Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.063
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 136, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553716

RESUMO

Pulmonary fibrosis (PF) threatens millions of people worldwide with its irreversible progression. Although the underlying pathogenesis of PF is not fully understood, there is evidence to suggest that the disease can be blocked at various stages. Inhalation therapy has been applied for lung diseases such as asthma and chronic obstructive pulmonary disease, and its application for treating PF is currently under consideration. New techniques in inhalation therapy, such as the application of microparticles and nanoparticles, traditional Chinese medicine monomers, gene therapy, inhibitors, or agonists of signaling pathways, extracellular vesicle interventions, and other specific drugs, are effective in treating PF. However, the safety and effectiveness of these therapeutic techniques are influenced by the properties of inhaled particles, biological and pathological barriers, and the type of inhalation device used. This review provides a comprehensive overview of the pharmacological, pharmaceutical, technical, preclinical, and clinical experimental aspects of novel inhalation therapy for treating PF and focus on therapeutic methods that significantly improve existing technologies or expand the range of drugs that can be administered via inhalation. Although inhalation therapy for PF has some limitations, the advantages are significant, and further research and innovation about new inhalation techniques and drugs are encouraged.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/tratamento farmacológico , Administração por Inalação , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Asma/tratamento farmacológico , Terapia Respiratória
2.
J Ethnopharmacol ; 328: 118082, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38522625

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Longdan zhike tablet (LDZK) is a Tibetan medicine formula commonly used in the highland region of Tibet, China, to ameliorate respiratory diseases, such as acute bronchitis and asthma. In Chinese traditional medicine, some herbal formulas with anti-inflammatory properties targeting the respiratory system are clinically adopted as supplementary therapies for chronic obstructive pulmonary disease (COPD). However, the specific anti-COPD effects of LDZK remain to be evaluated. AIM OF THE STUDY: The aim of this study is to identify the principal bioactive compounds in LDZK, and elucidate the effects and mechanisms of the LDZK on COPD. METHODS: High-resolution mass spectrometry was utilized for a comprehensive characterization of the chemical composition of LDZK. The therapeutic effects of LDZK were assessed on the LPS-papain-induced COPD mouse model, and LPS-induced activation model of A549 cells. The safety of LDZK was evaluated by orally administering a single dose of 30 g/kg to rats and monitoring physiological and biochemical indicators after a 14-day period. Network pharmacology and Western blot analysis were employed for mechanism prediction of LDZK. RESULTS: A comprehensive analysis identified a total of 45 compounds as the major constituents of LDZK. Oral administration of LDZK resulted in notable ameliorative effects in respiratory function, accompanied by reduced inflammatory cell counts and cytokine levels in the lungs of COPD mice. Acute toxicity tests demonstrated a favorable safety profile at a dose equivalent to 292 times the clinically prescribed dose. In vitro studies revealed that LDZK exhibited protective effects on A549 cells by mitigating LPS-induced cellular damage, reducing the release of NO, and downregulating the expression of iNOS, COX2, IL-1ß, IL-6, and TNF-α. Network pharmacology and Western blot analysis indicated that LDZK primarily modulated the MAPK signaling pathway and inhibited the phosphorylation of p38/ERK/JNK. CONCLUSIONS: LDZK exerts significant therapeutic effects on COPD through the regulation of the MAPK pathway, suggesting its potential as a promising adjunctive therapy for the treatment of chronic inflammation in COPD.


Assuntos
Medicina Tradicional Tibetana , Doença Pulmonar Obstrutiva Crônica , Ratos , Camundongos , Animais , Lipopolissacarídeos/farmacologia , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pulmão , Transdução de Sinais
3.
J Ethnopharmacol ; 327: 117983, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38432578

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ding-Chuan-Tang (Abbreviated as DCT) is frequently prescribed for treatment of respiratory diseases, including chronic obstructive pulmonary disease (COPD), which is characterized by coughing, wheezing, and chest tightness in traditional Chinese medicine (TCM). However, the potential mechanism of DCT has not been investigated. AIM OF STUDY: The aim of the study is to explore the efficiency of DCT in the treatment of COPD in vivo and in vitro, and to illustrate the possible mechanism against COPD. METHODS: COPD model was induced by exposure of mice to cigarette smoke (CS) for 16 weeks. Enzyme-linked immunosorbent assay (ELISA), immunofluorescence assay, Western blot, etc., were used to explore the efficiency and mechanisms of DCT. Network pharmacology analysis, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, etc., was performed to explore the potential targets in the treatment of DCT on COPD. RESULTS: DCT significantly alleviated pulmonary pathological changes in mouse COPD model, and inhibited inflammatory response induced by CS and LPS in vivo and in vitro. Network pharmacology analysis suggested that DCT alleviated COPD via inhibiting inflammation by regulating PI3K-AKT pathway. In cell-based models, DCT suppressed the phosphorylation of PI3K and AKT, which further regulated its downstream targets Nrf2 and NF-κB, and inhibited inflammatory response. CONCLUSIONS: DCT effectively attenuated COPD in the mouse model induced by CS. The therapeutic mechanism of DCT against COPD was closely associated with the regulation of PI3K-AKT pathway and its downstream transcription factors, Nrf2 and NF-κB.


Assuntos
NF-kappa B , Doença Pulmonar Obstrutiva Crônica , Camundongos , Animais , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Farmacologia em Rede , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/metabolismo
4.
BMC Complement Med Ther ; 24(1): 114, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454410

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a common respiratory disease and the third leading cause of death worldwide. Previous evidence has shown that acupuncture may be an effective complementary alternative therapy for stable COPD. However, large-sample, rigorously designed long-term follow-up studies still need to be completed. Notably, the relationship between the frequency of acupuncture and clinical efficacy in studies on acupuncture for stable COPD still needs further validation. This study aims to evaluate the efficacy and safety of acupuncture for stable COPD and further investigate the dose-effect relationship of acupuncture. METHODS/DESIGN: This is a multicenter, randomized, controlled trial that uses central randomization to randomly allocate 550 participants in a 1:1:1:1:1 ratio to once a week acupuncture group, twice a week acupuncture group, three times a week acupuncture group, sham acupuncture group and waiting-list control group. The sham acupuncture group will receive placebo acupuncture treatments three times per week, and the waiting-list control group will not receive any form of acupuncture intervention. The study consists of a 2-week baseline, 12-week of treatment, and 52-week of follow-up. Patients with COPD between 40 to 80 years old who have received stable Western medication within the previous 3 months and have had at least 1 moderate or severe acute exacerbation within the past 1 year will be included in the study. Basic treatment will remain the same for all participants. The primary outcome is the proportion of responders at week 12. Secondary outcomes include the proportion of responders at week 64, change in the St. George's Respiratory Questionnaire (SGRQ) Scale, change in the Modified-Medical Research Council (mMRC) Scale, change in the COPD Assessment Test (CAT) Scale, change in the Lung Function Screening Indicators (LFSI), change in the 6-min walk distance (6-MWD), change in Short-Form 36 Health Survey (SF-36) Scale, the number of moderate and severe acute exacerbations and adverse event rate during the follow-up period. DISCUSSION: This study will provide robust evidence on whether acupuncture is safe and effective for treating stable COPD. Meanwhile, comparing the differences in efficacy between different acupuncture frequencies will further promote the optimization of acupuncture for stable COPD. TRIAL REGISTRATION: This study was registered in the Chinese Clinical Trial Registry (ChiCTR2200058757), on April 16, 2022.


Assuntos
Terapia por Acupuntura , Doença Pulmonar Obstrutiva Crônica , Adulto , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Estudos Multicêntricos como Assunto , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
Artigo em Inglês | MEDLINE | ID: mdl-38529478

RESUMO

Background: Chronic obstructive pulmonary disease (COPD) is a common respiratory disorder in pulmonology. Chuanbeimu (CBM) is a traditional Chinese medicinal herb for treating COPD and has been widely utilized in clinical practice. However, the mechanism of CBM in the treatment of COPD remains incompletely understood. This study aims to investigate the underlying therapeutic mechanism of CBM for COPD using network pharmacology and experimental approaches. Methods: Active ingredients and their targets were obtained from the Traditional Chinese Medicine Systems Pharmacology database. COPD-associated targets were retrieved from the GeneCards database. The common targets for CBM and COPD were identified through Venn diagram analysis. Protein-protein interaction (PPI) networks and disease-herb-ingredient-target networks were constructed. Subsequently, the results of the network pharmacology were validated by molecular docking and in vitro experiments. Results: Seven active ingredients and 32 potential targets for CBM were identified as closely associated with COPD. The results of the disease-herb-ingredient-target network and PPI network showed that peimisine emerged as the core ingredient, and SRC, ADRB2, MMP2, and NOS3 were the potential targets for CBM in treating COPD. Molecular docking analysis confirmed that peimisine exhibited high binding affinity with SRC, ADRB2, MMP2, and NOS3. In vitro experiments demonstrated that peimisine significantly upregulated the expression of ADRB2 and NOS3 and downregulated the expression of SRC and MMP2. Conclusion: These findings indicate that CBM may modulate the expression of SRC, ADRB2, MMP2, and NOS3, thereby exerting a protective effect against COPD.


Assuntos
Medicamentos de Ervas Chinesas , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Simulação de Acoplamento Molecular , Metaloproteinase 2 da Matriz , Farmacologia em Rede , Mapas de Interação de Proteínas , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
6.
Pharmacology ; 109(2): 121-126, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38346407

RESUMO

INTRODUCTION: The traditional Japanese herbal medicine hochuekkito (TJ-41) has been reported to ameliorate systemic inflammation and malnutrition in patients with chronic obstructive pulmonary disease (COPD). TJ-41 has also been known to have preventive effects against influenza virus infection. However, its role in the acute exacerbation of COPD (AECOPD) remains to be elucidated. Our previous study established a murine model of viral infection-associated AECOPD that was induced by intratracheal administration of porcine pancreatic elastase (PPE) and polyinosinic-polycytidylic acid [poly(I:C)]. Here, we used this model and investigated the effects of TJ-41 in AECOPD. METHODS: Specific pathogen-free C57BL/6J mice were used. A COPD model was induced by treating mice intratracheally with PPE on day 0. To generate the murine model of AECOPD, poly(I:C) was administered intratracheally following PPE treatment on days 22-24. Mice were sacrificed and analyzed on day 25. Mice were fed a diet containing 2% TJ-41 or a control diet. RESULTS: Daily oral intake of TJ-41 significantly decreased the numbers of neutrophils and lymphocytes in the bronchoalveolar lavage fluid (BALF), which was accompanied by decreased transcripts of CXC chemokines involved in neutrophil migration, viz., Cxcl1 and Cxcl2, in whole lung homogenates and reduced Cxcl2 concentration in BALF. CONCLUSION: This study demonstrates the anti-inflammatory effects of TJ-41 in a mouse model of AECOPD, suggesting the effectiveness of TJ-41 for the management of COPD. Clinical investigations evaluating the therapeutic efficacy of TJ-41 in AECOPD would be meaningful.


Assuntos
Medicamentos de Ervas Chinesas , Doença Pulmonar Obstrutiva Crônica , Humanos , Camundongos , Animais , Suínos , Modelos Animais de Doenças , Japão , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/complicações , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
7.
Zhongguo Zhong Yao Za Zhi ; 49(2): 334-343, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403309

RESUMO

As important immune cells, macrophages are a key factor involved in maintaining the homeostasis of the pulmonary microenvironment. Under different conditions, macrophages with high plasticity can be polarized into classically activated(M1) and selectively activated(M2) macrophages, which have pro-inflammatory and anti-inflammatory effects, respectively. M1/M2 phenotype is associated with the occurrence and development of pulmonary diseases. A variety of information molecules and cytokines involved in the polarization of macrophages play a role in regulating phenotypes in pulmonary diseases, and the phenotype transformation varies significantly in different diseases. This paper introduces the biological characteristics of macrophage polarization and expounds the roles of macrophage polarization in bronchial asthma, chronic obstructive pulmonary disease, acute lung injury, and pulmonary fibrosis. Moreover, the research progress in the regulation of macrophage polarization by the active components in traditional Chinese medicine(TCM) and the TCM compound prescriptions in the treatment of pulmonary diseases was reviewed. This review aims to explore the potential of macrophage polarization in regulating pulmonary inflammation and provide new ideas for related clinical research.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Fibrose Pulmonar , Humanos , Medicina Tradicional Chinesa , Pulmão , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Macrófagos , Inflamação
8.
Phytomedicine ; 126: 155273, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342020

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is defined by persistent airway and lung inflammation, excessive mucus production, remodeling of the airways, and damage to the alveolar tissue. Based on clinical experience, it has been observed that Jianpiyifei II (JPYF II) granules exhibit a significant therapeutic impact on individuals suffering from stable COPD. Nevertheless, the complete understanding of JPYF II's potential mode of action against COPD remains to be further clarified. PURPOSE: To further investigate the underlying mechanism of JPYF II for treating COPD and clarify the role of the IL-17 pathway in the treatment. METHODS: A variety of databases were utilized to acquire JPYF II's bioactive components, as well as related targets of JPYF II and COPD. Cytoscape was utilized to establish multiple interaction networks for the purpose of topological analyses and core-target screening. The Metascape was utilized to identify the function of target genes and crucial signaling pathways. To evaluate the interactions between bioactive ingredients and central target proteins, molecular docking simulations were conducted. Following that, a sequence of experiments was conducted both in the laboratory and in living organisms, which included analyzing the cell counts in bronchoalveolar lavage fluid (BALF), examining lung tissue for histopathological changes, conducting immunohistochemistry, RT‒qPCR, ELISA, and Western blotting. RESULTS: In JPYF II, 88 bioactive ingredients were predicted to have a total of 342 targets. After conducting Venn analysis, it was discovered that 284 potential targets of JPYF II were linked to the provision of defensive benefits against COPD. The PPI network yielded a total of twenty-four core targets. The findings from the analysis of enrichment and gene‒pathway network suggested that JPYF II targeted Hsp90, MAPKs, ERK, AP-1, TNF-α, IL-6, COX-2, CXCL8, and MMP-9 as crucial elements for COPD treatment through the IL-17 pathway. Additionally, JPYF II might modulate MAPK signaling pathways and the downstream transcription factor AP-1 via IL-17 regulation. According to the findings from molecular docking, it was observed that the 24 core target proteins exhibited robust binding affinities towards the top 10 bioactive compounds. Furthermore, the treatment of COPD through the regulation of MAPKs in the IL-17 pathway was significantly influenced by flavonoids and sterols found in JPYF II. In vitro, these observations were further confirmed. In vivo results demonstrated that JPYF II reduced inflammatory cell infiltration in pulmonary tissues and the quantity of inflammatory cells in BALF obtained from LPS- and CS-stimulated mice. Moreover, the administration of JPYF II resulted in the inhibition of IL-17 mRNA and protein levels, phosphorylation levels of MAPK proteins, and expression of phosphorylated AP-1 proteins. It also suppressed the expression of downstream effector genes and proteins associated with the IL-17/MAPK/AP-1 signaling axis in lung tissues and BALF. CONCLUSION: This research reveals that JPYF II improves COPD by controlling the IL-17/MAPK/AP-1 signaling axis within the IL-17 pathway for the first time. These findings offer potential approaches for the creation of novel medications that specifically target IL-17 and proteins involved in the IL-17 pathway to address COPD.


Assuntos
Medicamentos de Ervas Chinesas , Doença Pulmonar Obstrutiva Crônica , Animais , Camundongos , Simulação de Acoplamento Molecular , Interleucina-17 , Farmacologia em Rede , Fator de Transcrição AP-1 , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
9.
J Ethnopharmacol ; 326: 117928, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38373666

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Zataria multiflora is employed as an antitussive, anti-spasmodic, analgesic and etc. Agent in traditional medicine. The modern medical studies are also confirmed effects of this plant for treatment of respiratory problems via anti-inflammatory, anti-oxidant and immunomodulatory properties. AIM OF STUDY: We evaluated efficacy of Z. multiflora on tests of pulmonary function, respiratory symptoms, inhaled bronchodilator drugs use, and hematological factors in COPD patients. METHODS: Patients (n = 45) were randomly grouped in the following three groups: placebo group (P), groups received Z. multiflora extract 3 and 6 mg/kg/day (Z3 and Z6). FEV1 and MEF25-75, respiratory symptoms, inhaled bronchodilator drugs use and hematological factors were evaluated before and 1-2 months after treatment. RESULTS: Z. multiflora led to significant enhancement of FEV1 (p < 0.05 to p < 0.01). Respiratory symptoms were also considerably ameliorated following treatment with extracts for 1 and 2 months compared to baseline values (p < 0.05 to p < 0.001). In groups received extract, inhaled bronchodilator drugs use was remarkably declined at the end of study (both, p < 0.05). Reduction of total WBC was observed 1-2 months after treatment in treated groups with extract compared to baseline values (p < 0.05 to p < 0.001). Neutrophils were remarkably declined in Z3 and Z6 groups after 2-monthes compared to 1-month treatment (p < 0.05 to p < 0.01). CONCLUSION: The evidence show therapeutic effect of this herb on COPD patients which could be result from properties that help to decrease inflammation.


Assuntos
Lamiaceae , Doença Pulmonar Obstrutiva Crônica , Humanos , Broncodilatadores/farmacologia , Broncodilatadores/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Pulmão , Testes de Função Respiratória
10.
Phytother Res ; 38(3): 1278-1293, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38191199

RESUMO

Chronic obstructive pulmonary disease (COPD) is a chronic, progressive, and lethal lung disease with few treatments. Formononetin (FMN) is a clinical preparation extract with extensive pharmacological actions. However, its effect on COPD remains unknown. This study aimed to explore the effect and underlying mechanisms of FMN on COPD. A mouse model of COPD was established by exposure to cigarette smoke (CS) for 24 weeks. In addition, bronchial epithelial BEAS-2B cells were treated with CS extract (CSE) for 24 h to explore the in vitro effect of FMN. FMN significantly improved lung function and attenuated pathological lung damage. FMN treatment reduced inflammatory cell infiltration and pro-inflammatory cytokines secretion. FMN also suppressed apoptosis by regulating apoptosis-associated proteins. Moreover, FMN relieved CS-induced endoplasmic reticulum (ER) stress in the mouse lungs. In BEAS-2B cells, FMN treatment reduced CSE-induced inflammation, ER stress, and apoptosis. Mechanistically, FMN downregulated the CS-activated AhR/CYP1A1 and AKT/mTOR signaling pathways in vivo and in vitro. FMN can attenuate CS-induced COPD in mice by suppressing inflammation, ER stress, and apoptosis in bronchial epithelial cells via the inhibition of AhR/CYP1A1 and AKT/mTOR signaling pathways, suggesting a new therapeutic potential for COPD treatment.


Assuntos
Fumar Cigarros , Isoflavonas , Doença Pulmonar Obstrutiva Crônica , Animais , Camundongos , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular , Citocromo P-450 CYP1A1 , Estresse do Retículo Endoplasmático , Células Epiteliais/metabolismo , Inflamação/metabolismo , Pulmão , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
11.
Phytomedicine ; 125: 155244, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216446

RESUMO

BACKGROUND: Panax notoginseng saponins (PNS) are the primary active components of an ancient Chinese herb Panax notoginseng. Hypercoagulable state of blood (HCS) is an independent risk factor and a cause of death in chronic obstructive pulmonary disease (COPD). Several vivo studies have demonstrated the use of PNS preparations for treating COPD with HCS. PURPOSE: This study aimed to systematically evaluate the clinical efficacy and safety of PNS preparations in treating COPD with HCS. STUDY DESIGN: Meta-analysis of the randomized controlled trials (RCTs) was conducted to review data. METHODS: RCTs on the treatment of COPD with HCS and PNS preparations were searched from PubMed, Cochrane Library, Embase, Web of Science, Chinese National Knowledge Infrastructure, Vip Information Database, Wanfang data, and Chinese Biomedical Literature Database. Relevant data were extracted from the included studies and methodological quality evaluation was performed. R language (version 4.2.3) was applied for the meta-analysis. RESULTS: Twenty RCTs involving 1831 patients were analyzed. The results revealed that PNS preparations considerably increased the total clinical efficiency, improved forced expiratory volume in one second percent of predicted, and forced expiratory volume/forced vital capacity ratio. Further, PNS preparations improved fibrinogen, plasma d-dimer, whole blood viscosity at high cut, whole blood viscosity at low cut, and plasma viscosity levels. The results obtained for activated partial thromboplastin and prothrombin times were not statistically significant. Finally, PNS preparations increased partial pressure of oxygen and decreased carbon dioxide pressure. CONCLUSION: This is the first relatively comprehensive systematic review of the clinical efficacy and safety of PNS preparations for treating COPD with HCS. The study revealed that PNS preparations considerably improve lung function, hypoxia, and blood hypercoagulability in patients with COPD and HCS without increasing the risk of hemorrhage and has a good safety profile; therefore, it can be used as a new modulating agent and anticoagulant.


Assuntos
Panax notoginseng , Doença Pulmonar Obstrutiva Crônica , Saponinas , Trombofilia , Humanos , Panax notoginseng/química , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Saponinas/efeitos adversos , Saponinas/uso terapêutico , Trombofilia/tratamento farmacológico , Resultado do Tratamento
12.
J Ethnopharmacol ; 324: 117728, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38216101

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shenling Baizhu San (SLBZS) is a formula of traditional Chinese medicine (TCM) that enhances the functions of the qi, spleen, and lung. According to the theory of TCM, chronic obstructive pulmonary disease (COPD) is often caused by lung qi deficiency, and SLBZS is often used in the treatment of COPD and has achieved remarkable results. However, the active components of SLBZS absorbed in serum and the underlying mechanism of SLBZS in treating COPD remain unclear and require further studies. AIM OF THE STUDY: The objective of this study is to investigate the active components of SLBZS in rat serum, as well as the crucial targets and signaling pathways involved in the therapeutic effects of SLBZS for COPD. MATERIALS AND METHODS: First, the absorption components and metabolites of SLBZS in rat serum were identified using ultra-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS). Second, potential targets of SLBZS for the treatment of COPD were acquired from publicly accessible online sources. Cytoscape (v3.7.0) software was used to construct a component-target-pathway network and a protein-protein interaction (PPI) network. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of potential targets was performed using the Metascape database. The binding status of the active components in SLBZS to the potential targets was assessed with molecular docking technology. Finally, a cell model of COPD was successfully developed for experimental validation In vitro. RESULTS: A total of 108 active components were identified, including 30 prototype components and 78 metabolites. A total of 292 potential targets for the treatment of COPD were identified, including TNF, IL-6, TLR9, RELA, and others. The KEGG pathway included inflammatory mediator regulation of TRP channels, necroptosis, and the NF-κB signaling pathway, among others. The In vitro experiments showed that SLBZS-containing serum had the ability to decrease the levels of inflammatory factors and cell death. Additionally, it was observed that SLBZS-containing serum could control the expression levels of TLR9, MyD88, TRAF6, NF-κB, and IκBα at the mRNA and protein levels. These findings suggested that SLBZS-containing serum was likely to be involved in the regulation of the TLR9/NF-κB pathway. CONCLUSIONS: The mechanism of action of SLBZS on COPD was preliminarily elucidated using UPLC-Q-TOF-MS/MS, network pharmacology, and In vitro experiments. The primary active components and potential targets of SLBZS were identified, providing a scientific foundation for further research.


Assuntos
Medicamentos de Ervas Chinesas , Doença Pulmonar Obstrutiva Crônica , Animais , Ratos , Espectrometria de Massas em Tandem , Farmacologia em Rede , NF-kappa B , Cromatografia Líquida de Alta Pressão , Simulação de Acoplamento Molecular , Receptor Toll-Like 9 , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
13.
Artigo em Inglês | MEDLINE | ID: mdl-38269030

RESUMO

Background: COPD coexists with many concurrent comorbidities. Cardiovascular complications are deemed to be major causes of death in COPD. Although inhaler therapy is the main therapeutic intervention in COPD, cardiovascular events accompanying inhaler therapy require further investigation. Therefore, this study aimed to investigate new development of cardiovascular events according to each inhaler therapy and comorbidities. Methods: This study analyzed COPD patients (age ≥ 40 years, N = 199,772) from the Health Insurance Review and Assessment Service (HIRA) database in Korea. The development of cardiovascular events, from the index date to December 31, 2020, was investigated. The cohort was eventually divided into three arms: the LAMA/LABA group (N = 28,322), the ICS/LABA group (N = 11,812), and the triple group (LAMA/ICS/LABA therapy, N = 6174). Results: Multivariable Cox analyses demonstrated that, compared to ICS/LABA therapy, triple therapy was independently associated with the development of ischemic heart disease (HR: 1.22, 95% CI: 1.04-1.43), heart failure (HR: 1.45, 95% CI: 1.14-1.84), arrhythmia (HR: 1.72, 95% CI: 1.41-2.09), and atrial fibrillation/flutter (HR: 2.31, 95% CI: 1.64-3.25), whereas the LAMA/LABA therapy did not show a significant association. Furthermore, emergency room visit during covariate assessment window was independently associated with the development of ischemic heart disease, heart failure, arrhythmia, and atrial fibrillation/flutter (p < 0.05). Conclusion: Our data suggest that cardiovascular risk should be considered in COPD patients receiving triple therapy, despite the confounding bias resulting from disparities in each group.


Assuntos
Fibrilação Atrial , Insuficiência Cardíaca , Isquemia Miocárdica , Doença Pulmonar Obstrutiva Crônica , Humanos , Adulto , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/epidemiologia , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/epidemiologia , Nebulizadores e Vaporizadores
14.
BMC Complement Med Ther ; 24(1): 25, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191338

RESUMO

BACKGROUND: Reducing current clinical symptoms and the risks of future exacerbations is the main goal of stable COPD management. Traditional Chinese medicine has unique advantages in chronic disease management. YuPingFeng (YPF), as a classical prescription, has been proven to reduce the risk of exacerbations, but there is a lack of high-quality evidence for the assessment of clinical symptoms and quality of life, particularly for the assessment of treatment response of microecology and immunity. METHODS/DESIGN: This is a prospective, multicentre, randomized, double-blind, placebo-controlled clinical trial. A total of 316 eligible subjects with moderate to severe COPD will be randomized 1:1 to receive YPF or placebo. Participants will receive either YPF or a placebo at 5 g three times daily for 52 weeks. The primary outcome will be the change in the COPD Assessment Test (CAT) score after 52 weeks of treatment. Secondary outcomes will include changes in the St George's Respiratory Questionnaire (SGRQ) score and clinical symptom score, among others. Outcomes will be measured at each visit. The study will continue for 52 weeks and will include six visits to each subject (at day 0 and weeks 4,12,24,36 and 52). In the event of exacerbations, subjects will be required to go back to the hospital once on the first day of exacerbation or when their condition permits. DISCUSSION: This trial will provide research methods to evaluate the clinical efficacy, safety, and the possible mechanism of YPF in the treatment of stable moderate-to-severe COPD patients. In addition, we hope to provide more possibilities for TCM to participate in the management of stable COPD. TRIAL REGISTRATION: The trial was registered at the Chinese Clinical Trials Registry on 3 June 2022 (ChiCTR2200060476; date recorded: 3/6/2022, https://www.chictr.org.cn/ ).


Assuntos
Doença Pulmonar Obstrutiva Crônica , Qualidade de Vida , Humanos , Estudos Prospectivos , Método Duplo-Cego , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
15.
Respir Med ; 222: 107527, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199288

RESUMO

BACKGROUND: Clinically important deterioration (CID) is a composite endpoint used to holistically assess the complex progression of chronic obstructive pulmonary disease (COPD). Tiotropium improves lung function and reduces the rate of COPD exacerbations in patients with COPD of Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage 1 (mild) or 2 (moderate). However, whether tiotropium reduces CID risk in patients with mild-to-moderate COPD remains unclear. METHODS: This was a post hoc analysis of the 24-month Tie-COPD study comparing 18 µg tiotropium with placebo in patients with mild-to-moderate COPD. CID was defined as a decrease of ≥100 mL in trough forced expiratory volume in 1 s, an increase of ≥2 unit in COPD Assessment Test (CAT) score, or moderate-to-severe exacerbation. The time to the first occurrence of one of these events was recorded as the time to the first CID. Subgroup analyses were conducted among patients stratified by CAT score, modified Medical Research Council (mMRC) dyspnea score, and GOLD stage at baseline. RESULTS: Of the 841 randomized patients, 771 were included in the full analysis set. Overall, 643 patients (83.4 %) experienced at least one CID event. Tiotropium significantly reduced the CID risk and delayed the time to first CID compared with placebo (adjusted hazard ratio = 0.58, 95 % confidence interval = 0.49-0.68, P < 0.001). Significant reductions in CID risk were also observed in various subgroups, including patients with a CAT score <10, mMRC score <2, and mild COPD. CONCLUSIONS: Tiotropium reduced CID risk in patients with mild-to-moderate COPD, even in patients with fewer respiratory symptoms or mild disease, which highlights tiotropium's effectiveness in treating COPD patients with mild disease. TRIAL REGISTRATION: This study is registered at ClinicalTrials.gov (Tie-COPD, NCT01455129).


Assuntos
Broncodilatadores , Doença Pulmonar Obstrutiva Crônica , Humanos , Brometo de Tiotrópio/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Volume Expiratório Forçado , Resultado do Tratamento
16.
Phytother Res ; 38(3): 1224-1234, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38178561

RESUMO

Considering the anti-inflammatory properties of curcumin, the present study was designed to investigate the effect of nano-curcumin on respiratory indices and interleukin-6 (IL-6) levels in severe chronic obstructive pulmonary disease (COPD) patients as a common pulmonary disease causing restricted airflow and breathing problems. In the current double-blind placebo-controlled randomized clinical trial study, 60 patients with stages 3 and 4 COPD were randomly assigned into 80 mg nano-curcumin (n = 30) and placebo groups (n = 30) for 3 months. The effect of nano-curcumin on pulmonary function was evaluated by the first second of forced expiration (FEV1) to the full, forced vital capacity (FVC) ratio. IL-6 serum level, blood pressure, and anthropometric indices were also measured. Nano-curcumin supplementation led to a significant decrease in IL-6 level (p < 0.001) and an increase in FEV1 (p < 0.001), FVC (p = 0.003), and FEV1/FVC (p < 0.001) compared to placebo at the endpoint. Nano-curcumin had a significantly increasing effect on weight and body mass index compared to the placebo group (PANCOVA adjusted for baseline values = 0.042). There was a meaningful improvement in systolic blood pressure in the nano-curcumin group compared to the placebo group (PANCOVA adjusted for baseline values = 0.026). There was no significant difference between the two groups in terms of waist circumference, waist-to-hip ratio, and diastolic blood pressure (PANCOVA adjusted for baseline values >0.05). Nano-curcumin supplement seems to have favorable effects on inflammation status and respiratory indices of patients with severe COPD.


Assuntos
Curcumina , Pneumopatias , Doença Pulmonar Obstrutiva Crônica , Humanos , Interleucina-6/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Pulmão , Pneumopatias/tratamento farmacológico , Curcumina/uso terapêutico , Suplementos Nutricionais , Método Duplo-Cego
17.
J Gene Med ; 26(1): e3607, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37795773

RESUMO

BACKGROUND: The present study aimed to explore the mechanism of the modified Bushen Yiqi formula (MBYF) in the treatment of chronic obstructive pulmonary disease (COPD) based on network pharmacology and molecular docking. METHODS: First, the active ingredients and corresponding targets in MBYF were mined through the Traditional Chinese Medicine Systems Pharmacology database. Subsequently, Online Mendelian Inheritance in Man, DrugBank, and GeneCard were used to screen COPD-related targets. Cytoscape was used to construct a network of candidate components of MBYF in COPD treatment. The overlapping targets of COPD and MBYF were used to treat COPD, and then CytoHubba and CytoNAC plug-ins in Cytoscape were used for topology analysis to build the core network. In addition, core targets were used for Gene Ontology analysis and enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes. Finally, AutoDock Vina software was used to conduct a molecular docking study on the core active ingredients and core targets to verify the above network pharmacological analysis. RESULTS: Seventy-nine active components of MBYF were screened and 261 corresponding targets were found. At the same time, 1307 related targets corresponding to COPD were screened and 111 overlapping targets were matched. By bioinformatics analysis, 10 core targets were identified, and subsequently, enrichment analysis revealed 385 BP, two CC, eight MF and 78 related signaling pathways. The binding of the core active components in MBYF to the core target was further verified by molecular docking, and all showed good binding. CONCLUSIONS: The active components of MBYF, such as quercetin, kaempferol, luteolin, and baicalein, may be the material basis for the treatment of chronic obstructive pulmonary disease. They affect the expression of inflammatory cells and inflammatory factors, protein phosphorylation, and smooth muscle hyperplasia through tumor necrosis factor, interleukin-17, mitogen-activated protein kinase, nuclear factor-kappa B and other signaling pathways.


Assuntos
Farmacologia em Rede , Doença Pulmonar Obstrutiva Crônica , Humanos , Simulação de Acoplamento Molecular , Biologia Computacional , Bases de Dados Genéticas , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
18.
Eur Respir J ; 63(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38123239

RESUMO

BACKGROUND: Short-term studies suggest that dietary nitrate (NO3 -) supplementation may improve the cardiovascular risk profile, lowering blood pressure (BP) and enhancing endothelial function. It is not clear if these beneficial effects are sustained and whether they apply in people with COPD, who have a worse cardiovascular profile than those without COPD. Nitrate-rich beetroot juice (NR-BRJ) is a convenient dietary source of nitrate. METHODS: The ON-BC trial was a randomised, double-blind, placebo-controlled parallel group study in stable COPD patients with home systolic BP (SBP) measurement ≥130 mmHg. Participants were randomly allocated (1:1) using computer-generated, block randomisation to either 70 mL NR-BRJ (400 mg NO3 -) (n=40) or an otherwise identical nitrate-depleted placebo juice (0 mg NO3 -) (n=41), once daily for 12 weeks. The primary end-point was between-group change in home SBP measurement. Secondary outcomes included change in 6-min walk distance (6MWD) and measures of endothelial function (reactive hyperaemia index (RHI) and augmentation index normalised to a heart rate of 75 beats·min-1 (AIx75)) using an EndoPAT device. Plasma nitrate and platelet function were also measured. RESULTS: Compared with placebo, active treatment lowered SBP (Hodges-Lehmann treatment effect -4.5 (95% CI -5.9- -3.0) mmHg), and improved 6MWD (30.0 (95% CI 15.7-44.2) m; p<0.001), RHI (0.34 (95% CI 0.03-0.63); p=0.03) and AIx75 (-7.61% (95% CI -14.3- -0.95%); p=0.026). CONCLUSIONS: In people with COPD, prolonged dietary nitrate supplementation in the form of beetroot juice produces a sustained reduction in BP, associated with an improvement in endothelial function and exercise capacity.


Assuntos
Doenças Cardiovasculares , Doença Pulmonar Obstrutiva Crônica , Humanos , Nitratos/uso terapêutico , Doenças Cardiovasculares/prevenção & controle , Doenças Cardiovasculares/tratamento farmacológico , Suplementos Nutricionais , Fatores de Risco , Pressão Sanguínea , Antioxidantes , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Método Duplo-Cego , Estudos Cross-Over
19.
Respir Med ; 222: 107510, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135194

RESUMO

INTRODUCTION: Chronic obstructive pulmonary disease (COPD) is associated with an intestinal leak and neuromuscular junction (NMJ) degradation, which contributes to physical compromise and accelerated age-related muscle loss, called sarcopenia. However, the relevant interventions partly remain ineffective. We investigated the effects of exogenous butyrate on sarcopenia and physical capacity with relevance to intestinal permeability and NMJ integrity in COPD patients. METHODS: COPD patients were randomized into placebo (n = 67) and butyrate (n = 64) groups in a double-blind manner. The patients in the butyrate group received one 300 mg capsule a day for 12 weeks. We measured circulating markers of intestinal leak (zonulin), systemic bacterial load (LBP), and NMJ loss (CAF22), along with handgrip strength (HGS), and short physical performance battery (SPPB) at baseline and 12 weeks. RESULTS: Butyrate supplementation improved HGS and gait speed in COPD patients. Among SPPB indices, butyrate improved the ability to maintain postural balance and walking and prevented a decline in the ability to rise from a chair. Butyrate also reduced the plasma levels of zonulin, LBP, and CAF22 levels in COPD patients (all p < 0.05). Regression analysis revealed significant associations of plasma zonulin and CAF22 with HGS, gait speed, and cumulative SPPB scores in butyrate group. These changes were associated with reduced markers of inflammation and muscle damage. CONCLUSION: Butyrate may provide a therapeutic approach to sarcopenia and physical dependency in COPD by repairing intestinal leak and NMJ loss.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Sarcopenia , Humanos , Sarcopenia/etiologia , Sarcopenia/prevenção & controle , Força da Mão/fisiologia , Butiratos , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Junção Neuromuscular , Suplementos Nutricionais
20.
Respir Med ; 222: 107498, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158139

RESUMO

OBJECTIVE: The potential effects of nitrate in patients with chronic obstructive pulmonary disease (COPD) have attracted increased research interest. However, previous clinical trials have reported inconsistent results, and consecutive meta-analyses have failed to reach a consensus. Since some randomized controlled trials have recently been conducted that can provide more evidence, we performed an updated meta-analysis. METHODS: A comprehensive literature search was conducted using PubMed, the Cochrane Library, Embase, and Web of Science databases to identify trials that assessed the efficacy and safety of nitrate in patients with COPD. The Revman 5.3 software was used for data analysis. Mean difference (MD) or standardized mean difference (SMD) with 95 % confidence interval (CI) was used as the effect measure, and forest plots were used to display individual and pooled results. Network pharmacology analysis was conducted to investigate the potential mechanisms of nitrate action in COPD. RESULTS: Eleven studies involving 287 patients were included in this meta-analysis. The results indicated that dietary nitrate supplementation increased plasma nitrate and nitrite concentrations and fractional exhaled nitric oxide in patients with COPD. Nitrate improved exercise capacity [SMD = 0.38, 95 % CI = 0.04-0.72] and endothelial function [MD = 9.41, 95 % CI = 5.30-13.52], and relieved dyspnea in patients with COPD. Network pharmacology identified AKT1, IL1B, MAPK3, and CASP3 as key treatment targets. CONCLUSION: Dietary nitrate supplementation could be used as a potential treatment for patients with COPD, especially to increase their exercise capacity. The underlying mechanisms may be related to AKT1, IL1B, MAPK3, and CASP3.


Assuntos
Nitratos , Doença Pulmonar Obstrutiva Crônica , Humanos , Caspase 3 , Suplementos Nutricionais , Tolerância ao Exercício , Nitratos/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA