Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338810

RESUMO

New substances with antimicrobial properties are needed to successfully treat emerging human, animal, or plant pathogens. Seven clerodane diterpenes, previously isolated from giant goldenrod (Solidago gigantea) root, were tested against Gram-positive Bacillus subtilis, Bacillus spizizenii and Rhodococcus fascians by measuring minimal bactericidal concentration (MBC), minimal inhibitory concentration (MIC) and half-maximal inhibitory concentration (IC50). Two of them, Sg3a (a dialdehyde) and Sg6 (solidagoic acid B), were proved to be the most effective and were selected for further study. Bacillus spizizenii was incubated with the two diterpenes for shorter (1 h) or longer (5 h) periods and then subjected to genome-wide transcriptional analyses. Only a limited number of common genes (28 genes) were differentially regulated after each treatment, and these were mainly related to the restoration of cell membrane integrity and to membrane-related transports. Changes in gene activity indicated that, among other things, K+ and Na+ homeostasis, pH and membrane electron transport processes may have been affected. Activated export systems can be involved in the removal of harmful molecules from the bacterial cells. Inhibition of bacterial chemotaxis and flagellar assembly, as well as activation of genes for the biosynthesis of secondary metabolites, were observed as a general response. Depending on the diterpenes and the duration of the treatments, down-regulation of the protein synthesis-related, oxidative phosphorylation, signal transduction and transcription factor genes was found. In other cases, up-regulation of the genes of oxidation-reduction processes, sporulation and cell wall modification could be detected. Comparison of the effect of diterpenes with the changes induced by different environmental and nutritional conditions revealed several overlapping processes with stress responses. For example, the Sg6 treatment seems to have caused a starvation-like condition. In summary, there were both common and diterpene-specific changes in the transcriptome, and these changes were also dependent on the length of treatments. The results also indicated that Sg6 exerted its effect more slowly than Sg3a, but ultimately its effect was greater.


Assuntos
Anti-Infecciosos , Diterpenos Clerodânicos , Diterpenos , Solidago , Animais , Humanos , Diterpenos Clerodânicos/farmacologia , Solidago/química , Diterpenos/farmacologia , Bacillus subtilis , Membrana Celular
2.
Fitoterapia ; 174: 105878, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417683

RESUMO

Six previously undescribed clerodane diterpenes, cardorubellas A-F (1-6), along with seven known ones (7-13), were isolated from the aerial parts of Callicarpa pseudorubella. Their chemical structures were established by analysis of 1D and 2D NMR, HR-ESI-MS, X-ray diffraction, and electronic circular dichroism (ECD) data. Notably, cardorubella B (2) represented the first examples of naturally occurring succinic anhydride-containing clerodane diterpenes derivatives. The anti-proliferative activities of these compounds were assessed. Remarkably, compound 2 exhibited comparable inhibitory activity against HEL cell lines, surpassing the positive control with an IC50 value of 14.01 ± 0.77 µM, compared to 17.02 ± 4.70 µM for 5-fluorouracil.


Assuntos
Callicarpa , Diterpenos Clerodânicos , Diterpenos , Diterpenos Clerodânicos/farmacologia , Diterpenos Clerodânicos/química , Callicarpa/química , Estrutura Molecular , Linhagem Celular , Espectroscopia de Ressonância Magnética , Diterpenos/farmacologia
3.
Phytochemistry ; 218: 113932, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38056516

RESUMO

Twenty-six clerodane diterpenoids have been isolated from T. sagittata, a plant species of traditional Chinese medicine Radix Tinosporae, also named as "Jin Guo Lan". Among them, there are eight previously undescribed clerodane diterpenoids (tinotanoids A-H: 1-8), and 18 known diterpenoids (9-26). The absolute configurations of compounds 1, 2, 5, 8, 13, 17 and 20 were determined by single-crystal X-ray diffraction. Compound 1 is the first example of rotameric clerodane diterpenoid with a γ-lactone ring which is constructed between C-11 and C-17; meanwhile, compounds 3 and 4 are two pairs of inseparable epimers. Compounds 2, 12 and 17 demonstrated excellent inhibitory activity on NO production against LPS-stimulated BV-2 cells with IC50 values of 9.56 ± 0.69, 9.11 ± 0.53 and 11.12 ± 0.70 µM, respectively. These activities were significantly higher than that of the positive control minocycline (IC50 = 23.57 ± 0.92 µM). Moreover, compounds 2, 12 and 17 dramatically reduced the LPS-induced upregulation of iNOS and COX-2 expression. Compounds 2 and 12 significantly inhibited the levels of pro-inflammatory cytokines TNF-α, IL-1ß and IL-6 that were increased by LPS stimulation.


Assuntos
Diterpenos Clerodânicos , Menispermaceae , Tinospora , Diterpenos Clerodânicos/farmacologia , Diterpenos Clerodânicos/química , Tinospora/química , Lipopolissacarídeos/farmacologia , Raízes de Plantas/química , Estrutura Molecular
4.
Fitoterapia ; 168: 105519, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37121407

RESUMO

Eleven undescribed 16,17-dinor-abietane diterpenoids, caseazins A-K (1-11), and ten known diterpenoids (12-21) were isolated from the twigs and leaves of Casearia kurzii (Flacourtiaceae). Caseazins A-K were the first abietane -type dinorditerpenoids to have been isolated from the plant of Casearia kurzii. Their chemical structures were elucidated using a combination of 1D and 2D NMR spectroscopy and mass spectrometry. The absolute configurations of 5 and 10 were established by electronic circular dichroism calculations. Moreover, compounds 2, 3, 13, 14, and 18 exhibited anti-inflammatory activity with IC50 values of 0.17, 0.36, 6.55, 1.30, and 4.53 µM, respectively. IL-1ß and caspase-1 analyses suggested that compound 14 inhibited NLRP3 inflammasome activation and blocked macrophage pyroptosis.


Assuntos
Casearia , Diterpenos Clerodânicos , Diterpenos , Abietanos/farmacologia , Abietanos/química , Casearia/química , Estrutura Molecular , Diterpenos Clerodânicos/farmacologia , Diterpenos/farmacologia , Espectroscopia de Ressonância Magnética
5.
Molecules ; 28(3)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36770864

RESUMO

Casearia coriacea Vent., an endemic plant from the Mascarene Islands, was investigated following its antiplasmodial potentialities highlighted during a previous screening. Three clerodane diterpene compounds were isolated and identified as being responsible for the antiplasmodial activity of the leaves of the plant: caseamembrin T (1), corybulosin I (2), and isocaseamembrin E (3), which exhibited half maximal inhibitory concentrations (IC50) of 0.25 to 0.51 µg/mL. These compounds were tested on two other parasites, Leishmania mexicana mexicana and Trypanosoma brucei brucei, to identify possible selectivity in one of them. Although these products possess both antileishmanial and antitrypanosomal properties, they displayed selectivity for the malaria parasite, with a selectivity index between 6 and 12 regarding antitrypanosomal activity and between 25 and 100 regarding antileishmanial activity. These compounds were tested on three cell lines, breast cancer cells MDA-MB-231, pulmonary adenocarcinoma cells A549, and pancreatic carcinoma cells PANC-1, to evaluate their selectivity towards Plasmodium. This has not enabled us to establish selectivity for Plasmodium, but has revealed the promising activity of compounds 1-3 (IC50 < 2 µg/mL), particularly against pancreatic carcinoma cells (IC50 < 1 µg/mL). The toxicity of the main compound, caseamembrin T (1), was then evaluated on zebrafish embryos to extend our cytotoxicity study to normal, non-cancerous cells. This highlighted the non-negligible toxicity of caseamembrin T (1).


Assuntos
Antimaláricos , Casearia , Diterpenos Clerodânicos , Animais , Diterpenos Clerodânicos/farmacologia , Antimaláricos/farmacologia , Peixe-Zebra , Folhas de Planta , Extratos Vegetais/farmacologia , Neoplasias Pancreáticas
6.
Fitoterapia ; 165: 105394, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36526220

RESUMO

Callicarpa rubella is a characteristic folk herb in the genus Callicarpa, and has abundant ethnobotanical usage as indigenous medicine in Lingnan area of P. R. China. However, the phytochemical and pharmacological properties of C. rubella was rarely investigated. Now, three new diterpenoids, named rubellapene A-C (1-3), along with five known analogues (4-8), were isolated from C. rubella. Their structures were determined by spectroscopic methods, quantum chemical electronic circular dichroism calculations and single-crystal X-ray diffraction analysis. Notably, the norditerpenoids C18 of clerodane type (rubellapene B) was rarely found in the genus Callicarpa. The liver protective effects of all of the isolates (1-8) were evaluated by the changes of cell viability and transaminase content of AST and ALT in H2O2-induced BRL cells. Compound 1, 3-8 exhibited that potent liver protective effects at different levels.


Assuntos
Callicarpa , Diterpenos Clerodânicos , Diterpenos , Callicarpa/química , Peróxido de Hidrogênio/análise , Estrutura Molecular , Folhas de Planta/química , Diterpenos/farmacologia , Diterpenos/química , Diterpenos Clerodânicos/farmacologia , Fígado
7.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36232298

RESUMO

One of the key areas of interest in pharmacognosy is that of the diterpenoids; many studies have been performed to identify new sources, their optimal isolation and biological properties. An important source of abietane-, pimarane-, clerodane-type diterpenoids and their derivatives are the members of the genus Clerodendrum, of the Lamiaceae. Due to their diverse chemical nature, and the type of plant material, a range of extraction techniques are needed with various temperatures, solvent types and extraction times, as well as the use of an ultrasound bath. The diterpenoids isolated from Clerodendrum demonstrate a range of cytotoxic, anti-proliferative, antibacterial, anti-parasitic and anti-inflammatory activities. This review describes the various biological activities of the diterpenoids isolated so far from species of Clerodendrum with the indication of the most active ones, as well as those from other plant sources, taking into account their structure in terms of their activity, and summarises the methods for their extraction.


Assuntos
Clerodendrum , Diterpenos Clerodânicos , Abietanos/química , Antibacterianos , Clerodendrum/química , Diterpenos Clerodânicos/farmacologia , Estrutura Molecular , Solventes
8.
Fitoterapia ; 163: 105328, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36208854

RESUMO

A phytochemical investigation to obtain bioactive substances as lead compounds or agents for anti-inflammatory led to the obtainment of eleven previously undescribed clerodane diterpenoids, named caseatardies A-K (1-11), and four known clerodane diterpenoids (12-15) from the twigs and leaves of Casearia tardieuae. The structural elucidation of these clerodane diterpenoids was based on 1D and 2D-NMR spectroscopy (COSY, HSQC, HMBC and ROESY) as well as high resolution mass spectrometry (HR-ESI-MS). The relative configurations were defined by ROESY correlations. The anti-inflammatory activity of all the isolated compounds was screened and compound 15 decreased LDH level in a dose-dependent manner, showing IC50 value of 2.89 µM.


Assuntos
Antineoplásicos Fitogênicos , Casearia , Diterpenos Clerodânicos , Casearia/química , Diterpenos Clerodânicos/farmacologia , Diterpenos Clerodânicos/química , Antineoplásicos Fitogênicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Anti-Inflamatórios/farmacologia
9.
Biomed Pharmacother ; 156: 113754, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36265310

RESUMO

The PI3K/AKT and MAPK/ERK pathways are frequently mutated in metastatic melanoma. In a screen of over 2500 plant extracts, the dichloromethane extract of Ericameria nauseosa significantly inhibited oncogenic activity of AKT in MM121224 human melanoma cells. This extract was analyzed by analytical HPLC, and the column effluent was fractionated and tested for activity to generate the so-called HPLC-based activity profile. Compounds eluting within active time-windows of the chromatogram were subsequently isolated in a larger scale to afford 11 flavones (1-11), four flavanones (12-15), two diterpenes (16, 17), and a seco-caryophyllene (18). All isolated compounds were tested for activity, whereby only flavonoids were found active. Of these, flavones were shown to be more active than the flavanones. The most potent flavone was compound 9, that was displaying an IC50 of 14.7 ± 1.4 µM on AKT activity in MM121224 cells. The terpenoids (16-18) were found to be inactive in the assay. Both diterpenes, a grindelic acid derivative (16) and an ent-neo-clerodane (17) were identified as new natural products. Their absolute configuration was established by ECD. Compound 17 is the first description of a clerodane type diterpene in the genus Ericameria.


Assuntos
Asteraceae , Diterpenos Clerodânicos , Flavanonas , Flavonas , Melanoma , Humanos , Flavonoides/farmacologia , Diterpenos Clerodânicos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Melanoma/tratamento farmacológico , Melanoma/patologia , Flavonas/farmacologia , Extratos Vegetais/farmacologia
10.
Bioorg Chem ; 128: 106022, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35907376

RESUMO

Pyroptosis is a programmed-inflammatory cell death, which leads to release of inflammatory cellular contents and formation of inflammation. Uncontrollable pyroptosis can result in serious immune diseases, such as cytokine release syndrome (CRS), sepsis, disseminated intravascular coagulation (DIC), and acute organ damage, including acute respiratory distress syndrome (ARDS) and acute kidney injury (AKI). Members of the Callicarpa genus are significant raw materials for traditional Chinese medicine, widely used for analgesia, hemostasis, and anti-inflammation. Previously, we have reported some ent-clerodane diterpenoids from Callicarpa arborea, shown potent inhibitory effects against pyroptosis. In this study, we went on investigating this kind of diterpenoids, and yielded 66 ent-clerodane diterpenoids, including 52 new compounds, from Callicarpa arborea. Their structures featured with a 5/6- (1-25) or a 6/6- (26-66)-fused double-ring scaffolds, were elucidated using spectroscopic data, electrostatic circular dichroism (ECD) and X-ray diffraction analyses. Screening for the inhibitory activity against pyroptosis by detecting of IL-1ß secretion in J771A.1 cells, revealed 28 compounds with an IC50 below 10.5 µM. Compound 1 was the most potent with an IC50 of 0.68 µM and inhibited the J774A.1 macrophage pyroptosis by blocking the NLR pyrin domain containing 3 (NLRP3) inflammasome activation. An in vivo study further revealed that compound 1 decreased infiltration of CD11b + F4/80 + macrophages into lung and attenuated the lipopolysaccharide (LPS)-induced lung injury. Taken together, this study indicated the potential of compound 1 as a candidate for pyroptosis-related inflammation treatment, as well as provided the chemical and pharmacological basis for the further development of Callicarpa genus as a herbal medicine.


Assuntos
Callicarpa , Diterpenos Clerodânicos , Callicarpa/química , Callicarpa/metabolismo , Diterpenos Clerodânicos/farmacologia , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Piroptose
11.
Fitoterapia ; 160: 105226, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35659522

RESUMO

A new clerodane diterpene, named 6α-hydroxy-3,13E-clerodien-15-oic acid (1), together with a known clerodane diterpene (2), four known labdane diterpenes (3-6), a triterpenoid (7), a known steroid (8), and two benzenoid compounds (9 and 10) were isolated from Detarium microcarpum Guill. & Perr. The structures of all obtained compounds were determined by chemical properties and spectroscopic evidence, accompanied by comparisons with data in the literature. Electronic circular dichroism (ECD) was performed for compounds 1-4 to confirm the absolute configuration. Compounds 1-3 and 8-10 were evaluated for the protective effect on osteoblasts. Compound 1 was observed to increase the proliferation of dexamethasone (DEX)-treated MC3T3-E1 cells significantly at 1 µM, which was comparable with the positive control geniposide at 10 µM. The results were further confirmed by flow cytometry analysis. In addition, compound 1 increased the level of alkaline phosphatase (ALP) and mineralization in osteoblasts inhibited by DEX. Moreover, Compound 9 (vanillic acid) showed a pronounced inhibition (IC50 6.5 ± 0.6 µM) on reactive oxygen species (ROS) production, and 10 (4-O-methyl gallic acid) showed a good inhibition with IC50 as 103.3 ± 2.2 µM, compared with the standard drug ibuprofen (IC50 54.2 ± 9.2 µM). Besides, compounds 1-3 and 8-10 were non-cytotoxic against MCF-7, NCI-H460, Hela, and BJ cell lines.


Assuntos
Diterpenos Clerodânicos , Diterpenos , Osteoporose , Triterpenos , Diterpenos/química , Diterpenos/farmacologia , Diterpenos Clerodânicos/química , Diterpenos Clerodânicos/farmacologia , Humanos , Estrutura Molecular , Osteoporose/tratamento farmacológico , Espécies Reativas de Oxigênio
12.
J Nat Med ; 76(4): 849-856, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35639239

RESUMO

Two new clerodane diterpenoids (1 and 2), a new pyran-2-one derivative (3), along with five known compounds (4‒8), were isolated from Croton crassifolius. Notably, crassifolin X (1) is a novel clerodane diterpenoid, characterized with a peculiar δ-lactone core being formed between C-1 and C-4. Their structures, including absolute configurations, were established on the basis of spectroscopic methods (UV, IR, HRESIMS and NMR), and circular dichroism experiments. In addition, all compounds were evaluated for their anti-neuroinflammatory activities based on the expression of TNF-α and IL-6 levels on LPS-induced BV2 cells, and compounds 1‒3 and 5 showed potential anti-neuroinflammatory activity.


Assuntos
Croton , Diterpenos Clerodânicos , Diterpenos , Croton/química , Diterpenos/química , Diterpenos Clerodânicos/química , Diterpenos Clerodânicos/farmacologia , Estrutura Molecular , Raízes de Plantas/química , Piranos/análise
13.
Pak J Pharm Sci ; 35(6(Special)): 1691-1698, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36861230

RESUMO

Isolation of sodium and potassium salt of kolavenic acid (1,2), as a mixture of (3:1) and sodium and potassium salt of 16 oxo-cleroda-3,13(14) E-dien-15-oic acid (3, 4) as a mixture of (1:1) are first time reported form reddish black ripe and green unripe berries of Polyalthia longifolia var. pendula respectively. Three known constituents obtained, were identified as cleroda-3, 13(14) E-dien-15-oic acid (kolavenic acid) (5), 16(R and S)-hydroxy cleroda-3,13 (14)Z-dien-15,16-olide (6) and 16 oxo-cleroda-3,13(14) E-dien-15-oic acid (7). Structures of all these compounds have been determined through spectral studies while metal analyses were carried out to confirm the structure of the salts. Compounds 3, 4 and 7 possess cytotoxic activity against lung (NCI-H460), oral (CAL-27) and normal mouse fibroblast (NCI-3T3) cancer cell lines. Diterpenoid (7), a bioprivileged, compound shows potent cytotoxic activity against oral cancer cell line (CAL-27) with IC50 11.3±0.6µg/mL in comparison with the standard 5-flourouracil (IC50 12.7±0.1µg/mL) and lungs cancer cell lines (NCI-H460) with IC50 5.3±0.2µg/mL as compared to the standard drug cisplatin (IC50 5.7±0.2µg/mL).


Assuntos
Annonaceae , Antineoplásicos , Diterpenos Clerodânicos , Plantas Medicinais , Polyalthia , Animais , Camundongos , Diterpenos Clerodânicos/farmacologia , Sais , Antineoplásicos/farmacologia , Potássio
14.
Molecules ; 26(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34641476

RESUMO

OBJECTIVES: The toxicity of chemotherapeutic anticancer drugs is a serious issue in clinics. Drug discovery from edible and medicinal plants represents a promising approach towards finding safer anticancer therapeutics. Justicia insularis T. Anderson (Acanthaceae) is an edible and medicinal plant in Nigeria. This study aims to discover cytotoxic compounds from this rarely explored J. insularis and investigate their underlying mechanism of action. METHODS: The cytotoxicity of the plant extract was evaluated in human ovarian cancer cell lines and normal human ovarian surface epithelia (HOE) cells using a sulforhodamine B assay. Bioassay-guided isolation was carried out using column chromatography including HPLC, and the isolated natural products were characterized using GC-MS, LC-HRMS, and 1D/2D NMR techniques. Induction of apoptosis was evaluated using Caspase 3/7, 8, and 9, and Annexin V and PI based flow cytometry assays. SwissADME and SwissTargetPrediction web tools were used to predict the molecular properties and possible protein targets of identified active compounds. Key finding: The two cytotoxic compounds were identified as clerodane diterpenoids: 16(α/ß)-hydroxy-cleroda-3,13(14)Z-dien-15,16-olide (1) and 16-oxo-cleroda-3,13(14)E-dien-15-oic acid (2) from the Acanthaceous plant for the first time. Compound 1 was a very abundant compound (0.7% per dry weight of plant material) and was shown to be more potent than compound 2 with IC50 values in the micromolar range against OVCAR-4 and OVCAR-8 cancer cells. Compounds 1 and 2 were less cytotoxic to HOE cell line. Both compounds induced apoptosis by increasing caspase 3/7 activities in a concentration dependent manner. Compound 1 further increased caspase 8 and 9 activities and apoptosis cell populations. Compounds 1 and 2 are both drug like, and compound 1 may target various proteins including a kinase. CONCLUSIONS: Clerodane diterpenoids (1 and 2) in J. insularis were identified as cytotoxic to ovarian cancer cells via the induction of apoptosis, providing an abundant and valuable source of hit compounds for the treatment of ovarian cancer.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Diterpenos Clerodânicos/farmacologia , Justicia/química , Neoplasias Ovarianas/tratamento farmacológico , Extratos Vegetais/farmacologia , Apoptose/efeitos dos fármacos , Descoberta de Drogas , Feminino , Humanos , Neoplasias Ovarianas/patologia , Folhas de Planta/química , Células Tumorais Cultivadas
15.
Chem Biodivers ; 18(12): e2100693, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34713556

RESUMO

The bioactivity-guided isolation on the Scutellaria barbata extract resulted in the purification of four undescribed neo-clerodane diterpenoids, scuttenlines A-D (1-4), alone with 20 known diterpenoids (5-24). The chemical structures of them were elaborated by extensive spectroscopic means, including 1D, 2D-NMR and HR-MS. The anti-inflammatory potential ability of 1-24 was screened in lipopolysaccharide-stimulated mouse RAW 264.7 cells. Scuttenline C (IC50 =1.9 µM) and 18 (IC50 =3.7 µM) exhibited potent activity to inhibit NO production.


Assuntos
Anti-Inflamatórios/farmacologia , Diterpenos Clerodânicos/farmacologia , Componentes Aéreos da Planta/química , Extratos Vegetais/farmacologia , Scutellaria/química , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Diterpenos Clerodânicos/química , Diterpenos Clerodânicos/isolamento & purificação , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Conformação Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Células RAW 264.7
16.
J Agric Food Chem ; 69(36): 10527-10535, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34469148

RESUMO

In the search for new natural resources showing plant disease control effects, we found that the methanol extract of Polyalthia longifolia suppressed fungal disease development in plants. To identify the bioactive substances, the methanol extract of P. longifolia was extracted by organic solvents, and consequently, four new 2-oxo-clerodane diterpenes (1-4), a new 4(3 → 2)-abeo-clerodane diterpene (5), together with ten known compounds (6-16) were isolated and identified from the extracts. Of the new compounds, compound 2 showed a broad spectrum of antifungal activity with moderated minimum inhibitory concentration (MIC) values in a range of 50-100 µg/mL against tested fungal pathogens. Considering with the known compounds, compound 6 showed the most potent antifungal activity with an MIC value in the range of 6.3-12.5 µg/mL. When compound 6 was evaluated for an in vivo antifungal activity against rice blast, tomato late blight, and pepper anthracnose, compound 6 reduced the plant disease by at least 60% compared to the untreated control at concentrations of 250 and 500 µg/mL. Together, our results suggested that the methanol extract of twigs and leaves of P. longifolia and its major compound 6 could be used as a source for the development of eco-friendly plant protection agents.


Assuntos
Diterpenos Clerodânicos , Polyalthia , Antifúngicos/farmacologia , Diterpenos Clerodânicos/farmacologia , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Folhas de Planta
17.
PLoS One ; 16(6): e0253572, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34191831

RESUMO

In the present study, in silico predictions and molecular docking were performed on five clerodane diterpenes (1-5) from Polyalthia longifolia seeds to evaluate their potential as xanthine oxidase (XO) inhibitors. The initial screening was conducted by target prediction using TargetNet web server application and only compounds 3 and 4 showed a potential interaction with XO. Compounds 3 and 4 were subsequently subjected to in silico analyses on XO protein structure (PDB: 1N5X) using Schrödinger Release 2020-3 followed by structural modeling & molecular simulation studies to confirm the initial prediction result and identify the binding mode of these compounds to the XO. Molecular docking results revealed that compounds 3 (-37.3 kcal/mol) and 4 (-32.0 kcal/mol) binds more stably to XO than the reference drug allopurinol (-27.0 kcal/mol). Interestingly, two residues Glu 802 and Thr 1010 were observed as the two main H-bond binding sites for both tested compounds and the allopurinol. The center scaffold of allopurinol was positioned by some π-π stacking with Phe 914 and Phe 1009, while that of compounds 3 and 4 were supported by many hydrophobic interactions mainly with Leu 648, Phe 649, Phe 1013, and Leu 1014. Additionally, the docking simulation predicted that the inhibitory effect of compounds 3 and 4 was mediated by creating H-bond with particularly Glu 802, which is a key amino acid for XO enzyme inhibition. Altogether, in vitro studies showed that compounds 3 and 4 had better inhibitory capacity against XO enzyme with IC50 values significantly (p < 0.001) lower than that of allopurinol. In short, the present study identified cleroda-4(18),13-dien-15,16-olide as novel potential XO inhibitors, which can be potentially used for the treatment of gout.


Assuntos
Diterpenos Clerodânicos/farmacologia , Extratos Vegetais/farmacologia , Polyalthia/química , Xantina Oxidase/antagonistas & inibidores , Diterpenos Clerodânicos/química , Diterpenos Clerodânicos/isolamento & purificação , Ensaios Enzimáticos , Gota/tratamento farmacológico , Gota/metabolismo , Humanos , Simulação de Acoplamento Molecular , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Sementes/química , Ácido Úrico/metabolismo , Xantina Oxidase/química , Xantina Oxidase/metabolismo
18.
Fitoterapia ; 152: 104912, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33933538

RESUMO

The first phytochemical investigation from the stems of Croton krabas resulted in the isolation of three new ent-clerodane diterpenoids, crotonkrabases A-C (1-3), along with two known compounds, 12-oxohardwickiic acid (4) and crotonpyrone B (5). Their structures were elucidated using extensive spectroscopic methods. The structure of 3 was unambiguously proven by X-ray crystallography. Furthermore, the absolute configurations of compounds 1-3 were identified by NOESY and the comparison of their experimental ECD spectra with those of calculated ECD spectra reported in the literature. Compounds 1, 2, and 5 showed antibacterial activities against two Gram-positive bacteria (Bacillus cereus and Bacillus subtilis); whereas compound 4 exhibited weak antibacterial against B. cereus. In addition, compound 4 showed potent α-glucosidase inhibitory activity, which was lower than the reference standard acarbose.


Assuntos
Antibacterianos/farmacologia , Croton/química , Diterpenos Clerodânicos/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Antibacterianos/isolamento & purificação , Bacillus/efeitos dos fármacos , Diterpenos Clerodânicos/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Caules de Planta/química , Tailândia
19.
J Enzyme Inhib Med Chem ; 36(1): 749-757, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33715562

RESUMO

Bioassay-guided fractionation of the ethyl acetate extract from Teucrium flavum subsp. glaucum, endowed with inhibitory activity towards the HIV-1 reverse transcriptase-associated RNase H function, led to the isolation of salvigenin (1), cirsimaritin (2) and cirsiliol (3) along with the neo-clerodanes teuflavin (4) and teuflavoside (5). Acid hydrolysis of the inactive teuflavoside provided three undescribed neo-clerodanes, flavuglaucins A-C (7-9) and one known neo-clerodane (10). Among all neo-clerodanes, flavuglaucin B showed the highest inhibitory activity towards RNase H function with a IC50 value of 9.1 µM. Molecular modelling and site-directed mutagenesis analysis suggested that flavuglaucin B binds into an allosteric pocket close to RNase H catalytic site. This is the first report of clerodane diterpenoids endowed with anti-reverse transcriptase activity. Neo-clerodanes represent a valid scaffold for the development of a new class of HIV-1 RNase H inhibitors.


Assuntos
Diterpenos Clerodânicos/farmacologia , Flavonoides/farmacologia , Transcriptase Reversa do HIV/antagonistas & inibidores , Extratos Vegetais/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Ribonuclease H/antagonistas & inibidores , Teucrium/química , Diterpenos Clerodânicos/química , Diterpenos Clerodânicos/isolamento & purificação , Relação Dose-Resposta a Droga , Flavonoides/química , Flavonoides/isolamento & purificação , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Modelos Moleculares , Conformação Molecular , Mutagênese Sítio-Dirigida , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/isolamento & purificação , Ribonuclease H/genética , Ribonuclease H/metabolismo , Relação Estrutura-Atividade
20.
Phytochemistry ; 186: 112731, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33721797

RESUMO

The Lamiaceae plant Ajuga forrestii Diels is a traditional Chinese herbal medicine with abundant glandular trichomes (GTs), but their chemistry and biological functions remain uninvestigated. Here, a panel of six highly functionalized neo-clerodane diterpenoids was localized to the peltate GTs of A. forrestii using laser microdissection coupled with HPLC analysis, indicating that the GTs of A. forrestii are an excellent material for the elucidation of the yet unclear biosynthetic pathway of natural neo-clerodane diterpenoids. In addition, four undescribed neo-clerodane diterpenoids with an acyclic C-9 side chain including two pairs of 1:1 mixture of inseparable diastereomers, ajuforrestins D-G, were isolated from the fresh leaves of A. forrestii together with six known compounds. The structures of the undescribed compounds were elucidated by spectroscopic (including 1D and 2D NMR and HR-ESI-MS) analyses. Biological assays indicated that the major GT compound ajugacumbin B and undescribed ajuforrestins D/E showed antifeedant activity against Helicoverpa armigera, suggesting that neo-clerodanes in A. forrestii should be involved in plant defence against insects. Moreover, the abietane diterpenoid ajuforrestin B exhibited significant anti-inflammatory activity on the secretion of interleukin-2 (IL-2) and cytotoxicity against three cancer cell lines, NCI-H1975, HepG2 and MCF-7, suggesting that ajuforrestin B could positively contribute to the therapeutic effects of this traditional Chinese medicine.


Assuntos
Ajuga , Diterpenos Clerodânicos , Anti-Inflamatórios/farmacologia , Diterpenos Clerodânicos/farmacologia , Estrutura Molecular , Folhas de Planta , Tricomas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA