Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

Medicinas Complementares
Tipo de documento
Intervalo de ano de publicação
1.
Nutrients ; 16(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38337708

RESUMO

Strict adherence to a diet is an essential pillar of long-term treatment for many inborn errors of metabolism (IEMs). Tools that educate patients about dietary management can positively condition adherence and prevent morbidity. We designed a free online dietary calculation program (Odimet®, version 2.1.) for IEMs patients in 2008, updated in 2022, that provides detailed information on the content of amino acids, protein, lipids, carbohydrates, vitamins and minerals in >3000 food products, including specific medical foods for IEM. We analyzed the statistics on visits to Odimet® to evaluate its usefulness for long-term dietary management during a 5-year period focusing on three periods: pre-pandemic (15 March 2018-14 March 2020); pandemic 1 (15 March 2020-14 March 2021); and pandemic 2 period (15 March 2021-15 March 2023), in 120 patients with the following distribution: 84 patients with phenylketonuria (PKU); 12 with maple syrup urine disease (MSUD); 11 with urea cycle disorders (UCDs); and 13 with classical galactosemia. The evolutionary levels of their specific metabolic markers were evaluated, showing that globally, both pediatric and adult patients maintain a good metabolic control, even during a pandemic (median levels of phenylalanine in pediatric PKU patients 213.4 µmol/L and 482.3 µmol/L in adults; of leucine in MSUD patients: 144.2 µmol/L; of glutamine in UCDs: 726.8 µmol/L; and of galactose 1-phosphate levels in galactosemia: 0.08 µmol/L). The proportion of patients using Odimet® ranges from 78-100%. An increase in the number of diets being calculated was observed during COVID-19 pandemic. Currently, 14,825 products have been introduced (3094 from the general database, and 11,731 added by users to their own profiles). In 2023 63 emergency dietary adjustments in the studied intoxication-type pathologies were calculated in Odimet®. Our results suggest that its regular use contributes to maintaining metabolic stability in IEMs patients, allowing them to adapt their menus to their lifestyle, and represents a powerful complementary tele-health tool which can be used to perform remote real-time dietary follow-up.


Assuntos
COVID-19 , Galactosemias , Doença da Urina de Xarope de Bordo , Erros Inatos do Metabolismo , Fenilcetonúrias , Distúrbios Congênitos do Ciclo da Ureia , Adulto , Humanos , Criança , Pandemias , Dieta
2.
Mol Genet Metab ; 141(3): 108123, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219674

RESUMO

OBJECTIVES: Inherited amino-acid metabolism disorders (IAAMDs) require lifelong protein-restricted diet. We aimed to investigate: 1/ whether IAAMDs was associated with growth, pubertal, bone mineral apparent density (BMAD) or body composition impairments; 2/ associations linking height, amino-acid mixture (AAM), plasma amino-acids and IGF1 concentrations. DESIGN: Retrospective longitudinal study of 213 patients with neonatal-onset urea cycle disorders (UCD,n = 77), organic aciduria (OA,n = 89), maple syrup urine disease (MSUD,n = 34), or tyrosinaemia type 1 (n = 13). METHODS: We collected growth parameters, pubertal status, BMAD, body composition, protein-intake, and IGF1 throughout growth. RESULTS: Overall final height (n = 69) was below target height (TH): -0.9(1.4) vs. -0.1(0.9) SD, p < 0.001. Final height was ≤ TH-2SD in 12 (21%) patients. Height ≤ - 2SD was more frequent during puberty than during early-infancy and pre-puberty: 23.5% vs. 6.9%, p = 0.002; and vs. 10.7%, p < 0.001. Pubertal delay was frequent (26.7%). Height (SD) was positively associated with isoleucine concentration: ß, 0.008; 95%CI, 0.003 to 0.012; p = 0.001. In the pubertal subgroup, height (SD) was lower in patients with vs. without AAM supplementation: -1.22 (1.40) vs. -0.63 (1.46) (p = 0.02). In OA, height and median (IQR) isoleucine and valine concentrations(µmol/L) during puberty were lower in patients with vs. without AAM supplementation: -1.75 (1.30) vs. -0.33 (1.55) SD, p < 0.001; and 40 (23) vs. 60 (25) (p = 0.02) and 138 (92) vs. 191 (63) (p = 0.01), respectively. No correlation was found with IGF1. Lean-mass index was lower than fat-mass index: -2.03 (1.15) vs. -0.44 (0.89), p < 0.001. CONCLUSIONS: In IAAMDs, growth retardation worsened during puberty which was delayed in all disease subgroups. Height seems linked to the disease, AAM composition and lower isoleucine concentration, independently of the GH-IGF1 pathway. We recommend close monitoring of diet during puberty.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Doença da Urina de Xarope de Bordo , Recém-Nascido , Humanos , Estudos Longitudinais , Estudos Retrospectivos , Isoleucina , Transtornos do Crescimento , Erros Inatos do Metabolismo dos Aminoácidos/genética , Aminoácidos , Estatura
3.
J Inherit Metab Dis ; 47(1): 41-49, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36880392

RESUMO

Maple syrup urine disease (MSUD) is rare autosomal recessive metabolic disorder caused by the dysfunction of the mitochondrial branched-chain 2-ketoacid dehydrogenase (BCKD) enzyme complex leading to massive accumulation of branched-chain amino acids and 2-keto acids. MSUD management, based on a life-long strict protein restriction with nontoxic amino acids oral supplementation represents an unmet need as it is associated with a poor quality of life, and does not fully protect from acute life-threatening decompensations or long-term neuropsychiatric complications. Orthotopic liver transplantation is a beneficial therapeutic option, which shows that restoration of only a fraction of whole-body BCKD enzyme activity is therapeutic. MSUD is thus an ideal target for gene therapy. We and others have tested AAV gene therapy in mice for two of the three genes involved in MSUD, BCKDHA and DBT. In this study, we developed a similar approach for the third MSUD gene, BCKDHB. We performed the first characterization of a Bckdhb-/- mouse model, which recapitulates the severe human phenotype of MSUD with early-neonatal symptoms leading to death during the first week of life with massive accumulation of MSUD biomarkers. Based on our previous experience in Bckdha-/- mice, we designed a transgene carrying the human BCKDHB gene under the control of a ubiquitous EF1α promoter, encapsidated in an AAV8 capsid. Injection in neonatal Bckdhb-/- mice at 1014 vg/kg achieved long-term rescue of the severe MSUD phenotype of Bckdhb-/- mice. These data further validate the efficacy of gene therapy for MSUD opening perspectives towards clinical translation.


Assuntos
Doença da Urina de Xarope de Bordo , Animais , Humanos , Camundongos , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/química , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/genética , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Doença da Urina de Xarope de Bordo/genética , Doença da Urina de Xarope de Bordo/terapia , Doença da Urina de Xarope de Bordo/diagnóstico , Fenótipo , Qualidade de Vida
4.
Int J Mol Sci ; 24(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37958982

RESUMO

Inborn error of metabolism disorders (IEMs) are a family of diseases resulting from single-gene mutations that lead to the accumulation of metabolites that are usually toxic or interfere with normal cell function. The etiological link between metabolic alteration and the symptoms of IEMs is still elusive. Several metabolites, which accumulate in IEMs, were shown to self-assemble to form ordered structures. These structures display the same biophysical, biochemical, and biological characteristics as proteinaceous amyloid fibrils. Here, we have demonstrated, for the first time, the ability of each of the branched-chain amino acids (BCAAs) that accumulate in maple syrup urine disease (MSUD) to self-assemble into amyloid-like fibrils depicted by characteristic morphology, binding to indicative amyloid-specific dyes and dose-dependent cytotoxicity by a late apoptosis mechanism. We could also detect the presence of the assemblies in living cells. In addition, by employing several in vitro techniques, we demonstrated the ability of known polyphenols to inhibit the formation of the BCAA fibrils. Our study implies that BCAAs possess a pathological role in MSUD, extends the paradigm-shifting concept regarding the toxicity of metabolite amyloid-like structures, and suggests new pathological targets that may lead to highly needed novel therapeutic opportunities for this orphan disease.


Assuntos
Doença da Urina de Xarope de Bordo , Doenças Metabólicas , Humanos , Doença da Urina de Xarope de Bordo/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Amiloide/genética , Mutação , Proteínas Amiloidogênicas/genética
5.
J Pediatr Endocrinol Metab ; 36(12): 1146-1153, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37795793

RESUMO

OBJECTIVES: There is growing concern about the low-protein and high-energy diet therapies used in the treatment of inherited amino acid metabolism disorders. We aimed to identify the risk factors for noncommunicable diseases that may arise from nutritional therapies and suggests approaches that may prevent the development of the noncommunicable diseases. METHODS: The present study evaluates 112 patients, on long-term nutritional therapy for at least the last 2 years with a diagnosis of an inborn error of the amino acid metabolism, and their 28 healthy siblings. The participants are assessed for the development of overweight and metabolic syndrome based on an analysis of anthropometric parameters, body composition and the results of biochemical tests. RESULTS: Anthropometric measurements including BMI, weight Z-score, waist circumference and fat mass were not significantly different between patients and controls. Height Z-scores were similar in phenylketonuria patients compared to controls, but lower in urea cycle disorders, organic acidemia and maple syrup urine disease groups. No increased risk of development of overweight or metabolic syndrome was detected in the patient group, while there were findings suggesting malnutrition in patients diagnosed with urea cycle disorders. There was a correlation between patients' BMI and C3-carnitine levels in organic acidemia patients and leucine levels in maple syrup urine disease patients. CONCLUSIONS: All forms of malnutrition can be prevented in patient groups receiving limited nutrients under a dietary management protocol, based on the findings of anthropometric and biochemical evaluations and analyses of body composition.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Desnutrição , Doença da Urina de Xarope de Bordo , Síndrome Metabólica , Doenças não Transmissíveis , Terapia Nutricional , Distúrbios Congênitos do Ciclo da Ureia , Humanos , Sobrepeso , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/etiologia , Fatores de Risco , Aminoácidos
6.
Metab Brain Dis ; 38(6): 2105-2114, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37099078

RESUMO

Maple syrup urine disease (MSUD) is an inherited metabolic disorder caused by a deficiency in branched-chain alpha-ketoacid dehydrogenase complex (BCKAC). The treatment is a standard therapy based on a protein-restricted diet with low branched-chain amino acids (BCAA) content to reduce plasma levels and, consequently, the effects of accumulating their metabolites, mainly in the central nervous system. Although the benefits of dietary therapy for MSUD are undeniable, natural protein restriction may increase the risk of nutritional deficiencies, resulting in a low total antioxidant status that can predispose and contribute to oxidative stress. As MSUD is related to redox and energy imbalance, melatonin can be an important adjuvant treatment. Melatonin directly scavenges the hydroxy radical, peroxyl radical, nitrite anion, and singlet oxygen and indirectly induces antioxidant enzyme production. Therefore, this study assesses the role of melatonin treatment on oxidative stress in brain tissue and behavior parameters of zebrafish (Danio rerio) exposed to two concentrations of leucine-induced MSUD: leucine 2 mM and 5mM; and treated with 100 nM of melatonin. Oxidative stress was assessed through oxidative damage (TBARS, DCF, and sulfhydryl content) and antioxidant enzyme activity (SOD and CAT). Melatonin treatment improved redox imbalance with reduced TBARS levels, increased SOD activity, and normalized CAT activity to baseline. Behavior was analyzed with novel object recognition test. Animals exposed to leucine improved object recognition due to melatonin treatment. With the above, we can suggest that melatonin supplementation can protect neurologic oxidative stress, protecting leucine-induced behavior alterations such as memory impairment.


Assuntos
Doença da Urina de Xarope de Bordo , Melatonina , Animais , Leucina/efeitos adversos , Leucina/metabolismo , Doença da Urina de Xarope de Bordo/metabolismo , Peixe-Zebra/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Melatonina/farmacologia , Melatonina/uso terapêutico , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Estresse Oxidativo , Aminoácidos de Cadeia Ramificada/metabolismo , Superóxido Dismutase/metabolismo
7.
Mol Genet Metab ; 134(1-2): 139-146, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34454844

RESUMO

Maple syrup urine disease (MSUD) is a rare, inherited metabolic disorder characterized by a dysfunctional mitochondrial enzyme complex, branched-chain alpha-keto acid dehydrogenase (BCKDH), which catabolizes branched-chain amino acids (BCAAs). Without functional BCKDH, BCAAs and their neurotoxic alpha-keto intermediates can accumulate in the blood and tissues. MSUD is currently incurable and treatment is limited to dietary restriction or liver transplantation, meaning there is a great need to develop new treatments for MSUD. We evaluated potential gene therapy applications for MSUD in the intermediate MSUD (iMSUD) mouse model, which harbors a mutation in the dihydrolipoamide branched-chain transacylase E2 (DBT) subunit of BCKDH. Systemic delivery of an adeno-associated virus (AAV) vector expressing DBT under control of the liver-specific TBG promoter to the liver did not sufficiently ameliorate all aspects of the disease phenotype. These findings necessitated an alternative therapeutic strategy. Muscle makes a larger contribution to BCAA metabolism than liver in humans, but a muscle-specific approach involving a muscle-specific promoter for DBT expression delivered via intramuscular (IM) administration only partially rescued the MSUD phenotype in mice. Combining the muscle-tropic AAV9 capsid with the ubiquitous CB7 promoter via IM or IV injection, however, substantially increased survival across all assessed doses. Additionally, near-normal serum BCAA levels were achieved and maintained in the mid- and high-dose cohorts throughout the study; this approach also protected these mice from a lethal high-protein diet challenge. Therefore, administration of a gene therapy vector that expresses in both muscle and liver may represent a viable approach to treating patients with MSUD.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Doença da Urina de Xarope de Bordo/genética , Doença da Urina de Xarope de Bordo/terapia , Fenótipo , Administração Intravenosa , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Vetores Genéticos/administração & dosagem , Masculino , Camundongos , Mutação
8.
BMJ Case Rep ; 14(7)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326111

RESUMO

A 22-month-old female child with maple syrup urine disease (MSUD) presented with generalised oedema. Diagnostic evaluation revealed nephrotic range proteinuria, hypoalbuminaemia and dyslipidaemia supporting the diagnosis of nephrotic syndrome (NS). Diet, being at the core of the management plan for both MSUD and NS, necessitated regular monitoring and evaluation via dried blood spot collection of leucine. The opposing requirement for total protein for both disorders (that is protein restriction in MSUD and protein supplementation in NS) prompted a careful balancing act of the dietary management. The monitoring, which revealed normal leucine levels on multiple determinations, allowed an eventual increase in dietary protein and daily administration of albumin to address the NS. Dietary protein increase, both in total protein (3.5 g/kg/day) and natural protein (1 g/kg/day) levels, was instituted. It was observed that NS does not trigger leucinosis and allowed easing of protein restriction in MSUD.


Assuntos
Doença da Urina de Xarope de Bordo , Síndrome Nefrótica , Criança , Dieta , Proteínas Alimentares , Feminino , Humanos , Lactente , Leucina , Doença da Urina de Xarope de Bordo/complicações , Doença da Urina de Xarope de Bordo/diagnóstico , Síndrome Nefrótica/complicações
9.
Metab Brain Dis ; 36(5): 1015-1027, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33620579

RESUMO

Maple syrup urine disease (MSUD) is a genetic disorder that leads the accumulation of branched-chain amino acids (BCAA) leucine (Leu), isoleucine, valine and metabolites. The symptomatology includes psychomotor delay and mental retardation. MSUD therapy comprises a lifelong protein strict diet with low BCAA levels and is well established that high concentrations of Leu and/or its ketoacid are associated with neurological symptoms. Recently, it was demonstrated that the phenylbutyrate (PBA) have the ability to decrease BCAA concentrations. This work aimed the development of lipid-based nanoparticles loaded with PBA, capable of targeting to the central nervous system in order to verify its action mechanisms on oxidative stress and cell death in brain of rats subjected to a MSUD chronic model. PBA-loaded nanoparticles treatment was effective in significantly decreasing BCAA concentration in plasma and Leu in the cerebral cortex of MSUD animals. Furthermore, PBA modulate the activity of catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase enzymes, as well as preventing the oxidative damage to lipid membranes and proteins. PBA was also able to decrease the glial fibrillary acidic protein concentrations and partially decreased the reactive species production and caspase-3 activity in MSUD rats. Taken together, the data indicate that the PBA-loaded nanoparticles could be an efficient adjuvant in the MSUD therapy, protecting against oxidative brain damage and neuroinflammation.


Assuntos
Aminoácidos de Cadeia Ramificada/sangue , Córtex Cerebral/efeitos dos fármacos , Doença da Urina de Xarope de Bordo/metabolismo , Nanopartículas/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Fenilbutiratos/administração & dosagem , Animais , Catalase/metabolismo , Córtex Cerebral/metabolismo , Glutationa Peroxidase/metabolismo , Doença da Urina de Xarope de Bordo/sangue , Doença da Urina de Xarope de Bordo/induzido quimicamente , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo
10.
BMC Oral Health ; 21(1): 8, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407387

RESUMO

BACKGROUND: Maple syrup urine disease (MSUD) is an inherited disorder clinically characterized by ketoacidosis, seizures, coma, psychomotor delay, and intellectual disability. The treatment requires a life-long protein-restricted diet, rich in carbohydrates and fats, supplemented with a medical amino acid formula. Diet, oral health and general health influence each other in a vicious cycle. The aim of this study was to investigate the oral health status of children and young adults with MSUD in Turkey. METHODS: A descriptive study was conducted on patients with MSUD who applied for routine follow-up to the pediatric metabolic diseases clinic at Hacettepe University, Children's Hospital in Ankara, Turkey in a 12-month period. Patients with any other concomitant genetic diseases and acute infection were excluded. A total of twenty-five patients were enrolled and underwent oral examination including DMFT/S, dmft/s (decayed/missing/filled teeth/surfaces for deciduous and primary teeth, respectively), plaque and gingival indices. Panoramic radiographs were obtained in 12 cooperative patients. RESULTS: Mean age was 9.88 ± 5.68 s.d years. More than half of the parents had only primary school level education, and low income. Fourteen patients consumed medical formula during or right before sleep. Fourteen patients reported caries-associated pain. Gingival inflammation was present in all 15 patients who cooperated for evaluation. Seven out of twelve patients had at least one dental anomaly or alterations in mandibular morphology. Five patients had previously been treated for caries under general anesthesia. To our knowledge, this is the first study to document oral clinical and radiologic findings in patients with MSUD. CONCLUSIONS: Impaired oral health was observed in this rare disease population. Regular dental referral by physicians, preventive measures and dental treatments should be included in multidisciplinary management of maple syrup urine disease to promote oral health.


Assuntos
Cárie Dentária , Doença da Urina de Xarope de Bordo , Adolescente , Criança , Pré-Escolar , Assistência Odontológica , Cárie Dentária/epidemiologia , Cárie Dentária/etiologia , Humanos , Doença da Urina de Xarope de Bordo/epidemiologia , Saúde Bucal , Turquia/epidemiologia , Adulto Jovem
11.
Metab Brain Dis ; 35(6): 905-914, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32297169

RESUMO

Maple Syrup Urine Disease (MSUD) is an inborn error of metabolism caused by a deficiency of branched α-ketoacid dehydrogenase complex (BCKDC) activity. Branched-chain amino acids (BCAA) accumulation is, at least in part, responsible for neurological disturbances characteristic of this metabolic disorder. Experimental studies demonstrated that high levels of BCAA induce brain oxidative stress. Considering that many antioxidants are obtained from the diet, the dietary restriction in MSUD patients probably produce deficiency of vitamins and micronutrients involved in antioxidant defenses. Supplementation with synthetic melatonin has been used to prevention and treatment of pathological conditions, including brain diseases. In this study, we aimed at investigating the potential neuroprotective effect of melatonin treatment in a MSUD experimental model. Infant rats (7 day old) received twice daily subcutaneous injections of a BCAA pool (0.21472 g/kg, 190 mmol/L leucine, 59 mmol/L isoleucine and 69 mmol/L valine in saline solution (15.8 µL/g per weight/injection) or saline alone, and supplemented with melatonin (10 mg/kg, intraperitoneal) for 21 days. Oxidative stress parameters, i.e. antioxidant enzyme activity, reactive species production and damage to lipids and proteins, were assessed in the cerebral cortex, hippocampus and striatum at twenty-eight days of age. In addition, the damage to blood cell DNA was evaluated. The chronic administration of BCAA pool in infant rats induced significant oxidative stress (p < 0.05) - such as oxidation of lipids and proteins, imbalance in antioxidant enzymes activities - damages in DNA (p < 0.05) and in brain structures (cerebral cortex, hippocampus and striatum). Notably, melatonin supplementation was able to ameliorate the oxidative (p < 0.05) and antioxidant (p < 0.05) parameters in the brain and blood of the rat model of MSUD. Our results show that melatonin could be a promising therapeutic agent for MSUD.


Assuntos
Aminoácidos de Cadeia Ramificada/toxicidade , Antioxidantes/uso terapêutico , Dano ao DNA/efeitos dos fármacos , Doença da Urina de Xarope de Bordo/tratamento farmacológico , Melatonina/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Dano ao DNA/fisiologia , Masculino , Doença da Urina de Xarope de Bordo/induzido quimicamente , Doença da Urina de Xarope de Bordo/metabolismo , Melatonina/farmacologia , Estresse Oxidativo/fisiologia , Ratos , Ratos Wistar
12.
BMC Pediatr ; 19(1): 494, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31830945

RESUMO

BACKGROUND: Maple syrup urine disease (MSUD) is a potentially life-threatening metabolic disorder caused by decreased activity of the branched-chain α-ketoacid dehydrogenase (BCKD) complex. Mutations in four genes (BCKDHA, BCKDHB, DLD and DBT) are associated with MSUD. Here, the presenting symptoms and clinical course of a case of MSUD with a novel DBT gene mutation are described. CASE PRESENTATION: We describe an infant with MSUD with the DBT gene mutation who had drowsiness and poor appetite as well as abnormal findings upon head magnetic resonance imaging (MRI), plasma amino acid analysis and urine organic acid analysis. Genetic testing revealed that both parents had the heterozygous mutation c.1132C > T (p.378X) in chr1:100672078, and the patient had the homozygous mutations c.1132C > T (p.378X) in chr1:100672078. Once diagnosed with MSUD, the patient's disease was controlled with a diet of BCAA-free enteral formula and thiamine. CONCLUSION: The mutation c.1132C > T (p.378X) is a novel DBT gene mutation that is associated with MSUD and always has mild clinical manifestations. After timely BCAA-free nutrition and supplementation with thiamine for the patient, the plasma levels of BCAAs reached a safe level, the abnormal range of the multiple intracranial abnormalities was significantly smaller than before, and the symptoms of drowsiness and poor appetite disappeared.


Assuntos
Aciltransferases/genética , Doença da Urina de Xarope de Bordo/genética , Mutação , Humanos , Lactente , Masculino
13.
Int J Pharm ; 567: 118497, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31279771

RESUMO

Maple syrup urine disease (MSUD) is a rare metabolic disorder with a worldwide prevalence of 1 in every 185,000 live births. However, certain populations display a significant overexpression of the disorder where incidence is reported to be 1 in every 52,541 new-borns. The first-line therapy for MSUD involves a strict dietary leucine restriction and oral supplementation of isoleucine and valine. The dose administered to patients requires strict tailoring according to age, weight and blood levels. In current clinical practice, however, practitioners still have to prepare extemporaneous formulations due to the lack of suitable oral treatments for MSUD. Herein, we evaluate the first time use of 3D printing in a hospital setting for the preparation of personalised therapies with the aim of improving safety and acceptability to isoleucine supplementation in paediatric patients suffering from MSUD. This investigation was a single-centre, prospective crossover experimental study. Four paediatric patients with MSUD (aged 3-16 years) were treated at the Clinic University Hospital in Santiago de Compostela, Spain which is a MSUD reference hospital in Europe. The primary objective was to evaluate isoleucine blood levels after six months of treatment with two types of formulations; conventional capsules prepared by manual compounding and personalised chewable formulations prepared by automated 3D printing. A secondary investigation was to evaluate patient acceptability of 3D printed formulations prepared with different flavours and colours. Isoleucine blood levels in patients were well controlled using both types of formulations, however, the 3D printed therapy showed mean levels closer to the target value and with less variability (200-400 µM). The 3D printed formulations were well accepted by patients regarding flavour and colour. The study demonstrates for the first time that 3D printing offers a feasible, rapid and automated approach to prepare oral tailored-dose therapies in a hospital setting. 3D printing has shown to be an effective manufacturing technology in producing chewable isoleucine printlets as a treatment of MSUD with good acceptability.


Assuntos
Isoleucina/administração & dosagem , Doença da Urina de Xarope de Bordo/tratamento farmacológico , Impressão Tridimensional , Adolescente , Criança , Pré-Escolar , Corantes/administração & dosagem , Estudos Cross-Over , Formas de Dosagem , Feminino , Aromatizantes/administração & dosagem , Humanos , Masculino , Projetos Piloto , Paladar
14.
Toxicol In Vitro ; 57: 194-202, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30853490

RESUMO

Maple syrup urine disease (MSUD) is an inherited deficiency of the branched-chain α-keto dehydrogenase complex, characterized by accumulation of the branched-chain amino acids (BCAAs) and their respective branched chain α-keto-acids (BCKAs), as well as by the presence of alloisoleucine (Allo). Studies have shown that oxidative stress is involved in the pathophysiology of MSUD. In this work, we investigated using the comet assay whether Allo, BCAAs and BCKAs could induce in vitro DNA damage, as well as the influence of l-Carnitine (L-Car) upon DNA damage. We also evaluated urinary 8-hydroxydeoguanosine (8-OHdG) levels, an oxidative DNA damage biomarker, in MSUD patients submitted to a restricted diet supplemented or not with L-Car. All tested concentrations of metabolites (separated or incubated together) induced in vitro DNA damage, and the co-treatment with L-Car reduced these effects. We found that Allo induced the higher DNA damage class and verified a potentiation of DNA damage induced by synergistic action between metabolites. In vivo, it was observed a significant increase in 8-OHdG levels, which was reversed by L-Car. We demonstrated for the first time that oxidative DNA damage is induced not only by BCAAs and BCKAs but also by Allo and we reinforce the protective effect of L-Car.


Assuntos
Aminoácidos/administração & dosagem , Carnitina/uso terapêutico , Dano ao DNA , Suplementos Nutricionais , Doença da Urina de Xarope de Bordo , Substâncias Protetoras/uso terapêutico , 8-Hidroxi-2'-Desoxiguanosina , Aminoácidos/sangue , Aminoácidos/urina , Criança , Pré-Escolar , Ensaio Cometa , Desoxiguanosina/análogos & derivados , Desoxiguanosina/urina , Humanos , Doença da Urina de Xarope de Bordo/sangue , Doença da Urina de Xarope de Bordo/dietoterapia , Doença da Urina de Xarope de Bordo/genética , Doença da Urina de Xarope de Bordo/urina
15.
Neurochem Int ; 117: 5-14, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28579060

RESUMO

This review summarizes our present view on the molecular pathogenesis of human (h) E3-deficiency caused by a variety of genetic alterations with a special emphasis on the moonlighting biochemical phenomena related to the affected (dihydro)lipoamide dehydrogenase (LADH, E3, gene: dld), in particular the generation of reactive oxygen species (ROS). E3-deficiency is a rare autosomal recessive genetic disorder frequently presenting with a neonatal onset and premature death; the highest carrier rate of a single pathogenic dld mutation (1:94-1:110) was found among Ashkenazi Jews. Patients usually die during acute episodes that generally involve severe metabolic decompensation and lactic acidosis leading to neurological, cardiological, and/or hepatological manifestations. The disease owes its severity to the fact that LADH is the common E3 subunit of the alpha-ketoglutarate (KGDHc), pyruvate (PDHc), and branched-chain α-keto acid dehydrogenase complexes and is also part of the glycine cleavage system, hence the malfunctioning of LADH simultaneously incapacitates several central metabolic pathways. Nevertheless, the clinical pictures are usually not unequivocally portrayed through the loss of LADH activities and imply auxiliary mechanisms that exacerbate the symptoms and outcomes of this disorder. Enhanced ROS generation by disease-causing hE3 variants as well as by the E1-E2 subcomplex of the hKGDHc likely contributes to selected pathogeneses of E3-deficiency, which could be targeted by specific drugs or antioxidants; lipoic acid was demonstrated to be a potent inhibitor of ROS generation by hE3 in vitro. Flavin supplementation might prove to be beneficial for those mutations triggering FAD loss in the hE3 component. Selected pathogenic hE3 variants lose their affinity for the E2 component of the hPDHc, a mechanism which warrants scrutiny also for other E3-haboring complexes.


Assuntos
Acidose Láctica/metabolismo , Di-Hidrolipoamida Desidrogenase/metabolismo , Doença da Urina de Xarope de Bordo/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Acidose Láctica/genética , Acidose Láctica/patologia , Di-Hidrolipoamida Desidrogenase/química , Di-Hidrolipoamida Desidrogenase/genética , Humanos , Doença da Urina de Xarope de Bordo/genética , Doença da Urina de Xarope de Bordo/patologia , Estrutura Secundária de Proteína
16.
Orphanet J Rare Dis ; 12(1): 132, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724394

RESUMO

BACKGROUND: Newborn Screening Connect (NBS Connect) is a web-based self-reported patient registry and resource for individuals and families affected by disorders included in the newborn screening panel. NBS Connect was launched in 2012 by Emory University after years of planning and grassroots work by professionals, consumers, and industry. Individuals with phenylketonuria (PKU), maple syrup urine disease (MSUD) or tyrosinemia (TYR) have been recruited through distribution of outreach materials, presentations at parent organization meetings and direct recruitment at clinic appointments. Participants complete online profiles generating data on diagnosis, treatment, symptoms, outcomes, barriers to care, and quality of life. Resources such as education materials, information on the latest research and clinical trials, recipes, interactive health tracking systems, and professional support tools are described. In addition, to examine the ability of NBS Connect to generate data that guides hypothesis-driven research, data pertaining to age at diagnosis, bone health, and skin conditions in individuals with PKU were assessed. The objective of this paper is to describe the development of NBS Connect and highlight its data, resources and research contributions. RESULTS: In September 2016, NBS Connect had 442 registered participants: 314 (71%) individuals with PKU, 68 (15%) with MSUD, 20 (5%) with TYR, and 40 (9%) with other disorders on the NBS panel. Age at diagnosis was less than 4 weeks in 285 (89%) of 319 respondents to this question and between 1 month and 14 years in 29 (9%) individuals. Of 216 respondents with PKU, 33 (15%) had a DXA scan in the past year. Of 217 respondents with PKU, 99 (46%) reported at least one skin condition. CONCLUSIONS: NBS Connect was built and refined with feedback from all stakeholders, including individuals with inherited metabolic disorders. Based on patient-reported data, future studies can be initiated to test hypotheses such as the relationship between PKU and skin conditions. Patient registries like NBS Connect can inform hypothesis-driven research, contributing to knowledge generation and following the current trend in moving from traditional medicine towards evidence-based practice. NBS Connect will help clinicians understand long-term outcomes of rare disorders, contributing to better patient care and quality of life.


Assuntos
Doença da Urina de Xarope de Bordo/genética , Triagem Neonatal , Fenilcetonúrias/genética , Doenças Raras , Sistema de Registros , Tirosinemias/genética , Humanos , Recém-Nascido , Internet
17.
Radiologe ; 57(6): 438-442, 2017 Jun.
Artigo em Alemão | MEDLINE | ID: mdl-28508091

RESUMO

CLINICAL ISSUE: Metabolic disorders of the brain often present a particular challenge for the neuroradiologist, since the disorders are rare, changes on conventional MR are often non-specific and there are numerous differential diagnoses for the white substance lesions. STANDARD RADIOLOGICAL METHODS: As a complementary method to conventional brain MRI, MR spectroscopy may help to reduce the scope of the differential diagnosis. Entities with specific MR spectroscopy patterns are Canavan disease, maple syrup urine disease, nonketotic hyperglycinemia and creatine deficiency.


Assuntos
Encéfalo/diagnóstico por imagem , Hiperglicinemia não Cetótica/diagnóstico , Espectroscopia de Ressonância Magnética/métodos , Doença da Urina de Xarope de Bordo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Imageamento por Ressonância Magnética
18.
Acta Medica Philippina ; : 575-580, 2017.
Artigo em Inglês | WPRIM | ID: wpr-959725

RESUMO

@#<p>A 1-year-old female with maple syrup urine disease presenting with erythematous, partially eroded plaques on the trunk, anogenital area, and extremities experienced metabolic crisis. The skin lesions appeared at 11 months of age and was thought to result from amino acid imbalance secondary to erratic supplementation of specialized milk formula devoid of isoleucine, leucine, and valine. Serial urine monitoring showed persistent ketones and elevated serum leucine and valine. The patient was managed with emollients, intralipid 20%, and addition of isoleucine and valine supplements to counter the neurotoxic effect of leucine. After 8 days of proper feeding and continuous emollient application, the lesions improved and skin biopsy revealed superficial perivascular dermatitis. Although a decrease in erythema and desquamation was noted, the patient had persistent cerebral edema and continued to deteriorate.</p>


Assuntos
Doença da Urina de Xarope de Bordo , Isoleucina , Leucina , Valina , Eritema
19.
Indian Pediatr ; 53(8): 738-40, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-27567652

RESUMO

BACKGROUND: Special diet with restricted branched-chain-amino-acids used for treating maple syrup urine disease can lead to specific amino acid deficiencies. CASE CHARACTERISTICS: We report a neonate who developed skin lesions due to isoleucine deficiency while using specialised formula. INTERVENTION/OUTCOME: Feeds were supplemented with expressed breast milk. This caused biochemical and clinical improvement with resolution of skin lesions. MESSAGE: Breast milk is a valuable and necessary adjunct to specialized formula in maple syrup urine disease to prevent specific amino acid deficiency in the neonatal period.


Assuntos
Isoleucina , Doença da Urina de Xarope de Bordo , Acrodermatite , Aleitamento Materno , Diagnóstico Diferencial , Humanos , Fórmulas Infantis , Recém-Nascido , Isoleucina/administração & dosagem , Isoleucina/deficiência , Doença da Urina de Xarope de Bordo/dietoterapia , Doença da Urina de Xarope de Bordo/genética , Doença da Urina de Xarope de Bordo/fisiopatologia , Zinco/deficiência
20.
J Biol Chem ; 291(6): 2967-73, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26683372

RESUMO

Branched-chain α-ketoacid dehydrogenase (BCKDH) catalyzes the critical step in the branched-chain amino acid (BCAA) catabolic pathway and has been the focus of extensive studies. Mutations in the complex disrupt many fundamental metabolic pathways and cause multiple human diseases including maple syrup urine disease (MSUD), autism, and other related neurological disorders. BCKDH may also be required for the synthesis of monomethyl branched-chain fatty acids (mmBCFAs) from BCAAs. The pathology of MSUD has been attributed mainly to BCAA accumulation, but the role of mmBCFA has not been evaluated. Here we show that disrupting BCKDH in Caenorhabditis elegans causes mmBCFA deficiency, in addition to BCAA accumulation. Worms with deficiency in BCKDH function manifest larval arrest and embryonic lethal phenotypes, and mmBCFA supplementation suppressed both without correcting BCAA levels. The majority of developmental defects caused by BCKDH deficiency may thus be attributed to lacking mmBCFAs in worms. Tissue-specific analysis shows that restoration of BCKDH function in multiple tissues can rescue the defects, but is especially effective in neurons. Taken together, we conclude that mmBCFA deficiency is largely responsible for the developmental defects in the worm and conceivably might also be a critical contributor to the pathology of human MSUD.


Assuntos
3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Ácidos Graxos/metabolismo , Neurônios/enzimologia , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Modelos Animais de Doenças , Ácidos Graxos/genética , Humanos , Doença da Urina de Xarope de Bordo/genética , Doença da Urina de Xarope de Bordo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA