Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Medicinas Complementares
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nutrients ; 16(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38398881

RESUMO

This study aimed to determine the impact of a fiber supplement on body weight and composition in individuals with obesity with specific genetic polymorphisms. It involved 112 adults with obesity, each with at least one minor allele in the FTO, LEP, LEPR, or MC4R polymorphism. Participants were randomized to receive either a fiber supplement (glucomannan, inulin, and psyllium) or a placebo for 180 days. The experimental group showed significant reductions in body weight (treatment difference: -4.9%; 95% CI: -6.9% to -2.9%; p < 0.01) and BMI (treatment difference: -1.4 kg/m2; 95% CI: -1.7 to -1.2; p < 0.01) compared to placebo. Further significant decreases in fat mass (treatment difference: -13.0%; 95% CI: -14.4 to -11.7; p < 0.01) and visceral fat rating (treatment difference: -1.3; 95% CI: -1.6 to -1.0; p < 0.01) were noted. Homozygous minor allele carriers experienced greater decreases in body weight (treatment difference: -3.2%; 95% CI: -4.9% to -1.6%; p < 0.01) and BMI (treatment difference: -1.2 kg/m2; 95% CI: -2.0 to -0.4; p < 0.01) compared to heterozygous allele carriers. These carriers also had a more significant reduction in fat mass (treatment difference: -9.8%; 95% CI: -10.6 to -9.1; p < 0.01) and visceral fat rating (treatment difference: -0.9; 95% CI: -1.3 to -0.5; p < 0.01). A high incidence of gastrointestinal events was reported in the experimental group (74.6%), unlike the placebo group, which reported no side effects. Dietary supplementation with glucomannan, inulin, and psyllium effectively promotes weight loss and improves body composition in individuals with obesity, particularly those with specific genetic polymorphisms.


Assuntos
Inulina , Mananas , Psyllium , Adulto , Humanos , Psyllium/uso terapêutico , Polimorfismo de Nucleotídeo Único , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/epidemiologia , Peso Corporal/genética , Redução de Peso/genética , Suplementos Nutricionais , Índice de Massa Corporal , Receptor Tipo 4 de Melanocortina/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética
2.
J Nutr Biochem ; 123: 109512, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37907171

RESUMO

Long-term consumption of a high-fat diet (HFD) disrupts energy homeostasis and leads to weight gain. The fat mass and obesity-associated (FTO) gene has been consistently identified to be associated with HFD-induced obesity. The hypothalamus is crucial for regulating energy balance, and HFD-induced hypothalamic leptin resistance contributes to obesity. FTO, an N6-methyladenosine (m6A) RNA methylation regulator, may be a key mediator of leptin resistance. However, the exact mechanisms remain unclear. Therefore, the present study aims to investigate the association between FTO and leptin resistance. After HFD or standard diet (SD) feeding in male mice for 22 weeks, m6A-sequencing and western blotting assays were used to identify target genes and assess protein level, and molecular interaction changes. CRISPR/Cas9 gene knockout system was employed to investigate the potential function of FTO in leptin resistance and obesity. Our data showed that chemokine (C-X3-C motif) ligand 1 (CX3CL1) was a direct downstream target of FTO-mediated m6A modification. Furthermore, upregulation of FTO/CX3CL1 and suppressor of cytokine signaling 3 (SOCS3) in the hypothalamus impaired leptin-signal transducer and activator of transcription 3 signaling, resulting in leptin resistance and obesity. Compared to wild-type (WT) mice, FTO deficiency in leptin receptor-expressing neurons of the hypothalamus significantly inhibited the upregulation of CX3CL1 and SOCS3, and partially ameliorating leptin resistance under HFD conditions. Our findings reveal that FTO involved in the hypothalamic leptin resistance and provides novel insight into the function of FTO in the contribution to hypothalamic leptin resistance and obesity.


Assuntos
Dieta Hiperlipídica , Leptina , Animais , Masculino , Camundongos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Quimiocina CX3CL1/metabolismo , Dieta Hiperlipídica/efeitos adversos , Hipotálamo/metabolismo , Leptina/metabolismo , Camundongos Endogâmicos C57BL , Obesidade/genética , Obesidade/metabolismo , Proteínas Supressoras da Sinalização de Citocina/genética
3.
J Tradit Chin Med ; 43(6): 1072-1080, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37946469

RESUMO

OBJECTIVE: To explore whether fat mass and obesity associated proteins (FTO) is an important target of Qiteng Xiaozhuo granules (QTXZG,) medicated serum in regulating proliferation and apoptosis of glomerular mesangial cells. METHODS: Medicated serum was obtained from Sprague-Dawley (SD) rats administered intragastrically with QTXZG decoction. The optimal concentration and intervention time of medicated serum were selected with the cell counting kit 8 assay. Cell proliferation was assessed by 5-ethynyl-2'-deoxyuridine (EdU) and cell apoptosis was investigated using flow cytometry. The expression of FTO, Proliferating cell nuclear antigen, Cyclin D1, B-cell lymphoma 2 (Bcl2) and BCL2 assaciated X was detected by Western blot and Real-time quantitative polymerase chain reaction, respectively. Quantification of the m6A RNA methylation was utilized to determine the total level of m6A methylation modification. RESULTS: EdU and flow cytometry assays revealed that QTXZG medicated serum can remarkably inhibit proliferation and promote apoptosis of lipopolysaccharide (LPS)-induced human glomerular mesangial cells (HGMCs). The FTO overexpression plasmid could inhibit proliferation and promote apoptosis of LPS-induced HGMCs. The FTO inhibitor (FB23-2) can significantly attenuate the effect of QTZXG medicated serum on inhibiting excessive proliferation and promoting apoptosis. QTXZG medicated serum can significantly increase FTO expression and decrease the level of m6A methylation modification. CONCLUSIONS: FTO is a key target for QTXZG medicated serum in inhibiting excessive proliferation and promoting apoptosis of human glomerular mesangial cells.


Assuntos
Lipopolissacarídeos , Células Mesangiais , Ratos , Animais , Humanos , Células Mesangiais/metabolismo , Ratos Sprague-Dawley , Lipopolissacarídeos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proliferação de Células , Apoptose , Obesidade/tratamento farmacológico , Obesidade/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
4.
J Nutr Biochem ; 122: 109437, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37666478

RESUMO

Obesity has become a major health crisis in the past decades. Branched-chain amino acids (BCAA), a class of essential amino acids, exerted beneficial health effects with regard to obesity and its related metabolic dysfunction, although the underlying reason is unknown. Here, we show that BCAA supplementation alleviates high-fat diet (HFD)-induced obesity and insulin resistance in mice and inhibits adipogenesis in 3T3-L1 cells. Further, we find that BCAA prevent the mitotic clonal expansion (MCE) of preadipocytes by reducing cyclin A2 (CCNA2) and cyclin-dependent kinase 2 (CDK2) expression. Mechanistically, BCAA decrease the concentration of nicotinamide adenine dinucleotide phosphate (NADPH) in adipose tissue and 3T3-L1 cells by reducing glucose-6-phosphate dehydrogenase (G6PD) expression. The reduced NADPH attenuates the expression of fat mass and obesity-associated (FTO) protein, a well-known m6A demethylase, to increase the N6-methyladenosine (m6A) levels of Ccna2 and Cdk2 mRNA. Meanwhile, the high m6A levels of Ccna2 and Cdk2 mRNA are recognized by YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), which results in mRNA decay and reduction of their protein expressions. Overall, our data demonstrate that BCAA inhibit obesity and adipogenesis by reducing CDK2 and CCNA2 expression via an NADPH-FTO-m6A coordinated manner in vivo and in vitro, which raises a new perspective on the role of m6A in the BCAA regulation of obesity and adipogenesis.


Assuntos
Aminoácidos de Cadeia Ramificada , Obesidade , Camundongos , Animais , NADP , Aminoácidos de Cadeia Ramificada/metabolismo , Obesidade/metabolismo , Ciclo Celular , Adipogenia , RNA Mensageiro/metabolismo , Células 3T3-L1 , Dieta Hiperlipídica/efeitos adversos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo
5.
Lipids Health Dis ; 22(1): 17, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717943

RESUMO

BACKGROUND: Nonalcoholic fatty liver, or NAFLD, is the most common chronic liver ailment. It is characterized by excessive fat deposition in hepatocytes of individuals who consume little or no alcohol and are unaffected by specific liver damaging factors. It is also associated with extrahepatic manifestations such as chronic kidney disease, cardiovascular disease, and sleep apnea. The global burden of NAFLD is increasing at an alarming rate. However, no pharmacologically approved drugs against NAFLD are available owing to their complex pathophysiology. Genome-wide association studies have uncovered SNPs in the fat mass and obesity-associated gene (FTO) that are robustly associated with obesity and higher BMI. The prevalence of NAFLD increases in parallel with the increasing prevalence of obesity. Since FTO might play a crucial role in NAFLD development, the current study identified five potentially deleterious mutations from 383 ns-SNPs in the human FTO gene using various in silico tools. METHODS: This study aims to identify potentially deleterious nonsynonymous SNPs (ns-SNPs) employing various in silico tools. Additionally, molecular modeling approaches further studied the structural changes caused by identified SNPs. Moreover, molecular dynamics studies finally investigated the binding potentials of the phytochemicals resveratrol, rosmarinic acid, and capsaicin with different mutant forms of FTO. RESULTS: The current investigation has five potentially deleterious mutations from 383 ns-SNPs in the human FTO gene using various in silico tools. The present study identified five nsSNPs of the human gene FTO, Gly103Asp, Arg96Pro, Tyr295Cys, and Arg322Gln, with an apparent connection to the disease condition. Modulation of demethylation activity by phytomolecule scanning explains the hepatoprotective action of molecules. The current investigation also suggested that predicted mutations did not affect the binding ability of three polyphenols: rosamarinic acid, resveratrol, and capsaicin. CONCLUSION: This study showed that the predicted mutations in FTO did not affect the binding of three polyphenols. Thus, these three molecules can significantly aid drug development against FTO and NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Resveratrol/farmacologia , Estudo de Associação Genômica Ampla , Capsaicina/metabolismo , Fígado/metabolismo , Obesidade/tratamento farmacológico , Obesidade/genética , Obesidade/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética
6.
Nutrition ; 105: 111870, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36368262

RESUMO

Effects of dietary fiber on obesity-related traits in previous studies were inconsistent. The aim of the present study was to explore whether variants in genes related to satiety and appetite can modulate the effect of dietary fiber on obesity-related traits. Fifty-one overweight or obese adults were randomly allocated to two groups to consume control biscuits (n = 24) or biscuits containing defatted flaxseed flour (n = 27) at breakfast for 8 wk. Four single-nucleotide polymorphisms related to satiety and appetite were genotyped: rs11076023 on the FTO gene, rs16147 on the NPY gene, rs155971 on the PCSK1 gene, and rs6265 on the BDNF gene. A linear regression model was used to evaluate the gene-diet interaction between obesity-related traits. Compared with control biscuits, defatted flaxseed-flour biscuits significantly reduced body weight (P = 0.001) and body mass index (BMI) (P = 0.001) in A-allele carriers (AA + AT) of rs11076023 on the FTO gene but not in non-carriers (TT) (P for the interaction = 0.005 and 0.006) and decreased fasting serum glucose in participants with CC genotype (P = 0.019) but had less effect in T-allele carriers (TT + TC) (P = 0.021) of rs16147 on the NPY gene (P for the interaction = 0.002). Compared with the control biscuits, defatted flaxseed flour significantly reduced body weight (P < 0.001) in T-allele carriers (TT + TC) of rs155971 on the PCSK1 gene but not in non-carriers (CC) (P for the interaction = 0.041) and reduced body weight (P = 0.001) and BMI (P < 0.001) in A-allele carriers (AA + AG) of rs6265 on the BDNF gene but not non-carriers (GG) (P for the interaction = 0.017 and 0.018). Variants of genes related to satiety and appetite could modulate the effect of defatted flaxseed flour on obesity-related traits.


Assuntos
Suplementos Nutricionais , Linho , Farinha , Obesidade , Sobrepeso , Adulto , Humanos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Índice de Massa Corporal , Peso Corporal , Fator Neurotrófico Derivado do Encéfalo/genética , China , Dieta , Fibras na Dieta , Genótipo , Obesidade/genética , Sobrepeso/genética , Polimorfismo de Nucleotídeo Único , Sementes , Neuropeptídeo Y/genética
7.
Arq. ciências saúde UNIPAR ; 26(2): 159-174, maio-ago. 2022.
Artigo em Português | LILACS | ID: biblio-1372969

RESUMO

A obesidade é definida pelo excesso de gordura corporal acumulada no tecido adiposo quando o indivíduo atinge valores de IMC igual ou superior a 30 Kg/m2. Constitui um dos principais fatores de risco para várias doenças não transmissíveis (DNTs) como por exemplo, diabetes mellitus tipo 2 (DM2), doenças cardiovasculares, hipertensão arterial, acidente vascular cerebral e até mesmo o câncer. Embora a obesidade esteja diretamente relacionada com o consumo calórico excessivo em relação ao gasto energético diário, sua etiologia pode estar associada aos baixos níveis de atividade física, às alterações neuroendócrinas e aos fatores genéticos. Considerando o componente genético, esta pode ser classificada como sindrômicas e estar associada às alterações cromossômicas estruturais ou numéricas, ou como não sindrômica, quando relacionada, principalmente, com os polimorfismos de nucleotídeos simples (SNPs) em alelos que atuam como herança monogênica, ou ainda com a interação vários genes (poligênica multifatorial). Apesar de existirem muitas etiologias diferentes, normalmente a obesidade é tratada a partir da mesma abordagem, desconsiderando a fisiologia que a desencadeou. Dessa forma, o objetivo do presente trabalho foi abordar a obesidade genética não sindrômica por meio a) da descrição breve de perspectiva histórica sobre seu entendimento; b) da exposição dos principais mecanismos moleculares envolvidos com o controle de peso; c) da compilação dos principais genes e SNPs relacionados; d) da definição dos principais genes; e e) da abordagem das principais perspectivas de intervenção.


Obesity is defined as excess body fat accumulated in the adipose tissue when the individual reaches BMI values equal to or greater than 30 kg/m2. It is one of the main risk factors for several non-communicable diseases (NCDs), such as Type 2 Diabetes mellitus (T2D), cardiovascular diseases, high blood pressure, stroke and even cancer. Although obesity is directly related to excessive calorie intake in relation to daily energy expenditure, its etiology may be associated with low levels of physical activity, neuroendocrine changes, and genetic factors. Considering the genetic component, it can be classified as syndromic and be associated with chromosomal or numerical changes, or as non-syndromic and being related mainly to single nucleotide polymorphisms (SNPs) in alleles that act as monogenic inheritance, or with an interaction of several genes (multifactorial polygenic). Although there are many different etiologies, obesity is usually treated using the same approach, disregarding the physiology that triggered it. Thus, the aim of this study was to address non-syndromic genetic obesity through a) a brief description of a historical perspective on its understanding; b) the exposure of the main molecular mechanisms involved in weight control, c) the compilation of the key genes and related SNPs, d) the definition of the key genes and e) the approach of the main intervention representations.


Assuntos
Humanos , Masculino , Feminino , Peso Corporal/genética , Epigenômica , Genes/genética , Obesidade/genética , Índice de Massa Corporal , Expressão Gênica/genética , Polimorfismo de Nucleotídeo Único/genética , Receptor Tipo 4 de Melanocortina/genética , Melanocortinas/genética , Receptores para Leptina/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Hipotálamo/fisiopatologia , Obesidade/fisiopatologia
8.
J Am Nutr Assoc ; 41(6): 594-599, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34283000

RESUMO

OBJECTIVE: The aim of this prospective study was to investigate the potential influence of the fat mass and obesity-associated gene (FTO), SNP rs9939609, on body mass index (BMI) and body composition in women with anorexia nervosa (AN) undergoing intensive nutrition therapy. METHOD: Twenty-five female patients with AN (20.1 ± 2.3 years; BMI, 15.5 ± 0.9 kg/m2) were included for 12 weeks of treatment with a high-energy diet. FTO was genotyped and body composition parameters were assessed by dual-energy X-ray absorptiometry and peripheral quantitative computed tomography at baseline and after 12 weeks. RESULTS: The distribution of the different FTO genotypes were as follows: AA, 24%; TA, 48%; and TT, 28%. Patients gained a median of 9.8 kg (range, 5.5-17.0 kg) and BMI increased to 19.0 ± 0.9 kg/m2. The increase in BMI, fat mass, and the quotient fat/muscle area was significant for the TT and TA genotype groups. Total lean mass was stable in all genotype groups. We could not demonstrate any difference among the 3 FTO genotypes related to the increases in BMI during nutrition therapy when the additive, dominant, and recessive models of inheritance were applied. CONCLUSIONS: Irrespective of the FTO genotype, there was no difference in weight response during nutrition therapy. Hence, in this small study there was limited support for individualized nutrition therapy for AN based on FTO genotype.


Assuntos
Anorexia Nervosa , Terapia Nutricional , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Anorexia Nervosa/genética , Composição Corporal/genética , Feminino , Humanos , Polimorfismo de Nucleotídeo Único/genética , Estudos Prospectivos , Suécia
9.
Mol Cell Endocrinol ; 542: 111523, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34843901

RESUMO

The GABAA receptor (GABAAR) plays important roles in the regulation of Mn-induced GnRH secretion in immature female rats. However, the underlying molecular mechanisms remain unknown. Here, we assessed whether FTO and its substrate m6A are correlated with GABAAR expression in GnRH neurons after treatment with Mn in vitro and in vivo. Our study indicated that Mn treatment increased the expression of GnRH mRNA and decreased the levels of GABAAR protein but had no effect on GABAAR mRNA. Moreover, Mn upregulated the levels of FTO and inhibited global cellular m6A levels and GABAAα2 mRNA m6A levels. Knockdown of FTO increased the expression of GABAAR protein and GABAAα2 mRNA m6A levels. Data from rat models further demonstrate that inhibition of FTO suppressed GABAAR protein expression in the hypothalamus, causing delayed puberty onset. Collectively, our findings suggest that FTO-dependent m6A demethylation plays a critical role in regulating GABAAR mRNA processing in GnRH neurons.


Assuntos
Hormônio Liberador de Gonadotropina , Puberdade Precoce , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Puberdade Precoce/induzido quimicamente , Puberdade Precoce/genética , Puberdade Precoce/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Maturidade Sexual
10.
Stroke ; 52(7): 2393-2403, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34102854

RESUMO

Background and Purpose: Hemorrhage-caused gene changes in the thalamus likely contribute to thalamic pain genesis. RNA N6-methyladenosine modification is an additional layer of gene regulation. Whether FTO (fat-mass and obesity-associated protein), an N6-methyladenosine demethylase, participates in hemorrhage-induced thalamic pain is unknown. Methods: Expression of Fto mRNA and protein was assessed in mouse thalamus after hemorrhage caused by microinjection of Coll IV (type IV collagenase) into unilateral thalamus. Effect of intraperitoneal administration of meclofenamic acid (a FTO inhibitor) or microinjection of adeno-associated virus 5 (AAV5) expressing Cre into the thalamus of Ftofl/fl mice on the Coll IV microinjection­induced TLR4 (Toll-like receptor 4) upregulation and nociceptive hypersensitivity was examined. Effect of thalamic microinjection of AAV5 expressing Fto (AAV5-Fto) on basal thalamic TLR4 expression and nociceptive thresholds was also analyzed. Additionally, level of N6-methyladenosine in Tlr4 mRNA and its binding to FTO or YTHDF2 (YTH N6-methyladenosine RNA binding protein 2) were observed. Results: FTO was detected in neuronal nuclei of thalamus. Level of FTO protein, but not mRNA, was time-dependently increased in the ipsilateral thalamus on days 1 to 14 after Coll IV microinjection. Intraperitoneal injection of meclofenamic acid or adeno-associated virus-5 expressing Cre microinjection into Ftofl/fl mouse thalamus attenuated the Coll IV microinjection­induced TLR4 upregulation and tissue damage in the ipsilateral thalamus and development and maintenance of nociceptive hypersensitivities on the contralateral side. Thalamic microinjection of AAV5-Fto increased TLR4 expression and elicited hypersensitivities to mechanical, heat and cold stimuli. Mechanistically, Coll IV microinjection produced an increase in FTO binding to Tlr4 mRNA, an FTO-dependent loss of N6-methyladenosine sites in Tlr4 mRNA and a reduction in the binding of YTHDF2 to Tlr4 mRNA in the ipsilateral thalamus. Conclusions: Our findings suggest that FTO participates in hemorrhage-induced thalamic pain by stabilizing TLR4 upregulation in thalamic neurons. FTO may be a potential target for the treatment of this disorder.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/biossíntese , Hemorragia Cerebral/metabolismo , Neuralgia/metabolismo , Neurônios/metabolismo , Tálamo/metabolismo , Receptor 4 Toll-Like/biossíntese , Adenosina/administração & dosagem , Adenosina/análogos & derivados , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Animais , Hemorragia Cerebral/genética , Hemorragia Cerebral/patologia , Técnicas de Silenciamento de Genes/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microinjeções/métodos , Neuralgia/genética , Neuralgia/patologia , Neurônios/patologia , Tálamo/patologia , Receptor 4 Toll-Like/genética
11.
Semin Cell Dev Biol ; 110: 43-50, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32466971

RESUMO

An emerging number of rare genetic disorders termed ciliopathies are associated with pediatric obesity. It is becoming clear that the mechanisms associated with cilia dysfunction and obesity in these syndromes are complex. In addition to ciliopathic syndromic forms of obesity, several cilia-associated signaling gene mutations also lead to morbid obesity. While cilia have critical and diverse functions in energy homeostasis including their roles in centrally mediated food intake as well as in peripheral tissues, many questions remain. Here, we briefly discuss the syndromic ciliopathies and monoallelic cilia signaling gene mutations associated with obesity. We also describe potential ways cilia may be involved in common obesity. We discuss how neuronal cilia impact food intake potentially through leptin signaling and changes in ciliary G protein-coupled receptor (GPCR) signaling. We highlight several recent studies that have implicated the potential for cilia in peripheral tissues such as adipose and the pancreas to contribute to metabolic dysfunction. Then we discuss the potential for cilia to impact energy homeostasis through their roles in both development and adult tissue homeostasis. The studies discussed in this review highlight how a comprehensive understanding of the requirement of cilia for the regulation of diverse biological functions will contribute to our understanding of common forms of obesity.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Cílios/metabolismo , Ciliopatias/genética , Leptina/genética , Obesidade Mórbida/genética , Obesidade Infantil/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Adulto , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Criança , Cílios/patologia , Ciliopatias/metabolismo , Ciliopatias/patologia , Ingestão de Alimentos/genética , Regulação da Expressão Gênica , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Leptina/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Obesidade Mórbida/metabolismo , Obesidade Mórbida/patologia , Pâncreas/metabolismo , Pâncreas/patologia , Obesidade Infantil/metabolismo , Obesidade Infantil/patologia , Transdução de Sinais
12.
Trends Endocrinol Metab ; 31(5): 368-377, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32035736

RESUMO

Genome-wide association studies (GWASs) have identified SNPs of the fat mass and obesity (FTO) gene as the most important risk alleles for obesity. However, how the presence of risk alleles affect phenotype is still a matter of intense investigation. In 2014, a study revealed that long-range enhancers from the intronic regions of the FTO gene regulate iroquois-class homeobox protein (IRX)3 expression. IRX3 is expressed in hypothalamic pro-opiomelanocortin (POMC) neurons and changes in its expression levels affect body adiposity by modifying food intake and energy expenditure. These findings have placed IRX3 as a potential target for the treatment of obesity. Here, we review studies that evaluated the roles of IRX3 in development, neurogenesis, and body energy homeostasis.


Assuntos
Tecido Adiposo Marrom/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Metabolismo Energético/fisiologia , Proteínas de Homeodomínio/metabolismo , Hipotálamo/metabolismo , Obesidade/metabolismo , Pró-Opiomelanocortina/metabolismo , Fatores de Transcrição/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Animais , Metabolismo Energético/genética , Proteínas de Homeodomínio/genética , Humanos , Obesidade/genética , Fatores de Transcrição/genética
13.
J Physiol Sci ; 69(6): 981-991, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31728912

RESUMO

Hypoglycemia-associated autonomic failure (HAAF) is a serious complication of diabetes which is associated with the absence of physiological homeostatic counter-regulatory mechanisms that are controlled by the hypothalamus and sympathetic nervous system. Identification of biomarkers for early detection of HAAF requires an advanced understanding of molecular signature of hypoglycemia which is yet to be identified. The outcomes of the present study have shown that the viability and the apoptotic rate of the hypothalamic neurons (mHypoE-N39) were decreased significantly due to hypoglycemia in a dose-dependent fashion (p < 0.05). Although there are more than 1000 miRNAs differentially expressed in hypothalamus, only twelve miRNAs (miR-7a, miR-7b, miR-9, miR-29b, miR-29c, miR-30a, miR-30b, miR-30c, miR-101b-3p, miR-181a-5p, miR-378-3p and miR-873-5p) were correlated to two main hypothalamic regulatory proteins, FOS and FTO. Expression of these proteins was very sensitive to hypoglycemia. We demonstrated that hypoglycemia modulates the expression of hypothalamic miRNAs that are related to FOS and FTO.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Glucose/administração & dosagem , Hipotálamo/citologia , MicroRNAs/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-fos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
J Mol Cell Biol ; 11(2): 118-132, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29771336

RESUMO

Fat mass and obesity-associated (FTO) protein is a ferrous ion (Fe2+)/2-oxoglutarate (2-OG)-dependent demethylase preferentially catalyzing m6A sites in RNA. The FTO gene is highly expressed in the hypothalamus with fluctuation in response to various nutritional conditions, which is believed to be involved in the control of whole body metabolism. However, the underlying mechanism in response to different nutritional cues remains poorly understood. Here we show that ketogenic diet-derived ketone body ß-hydroxybutyrate (BHB) transiently increases FTO expression in both mouse hypothalamus and cultured cells. Interestingly, the FTO protein represses Fto promoter activity, which can be offset by BHB. We then demonstrate that FTO binds to its own gene promoter, and Fe2+, but not 2-OG, impedes this binding and increases FTO expression. The BHB-induced occupancy of the promoter by FTO influences the assembly of the basal transcriptional machinery. Importantly, a loss-of-function FTO mutant (I367F), which induces a lean phenotype in FTOI367F mice, exhibits augmented binding and elevated potency to repress the promoter. Furthermore, FTO fails to bind to its own promoter that promotes FTO expression in the hypothalamus of high-fat diet-induced obese and 48-h fasting mice, suggesting a disruption of the stable expression of this gene. Taken together, this study uncovers a new function of FTO as a Fe2+-sensitive transcriptional repressor dictating its own gene switch to form an auto-regulatory loop that may link with the hypothalamic control of body weight.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Peso Corporal/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica , Hipotálamo/metabolismo , Camundongos , Células NIH 3T3 , Obesidade , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Nutrients ; 10(10)2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241328

RESUMO

Maternal diet and gestational hyperglycaemia have implications for offspring health. Leptin (LEP) and fat mass and obesity-associated (FTO) alleles are known to influence body fat mass in humans, potentially via effects on appetite. We hypothesized that expression of Fto, Lep, and other appetite-related genes (Argp, Npy, Pomc, Cart, Lepr) in the offspring of female mice are influenced by the glycaemic index (GI) of carbohydrates in the maternal diet. C57BL/6 mice were randomly assigned to low or high GI diets and mated with chow-fed males at eight weeks of age. Male pups were weaned at four weeks and randomly divided into two groups, one group following their mother's diet (LL and HH), and one following the standard chow diet (LC and HC) to 20 weeks. Fto expression was 3.8-fold higher in the placenta of mothers fed the high GI diet (p = 0.0001) and 2.5-fold higher in the hypothalamus of 20-week old offspring fed the high GI (HH vs. LL, p < 0.0001). By contrast, leptin gene (Lep) expression in visceral adipose tissue was 4.4-fold higher in four-week old offspring of low GI mothers (LC vs. HC, p < 0.0001) and 3.3-fold higher in visceral adipose tissue of 20-week old animals (LL vs. HH, p < 0.0001). Plasma ghrelin and leptin levels, and hypothalamic appetite genes were also differentially regulated by maternal and offspring diet. These findings provide the first evidence in an animal model that maternal high GI dietary carbohydrates that are digested and absorbed faster may contribute to programming of appetite in offspring.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Carboidratos da Dieta/administração & dosagem , Índice Glicêmico , Leptina/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Estado Nutricional , Efeitos Tardios da Exposição Pré-Natal , Proteína Relacionada com Agouti/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Animais , Carboidratos da Dieta/metabolismo , Feminino , Regulação da Expressão Gênica , Hipotálamo/metabolismo , Gordura Intra-Abdominal/metabolismo , Leptina/genética , Masculino , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeo Y/metabolismo , Placenta/metabolismo , Gravidez , Pró-Opiomelanocortina/metabolismo , Receptores para Leptina/metabolismo
16.
BMC Complement Altern Med ; 18(1): 26, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29361938

RESUMO

BACKGROUND: Overweight and obesity are considered major health problems that contribute to increase mortality and quality of life. Both conditions have a high prevalence across the world reaching epidemic numbers. Our aim was to evaluate the effects of the administration of Garcinia cambogia (GC) and Glucomannan (GNN) on long-term weight loss in people with overweight or obesity. METHODS: Prospective, not-randomized controlled intervention trial was conducted. We treated 214 subjects with overweight or obesity with GC and GNN (500 mg twice a day, each) for 6 months evaluating weight, fat mass, visceral fat, basal metabolic rate, and lipid and glucose blood profiles comparing them with basal values. Some patients were carriers of polymorphisms PLIN4 -11482G > A-, fat mass and obesity-associated (FTO) -rs9939609 A/T- and ß-adrenergic receptor 3 (ADRB3) -Trp64Arg. RESULTS: Treatment produced weight loss, reducing fat mass, visceral fat, lipid and blood glucose profiles while increasing basal metabolic rate. Results were independent of sex, age or suffering from hypertension, diabetes mellitus type 2 or dyslipidemia and were attenuated in carriers of PLIN4, FTO, Trp64Arg polymorphisms. CONCLUSIONS: Administration of GC and GNN reduce weight and improve lipid and glucose blood profiles in people with overweight or obesity, although the presence of polymorphisms PLIN4, FTO and ADRB3 might hinder in some degree these effects. ISRCTN78807585, 19 September 2017, retrospective study.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Garcinia cambogia , Mananas , Obesidade , Perilipina-4/genética , Receptores Adrenérgicos beta 3/genética , Redução de Peso , Adulto , Amorphophallus/química , Feminino , Humanos , Masculino , Mananas/farmacologia , Mananas/uso terapêutico , Obesidade/tratamento farmacológico , Obesidade/epidemiologia , Obesidade/genética , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Polimorfismo Genético/genética , Estudos Prospectivos , Redução de Peso/efeitos dos fármacos , Redução de Peso/genética
17.
Biomed Res Int ; 2017: 6280972, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29098158

RESUMO

The root of Angelica sinensis (RAS) is a traditional Chinese medicine used for preventing and treating various diseases. In this study, we assessed RAS supplementation effects on body weight and the FTO gene expression and methylation status in a high-fat-diet (HFD) induced obese mouse model. Female obese mice were divided into groups according to RAS dosage in diet as follows: normal diet, HFD diet (HC), HFD with low-dosage RAS (DL), HFD with medium-dosage RAS (DM), and HFD with high-dosage RAS (DH). After RAS supplementation for 4 weeks, body weight suppression and FTO expression in DH mice were significantly higher than in HC mice, whereas no significant change in FTO expression was detected between DM and DL mice or in their offspring. Bisulfite sequencing PCR (BSP) revealed that the CpG island in the FTO promoter was hypermethylated up to 95.44% in the HC group, 91.67% in the DH group, and 90.00% in the normal diet group. Histological examination showed that adipocytes in the DH group were smaller than those in the HC group, indicating a potential role of RAS in obesity. This study indicated that RAS could ameliorate obesity induced by HFD and that the molecular mechanism might be associated with the expression of the FTO gene.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Medicamentos de Ervas Chinesas/administração & dosagem , Obesidade/tratamento farmacológico , Aumento de Peso/efeitos dos fármacos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/antagonistas & inibidores , Angelica sinensis , Animais , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Medicamentos de Ervas Chinesas/química , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Obesos , Obesidade/metabolismo , Obesidade/patologia
18.
Indian Heart J ; 69(2): 277-281, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28460778

RESUMO

The various studies have examined the relationship between FTO gene expression and macronutrients levels. In order to obtain better viewpoint from this interactions, all of existing studies were reviewed systematically. All published papers have been obtained and reviewed using standard and sensitive keywords from databases such as CINAHL, Embase, PubMed, PsycInfo, and the Cochrane, from 1990 to 2016. The results indicated that all of 6 studies that met the inclusion criteria (from a total of 428 published article) found FTO gene expression changes at short-term follow-ups. Four of six studies found an increased FTO gene expression after calorie restriction, while two of them indicated decreased FTO gene expression. The effect of protein, carbohydrate and fat were separately assessed and suggested by all of six studies. In Conclusion, The level of FTO gene expression in hypothalamus is related to macronutrients levels. Future research should evaluate the long-term impact of dietary interventions.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Doenças Cardiovasculares , Alimentos , Regulação da Expressão Gênica , Predisposição Genética para Doença , Hipotálamo/metabolismo , Obesidade , Dioxigenase FTO Dependente de alfa-Cetoglutarato/biossíntese , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/genética , Humanos , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo , Fatores de Risco
20.
J Clin Invest ; 126(5): 1897-910, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27064284

RESUMO

Noncoding polymorphisms in the fat mass and obesity-associated (FTO) gene represent common alleles that are strongly associated with effects on food intake and adiposity in humans. Previous studies have suggested that the obesity-risk allele rs8050136 in the first intron of FTO alters a regulatory element recognized by the transcription factor CUX1, thereby leading to decreased expression of FTO and retinitis pigmentosa GTPase regulator-interacting protein-1 like (RPGRIP1L). Here, we evaluated the effects of rs8050136 and another potential CUX1 element in rs1421085 on expression of nearby genes in human induced pluripotent stem cell-derived (iPSC-derived) neurons. There were allele-dosage effects on FTO, RPGRIP1L, and AKT-interacting protein (AKTIP) expression, but expression of other vicinal genes, including IRX3, IRX5, and RBL2, which have been implicated in mediating functional effects, was not altered. In vivo manipulation of CUX1, Fto, and/or Rpgrip1l expression in mice affected adiposity in a manner that was consistent with CUX1 influence on adiposity via remote effects on Fto and Rpgrip1l expression. In support of a mechanism, mice hypomorphic for Rpgrip1l exhibited hyperphagic obesity, as the result of diminished leptin sensitivity in Leprb-expressing neurons. Together, the results of this study indicate that the effects of FTO-associated SNPs on energy homeostasis are due in part to the effects of these genetic variations on hypothalamic FTO, RPGRIP1L, and possibly other genes.


Assuntos
Alelos , Dioxigenase FTO Dependente de alfa-Cetoglutarato , Regulação da Expressão Gênica , Íntrons , Obesidade , Polimorfismo de Nucleotídeo Único , Proteínas , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Proteínas do Citoesqueleto , Metabolismo Energético/genética , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Camundongos , Camundongos Transgênicos , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia , Proteínas/genética , Proteínas/metabolismo , Proteína p130 Retinoblastoma-Like/biossíntese , Proteína p130 Retinoblastoma-Like/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA