's ability to stimulate the proliferation of autologous antigen-specific T cells. We propose that vitamin C could potentially improve monocyte-derived DC-based cell therapies.


Assuntos
Ácido Ascórbico , Células Dendríticas , Epigênese Genética , NF-kappa B , Humanos , Ácido Ascórbico/farmacologia , Diferenciação Celular/genética , NF-kappa B/metabolismo , Linfócitos T/metabolismo , Reprogramação Celular
15.
PLoS Comput Biol ; 18(9): e1010116, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36156073

RESUMO

Transcription factors (TFs) are crucial for regulating cell differentiation during the development of the immune system. However, the key TFs for orchestrating the specification of distinct immune cells are not fully understood. Here, we integrated the transcriptomic and epigenomic measurements in 73 mouse and 61 human primary cell types, respectively, that span the immune cell differentiation pathways. We constructed the cell-type-specific transcriptional regulatory network and assessed the global importance of TFs based on the Taiji framework, which is a method we have previously developed that can infer the global impact of TFs using integrated transcriptomic and epigenetic data. Integrative analysis across cell types revealed putative driver TFs in cell lineage-specific differentiation in both mouse and human systems. We have also identified TF combinations that play important roles in specific developmental stages. Furthermore, we validated the functions of predicted novel TFs in murine CD8+ T cell differentiation and showed the importance of Elf1 and Prdm9 in the effector versus memory T cell fate specification and Kdm2b and Tet3 in promoting differentiation of CD8+ tissue resident memory (Trm) cells, validating the approach. Thus, we have developed a bioinformatic approach that provides a global picture of the regulatory mechanisms that govern cellular differentiation in the immune system and aids the discovery of novel mechanisms in cell fate decisions.


Assuntos
Redes Reguladoras de Genes , Fatores de Transcrição , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Biologia Computacional , Histona-Lisina N-Metiltransferase , Humanos , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Exp Cell Res ; 420(2): 113356, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36122768

RESUMO

Actin has important functions in both cytoplasm and nucleus of the cell, with active nuclear transport mechanisms maintaining the cellular actin balance. Nuclear actin levels are subject to regulation during many cellular processes from cell differentiation to cancer. Here we show that nuclear actin levels increase upon differentiation of PC6.3 cells towards neuron-like cells. Photobleaching experiments demonstrate that this increase is due to decreased nuclear export of actin during cell differentiation. Increased nuclear actin levels lead to decreased nuclear localization of MRTF-A, a well-established transcription cofactor of SRF. In line with MRTF-A localization, transcriptomics analysis reveals that MRTF/SRF target gene expression is first transiently activated, but then substantially downregulated during PC6.3 cell differentiation. This study therefore describes a novel cellular context, where regulation of nuclear actin is utilized to tune MRTF/SRF target gene expression during cell differentiation.


Assuntos
Actinas , Transativadores , Actinas/genética , Actinas/metabolismo , Diferenciação Celular/genética , Expressão Gênica , Regulação da Expressão Gênica , Extratos Vegetais , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Transativadores/genética , Transativadores/metabolismo
17.
Ann Hematol ; 101(10): 2209-2218, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36040481

RESUMO

The coincident downregulation of NR4A1 and NR4A3 has been implicated in myeloid leukemogenesis, but it remains unknown how these two genes function in myeloid cells and how their combined downregulation promotes myeloid leukemogenesis. Since NR4A1 abrogation is thought to confer a survival and proliferation advantage to myeloid cells, we hypothesized that downregulation of NR4A3 may have a complementary effect on myeloid cell differentiation. First, we tested the association between differentiation status of leukemic cells and NR4A3 expression using two large clinical datasets from patients with different acute myeloid leukemia (AML) subtypes. The analysis revealed a close association between differentiation status and different subtypes of AML Then, we probed the effects of differentiation-inducing treatments on NR4A3 expression and NR4A3 knockdown on cell differentiation using two myeloid leukemia cell lines. Differentiation-inducing treatments caused upregulation of NR4A3, while NR4A3 knockdown prevented differentiation in both cell lines. The cell culture findings were validated using samples from chronic myeloid leukemia (CML) patients at chronic, accelerated and blastic phases, and in acute promyelocytic leukemia (APL) patients before and after all trans-retinoic acid (ATRA)-based differentiation therapy. Progressive NR4A3 downregulation was coincident with impairments in differentiation in patients during progression to blastic phase of CML, and NR4A3 expression was increased in APL patients treated with ATRA-based differentiating therapy. Together, our findings demonstrate a tight association between impaired differentiation status and NR4A3 downregulation in myeloid leukemias, providing a plausible mechanistic explanation of how myeloid leukemogenesis might occur upon concurrent downregulation of NR4A1 and NR4A3.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide Aguda , Leucemia Promielocítica Aguda , Receptores de Esteroides , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Promielocítica Aguda/tratamento farmacológico , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Receptores de Esteroides/uso terapêutico , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Receptores dos Hormônios Tireóideos/uso terapêutico , Tretinoína/farmacologia
18.
Nat Commun ; 13(1): 4464, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35915095

RESUMO

X chromosome inactivation (XCI) is a dosage compensation phenomenon that occurs in females. Initiation of XCI depends on Xist RNA, which triggers silencing of one of the two X chromosomes, except for XCI escape genes that continue to be biallelically expressed. In the soma XCI is stably maintained with continuous Xist expression. How Xist impacts XCI maintenance remains an open question. Here we conditionally delete Xist in hematopoietic system of mice and report differentiation and cell cycle defects in female hematopoietic stem and progenitor cells (HSPCs). By utilizing female HSPCs and mouse embryonic fibroblasts, we find that X-linked genes show variable tolerance to Xist loss. Specifically, XCI escape genes exhibit preferential transcriptional upregulation, which associates with low H3K27me3 occupancy and high chromatin accessibility that accommodates preexisting binding of transcription factors such as Yin Yang 1 (YY1) at the basal state. We conclude that Xist is necessary for gene-specific silencing during XCI maintenance and impacts lineage-specific cell differentiation and proliferation during hematopoiesis.


Assuntos
RNA Longo não Codificante , Inativação do Cromossomo X , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Feminino , Fibroblastos/metabolismo , Hematopoese/genética , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cromossomo X/metabolismo , Inativação do Cromossomo X/genética
19.
J Dent ; 124: 104219, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35817226

RESUMO

OBJECTIVE: Tissue engineering is promising for dental and craniofacial regeneration. The objectives of this study were to develop a novel xeno-free alginate-fibrin-platelet lysate hydrogel with human periodontal ligament stem cells (hPDLSCs) for dental regeneration, and to investigate the proliferation and osteogenic differentiation of hPDLSCs using hPL as a cell culture nutrient supplement. METHODS: hPDLSCs were cultured with Dulbecco's modified eagle medium (DMEM), DMEM + 10% fetal bovine serum (FBS), and DMEM + hPL (1%, 2.5%, and 5%). hPDLSCs were encapsulated in alginate-fibrin microbeads (Alg+Fib), alginate-hPL microbeads (Alg+hPL), or alginate-fibrin-hPL microbeads (Alg+Fib+hPL). hPDLSCs encapsulated in alginate microbeads were induced with an osteogenic medium containing hPL or FBS. Quantitative real-time polymerase chain reaction (qRT-PCR), alkaline phosphatase (ALP) activity, ALP staining, and alizarin red (ARS) staining was investigated. RESULTS: hPDLSCs were released faster from Alg+Fib+hPL than from Alg+hPL. At 14 days, ALP activity was 44.1 ± 7.61 mU/mg for Alg+Fib+hPL group, higher than 28.07 ± 5.15 mU/mg of Alg+Fib (p<0.05) and 0.95 ± 0.2 mU/mg of control (p<0.01). At 7 days, osteogenic genes (ALP, RUNX2, COL1, and OPN) in Alg+Fib+hPL and Alg+Fib were 3-10 folds those of control. At 21 days, the hPDLSC-synthesized bone mineral amount in Alg+Fib+hPL and Alg+Fib was 7.5 folds and 4.3 folds that of control group, respectively. CONCLUSIONS: The 2.5% hPL was determined to be optimal for hPDLSCs. Adding hPL into alginate hydrogel improved the viability of the hPDLSCs encapsulated in the microbeads. The hPL-based medium enhanced the osteogenic differentiation of hPDLSCs in Alg+Fib+hPL construct, showing a promising xeno-free approach for delivering hPDLSCs to enhance dental, craniofacial and orthopedic regenerations.


Assuntos
Osteogênese , Ligamento Periodontal , Alginatos/farmacologia , Diferenciação Celular/genética , Encapsulamento de Células , Proliferação de Células , Células Cultivadas , Fibrina , Humanos , Hidrogéis/farmacologia , Microesferas , Osteogênese/genética , Células-Tronco
20.
Biomed Res Int ; 2022: 7230167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35845957

RESUMO

High doses of tumor necrosis factor-α (TNF-α) suppress osteogenic differentiation of human dental pulp stem cells (hDPSCs). In the present study, we aimed to explore the role and potential regulatory mechanism of microRNA-138 (miR-138) in the osteogenic differentiation of hDPSCs after treatment with a high dose of TNF-α. The hDPSCs were cultured in osteogenic medium with or without 50 ng/ml TNF-α. The miR-138 levels were upregulated during osteogenic differentiation of the hDPSCs following TNF-α treatment. The miR-138 overexpression accelerated but miR-138 knockdown alleviated the TNF-α-induced suppression of the alkaline phosphatase activity, calcium deposition, and protein abundance of dentin sialophosphoprotein, dentin matrix protein 1, bone sialoprotein, and osteopontin during osteogenic differentiation induction of hDPSCs. Additionally, miR-138 overexpression accelerated but miR-138 knockdown alleviated the suppression of the focal adhesion kinase- (FAK-) extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway during osteogenic differentiation induction of hDPSCs under TNF-α treatment. In conclusion, miR-138 accelerates TNF-α-induced suppression of osteogenic differentiation of hDPSCs. Inactivation of the FAK-ERK1/2 signaling pathway may be one of the mechanisms underlying the effect of miR-138. Inhibition of miR-138 expression may be a strategy to weaken the inhibitory effect of high-dose TNF-α on the osteogenic differentiation of hDPSCs.


Assuntos
MicroRNAs , Osteogênese , Diferenciação Celular/genética , Células Cultivadas , Polpa Dentária/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Osteogênese/genética , Células-Tronco/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA