Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.012
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Prog Neurobiol ; 236: 102601, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570083

RESUMO

Here, we provide an in-depth consideration of our current understanding of engrams, spanning from molecular to network levels, and hippocampal neurogenesis, in health and Alzheimer's disease (AD). This review highlights novel findings in these emerging research fields and future research directions for novel therapeutic avenues for memory failure in dementia. Engrams, memory in AD, and hippocampal neurogenesis have each been extensively studied. The integration of these topics, however, has been relatively less deliberated, and is the focus of this review. We primarily focus on the dentate gyrus (DG) of the hippocampus, which is a key area of episodic memory formation. Episodic memory is significantly impaired in AD, and is also the site of adult hippocampal neurogenesis. Advancements in technology, especially opto- and chemogenetics, have made sophisticated manipulations of engram cells possible. Furthermore, innovative methods have emerged for monitoring neurons, even specific neuronal populations, in vivo while animals engage in tasks, such as calcium imaging. In vivo calcium imaging contributes to a more comprehensive understanding of engram cells. Critically, studies of the engram in the DG using these technologies have shown the important contribution of hippocampal neurogenesis for memory in both health and AD. Together, the discussion of these topics provides a holistic perspective that motivates questions for future research.


Assuntos
Doença de Alzheimer , Hipocampo , Neurogênese , Neurogênese/fisiologia , Humanos , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/patologia , Animais , Demência/fisiopatologia , Memória/fisiologia
2.
Biosci Rep ; 44(4)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38577975

RESUMO

Since 1975, the incidence of obesity has increased to epidemic proportions, and the number of patients with obesity has quadrupled. Obesity is a major risk factor for developing other serious diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular diseases. Recent epidemiologic studies have defined obesity as a risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and other types of dementia. Despite all these serious comorbidities associated with obesity, there is still a lack of effective antiobesity treatment. Promising candidates for the treatment of obesity are anorexigenic neuropeptides, which are peptides produced by neurons in brain areas implicated in food intake regulation, such as the hypothalamus or the brainstem. These peptides efficiently reduce food intake and body weight. Moreover, because of the proven interconnection between obesity and the risk of developing AD, the potential neuroprotective effects of these two agents in animal models of neurodegeneration have been examined. The objective of this review was to explore anorexigenic neuropeptides produced and acting within the brain, emphasizing their potential not only for the treatment of obesity but also for the treatment of neurodegenerative disorders.


Assuntos
Fármacos Antiobesidade , Neuropeptídeos , Fármacos Neuroprotetores , Obesidade , Humanos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Animais , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Neuropeptídeos/metabolismo , Neuropeptídeos/farmacologia , Neuropeptídeos/uso terapêutico , Fármacos Antiobesidade/farmacologia , Fármacos Antiobesidade/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/prevenção & controle , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotálamo/patologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/prevenção & controle , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Ingestão de Alimentos/efeitos dos fármacos
3.
J Alzheimers Dis ; 98(3): 1017-1027, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38489189

RESUMO

Background: Lifestyle factors are linked to differences in brain aging and risk for Alzheimer's disease, underscored by concepts like 'cognitive reserve' and 'brain maintenance'. The Resilience Index (RI), a composite of 6 factors (cognitive reserve, physical and cognitive activities, social engagement, diet, and mindfulness) provides such a holistic measure. Objective: This study aims to examine the association of RI scores with cognitive function and assess the mediating role of cortical atrophy. Methods: Baseline data from 113 participants (aged 45+, 68% female) from the Healthy Brain Initiative were included. Life course resilience was estimated with the RI, cognitive performance with Cognivue®, and brain health using a machine learning derived Cortical Atrophy Score (CAS). Mediation analysis probed the relationship between RI, cognitive outcomes, and cortical atrophy. Results: In age and sex adjusted models, the RI was significantly associated with CAS (ß= -0.25, p = 0.006) and Cognivue® scores (ß= 0.32, p < 0.001). The RI-Cognivue® association was partially mediated by CAS (ß= 0.07; 95% CI [0.02, 0.14]). Conclusions: Findings revealed that the collective effect of early and late-life lifestyle resilience factors on cognition are partially explained by their association with less brain atrophy. These findings underscore the value of comprehensive lifestyle assessments in understanding the risk and progression of cognitive decline and Alzheimer's disease in an aging population.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Resiliência Psicológica , Humanos , Feminino , Idoso , Masculino , Doença de Alzheimer/patologia , Imageamento por Ressonância Magnética , Testes Neuropsicológicos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Cognição , Disfunção Cognitiva/psicologia , Atrofia/patologia
4.
J Nutr Biochem ; 127: 109603, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38373507

RESUMO

Alzheimer's disease (AD) is a common neurodegenerative disease that causes progressive cognitive decline. A major pathological characteristic of AD brain is the presence of senile plaques composed of ß-amyloid (Aß), the accumulation of which induces toxic cascades leading to synaptic dysfunction, neuronal apoptosis, and eventually cognitive decline. Dietary n-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are beneficial for patients with early-stage AD; however, the mechanisms are not completely understood. In this study, we investigated the effects of n-3 PUFAs on Aß-induced toxicity in a transgenic AD Caenorhabditis elegans (C. elegans) model. The results showed that EPA and DHA significantly inhibited Aß-induced paralytic phenotype and decreased the production of reactive oxygen species while reducing the levels of Aß in the AD worms. Further studies revealed that EPA and DHA might reduce the accumulation of Aß by restoring the activity of proteasome. Moreover, treating worms with peroxisome proliferator-activated receptor (PPAR)-γ inhibitor GW9662 prevented the inhibitory effects of n-3 PUFAs on Aß-induced paralytic phenotype and diminished the elevation of proteasomal activity by n-3 PUFAs, suggesting that PPARγ-mediated signals play important role in the protective effects of n-3 PUFAs against Aß-induced toxicity.


Assuntos
Doença de Alzheimer , Ácidos Graxos Ômega-3 , Doenças Neurodegenerativas , Animais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/toxicidade , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Ômega-3/farmacologia , PPAR gama/genética , Modelos Animais de Doenças
5.
Brain Res ; 1831: 148814, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38395250

RESUMO

BACKGROUND: Influenced by the global aging population, the incidence of Alzheimer's disease (AD) has increased sharply. In addition to increasing ß-amyloid plaque deposition and tau tangle formation, neurogenesis dysfunction has recently been observed in AD. Therefore, promoting regeneration to improve neurogenesis and cognitive dysfunction can play an effective role in AD treatment. Acupuncture and moxibustion have been widely used in the clinical treatment of neurodegenerative diseases because of their outstanding advantages such as early, functional, and benign two-way adjustment. It is urgent to clarify the effectiveness, greenness, and safety of acupuncture and moxibustion in promoting neurogenesis in AD treatment. METHODS: Senescence-accelerated mouse prone 8 (SAMP8) mice at various ages were used as experimental models to simulate the pathology and behaviors of AD mice. Behavioral experiments, immunohistochemistry, Western blot, and immunofluorescence experiments were used for comparison between different groups. RESULTS: Acupuncture and moxibustion could increase the number of PCNA+ DCX+ cells, Nissl bodies, and mature neurons in the hippocampal Dentate gyrus (DG) of SAMP8 mice, restore the hippocampal neurogenesis, delay the AD-related pathological presentation, and improve the learning and memory abilities of SAMP8 mice. CONCLUSION: The pathological process underlying AD and cognitive impairment were changed positively by improving the dysfunction of neurogenesis. This indicates the promising role of acupuncture and moxibustion in the prevention and treatment of AD.


Assuntos
Terapia por Acupuntura , Doença de Alzheimer , Moxibustão , Camundongos , Animais , Doença de Alzheimer/terapia , Doença de Alzheimer/patologia , Hipocampo/patologia , Neurogênese/fisiologia , Giro Denteado/patologia , Modelos Animais de Doenças
6.
J Alzheimers Dis ; 97(4): 1939-1950, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38339931

RESUMO

Background: Vitamin D has neuroprotective and immunomodulating functions that may impact glial cell function in the brain. Previously, we reported molecular and behavioral changes caused by deficiency and supplementation of vitamin D in an Alzheimer's disease (AD) mouse model. Recent studies have highlighted reactive astrocytes as a new therapeutic target for AD treatment. However, the mechanisms underlying the therapeutic effects of vitamin D on the glial cells of AD remain unclear. Objective: To investigate the potential association between vitamin D deficiency/supplementation and the pathological progression of AD, including amyloid-ß (Aß) pathology and reactive astrogliosis. Methods: Transgenic hemizygous 5XFAD male mice were subjected to different dietary interventions and intraperitoneal vitamin D injections to examine the effects of vitamin D deficiency and supplementation on AD. Brain tissue was then analyzed using immunohistochemistry for Aß plaques, microglia, and astrocytes, with quantifications performed via ImageJ software. Results: Our results demonstrated that vitamin D deficiency exacerbated Aß plaque formation and increased GABA-positive reactive astrocytes in AD model mice, while vitamin D supplementation ameliorated these effects, leading to a reduction in Aß plaques and GABA-positive astrocytes. Conclusions: Our findings highlight the significant impact of vitamin D status on Aß pathology and reactive astrogliosis, underscoring its potential role in the prevention and treatment of AD. This study provides the first in vivo evidence of the association between vitamin D and reactive astrogliosis in AD model mice, indicating the potential for targeting vitamin D levels as a novel therapeutic approach for AD.


Assuntos
Doença de Alzheimer , Deficiência de Vitamina D , Masculino , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Astrócitos/patologia , Vitamina D/uso terapêutico , Gliose/tratamento farmacológico , Gliose/patologia , Peptídeos beta-Amiloides/uso terapêutico , Camundongos Transgênicos , Placa Amiloide/patologia , Vitaminas/farmacologia , Vitaminas/uso terapêutico , Ácido gama-Aminobutírico , Modelos Animais de Doenças
7.
Acta Neuropathol Commun ; 12(1): 36, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419122

RESUMO

Tauopathies are neurodegenerative diseases that typically require postmortem examination for a definitive diagnosis. Detecting neurotoxic tau fragments in cerebrospinal fluid (CSF) and serum provides an opportunity for in vivo diagnosis and disease monitoring. Current assays primarily focus on total tau or phospho-tau, overlooking other post-translational modifications (PTMs). Caspase-cleaved tau is a significant component of AD neuropathological lesions, and experimental studies confirm the high neurotoxicity of these tau species. Recent evidence indicates that certain caspase-cleaved tau species, such as D13 and D402, are abundant in AD brain neurons and only show a modest degree of co-occurrence with phospho-tau, meaning caspase-truncated tau pathology is partially distinct and complementary to phospho-tau pathology. Furthermore, these caspase-cleaved tau species are nearly absent in 4-repeat tauopathies. In this review, we will discuss the significance of caspase-cleaved tau in the development of tauopathies, specifically emphasizing its role in AD. In addition, we will explore the potential of caspase-cleaved tau as a biomarker and the advantages for drug development targeting caspase-6. Developing specific and sensitive assays for caspase-cleaved tau in biofluids holds promise for improving the diagnosis and monitoring of tauopathies, providing valuable insights into disease progression and treatment efficacy.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Doença de Alzheimer/patologia , Proteínas tau/líquido cefalorraquidiano , Caspases , Tauopatias/diagnóstico , Tauopatias/patologia , Biomarcadores/líquido cefalorraquidiano
8.
J Alzheimers Dis ; 98(1): 119-131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38363611

RESUMO

Background: Alzheimer's disease (AD), the most common form of dementia, is characterized by memory loss and the abnormal accumulation of senile plaques composed of amyloid-ß (Aß) protein. Trichosanthis Semen (TS) is a traditional herbal medicine used to treat phlegm-related conditions. While TS is recognized for various bioactivities, including anti-neuroinflammatory effects, its ability to attenuate AD remains unknown. Objective: To evaluate the effects of TS extract (TSE) on neuronal damage, Aß accumulation, and neuroinflammation in AD models. Methods: Thioflavin T and western blot assays were used to assess effects on Aß aggregation in vitro. TS was treated to PC12 cells with Aß to assess the neuroprotective effects. Memory functions and histological brain features were investigated in TSE-treated 5×FAD transgenic mice and mice with intracerebroventricularly injected Aß. Results: TSE disrupted Aß aggregation and increased the viability of cells and phosphorylation of both protein kinase B (Akt) and extracellular signal-regulated kinase (ERK) in vitro. TSE treatment also suppressed the accumulation of Aß plaques in the brain of 5×FAD mice, protected neuronal cells in both the subiculum and medial septum, and upregulated Akt/ERK phosphorylation in the hippocampus. Moreover, TSE ameliorated the memory decline and glial overactivation observed in 5×FAD mice. As assessing whether TS affect Aß-induced neurotoxicity in the Aß-injected mice, the effects of TS on memory improvement and neuroinflammatory inhibition were confirmed. Conclusions: TSE disrupted Aß aggregation, protected neurons against Aß-induced toxicity, and suppressed neuroinflammation, suggesting that it can suppress the development of AD.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Ratos , Camundongos , Animais , Doença de Alzheimer/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sêmen/metabolismo , Doenças Neuroinflamatórias , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Transdução de Sinais , Modelos Animais de Doenças
9.
PLoS One ; 19(2): e0297289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315685

RESUMO

Alzheimer's disease (AD) is characterized by cognitive and memory impairments and neuropathological abnormalities. AD has no cure, inadequate treatment options, and a limited understanding of possible prevention measures. Previous studies have demonstrated that AD model mice that received a diet high in the essential nutrient choline had reduced amyloidosis, cholinergic deficits, and gliosis, and increased neurogenesis. In this study, we investigated the lifelong effects of perinatal choline supplementation on behavior, cognitive function, and amyloidosis in AppNL-G-F AD model mice. Pregnant and lactating mice were given a diet containing either 1.1 g/kg (control) or 5 g/kg (supplemented) of choline chloride until weaning and subsequently, all offspring received the control diet throughout their life. At 3, 6, 9, and 12 months of age, animals were behaviorally tested in the Open Field Test, Elevated Plus Maze, Barnes Maze, and in a contextual fear conditioning paradigm. Immunohistochemical analysis of Aß42 was also conducted on the brains of these mice. AppNL-G-F mice displayed hippocampal-dependent spatial learning deficits starting at 3-months-old that persisted until 12-months-old. These spatial learning deficits were fully prevented by perinatal choline supplementation at young ages (3 and 6 months) but not in older mice (12 months). AppNL-G-F mice also had impaired fearful learning and memory at 9- and 12-months-old that were diminished by choline supplementation. Perinatal choline supplementation reduced Aß42 deposition in the amygdala, cortex, and hippocampus of AppNL-G-F mice. Together, these results demonstrate that perinatal choline supplementation is capable of preventing cognitive deficits and dampening amyloidosis in AppNL-G-F mice and suggest that ensuring adequate choline consumption during early life may be a valuable method to prevent or reduce AD dementia and neuropathology.


Assuntos
Doença de Alzheimer , Amiloidose , Gravidez , Feminino , Camundongos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Doença de Alzheimer/patologia , Camundongos Transgênicos , Lactação , Modelos Animais de Doenças , Encéfalo/metabolismo , Amiloidose/patologia , Colina/farmacologia , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/prevenção & controle , Transtornos da Memória/patologia , Aprendizagem em Labirinto , Suplementos Nutricionais , Peptídeos beta-Amiloides/metabolismo
10.
Ageing Res Rev ; 94: 102183, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218465

RESUMO

Brain diseases present a significant obstacle to both global health and economic progress, owing to their elusive pathogenesis and the limited effectiveness of pharmaceutical interventions. Phototherapy has emerged as a promising non-invasive therapeutic modality for addressing age-related brain disorders, including stroke, Alzheimer's disease (AD), and Parkinson's disease (PD), among others. This review examines the recent progressions in phototherapeutic interventions. Firstly, the article elucidates the various wavelengths of visible light that possess the capability to penetrate the skin and skull, as well as the pathways of light stimulation, encompassing the eyes, skin, veins, and skull. Secondly, it deliberates on the molecular mechanisms of visible light on photosensitive proteins, within the context of brain disorders and other molecular pathways of light modulation. Lastly, the practical application of phototherapy in diverse clinical neurological disorders is indicated. Additionally, this review presents novel approaches that combine phototherapy and pharmacological interventions. Moreover, it outlines the limitations of phototherapeutics and proposes innovative strategies to improve the treatment of cerebral disorders.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Humanos , Fototerapia , Pele , Doença de Parkinson/patologia , Doença de Alzheimer/patologia
11.
J Ethnopharmacol ; 321: 117569, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086513

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Alzheimer's disease (AD) is the most prevalent neurodegenerative disease among old adults. As a traditional Chinese medicine, the herbal decoction Tian-Si-Yin consists of Morinda officinalis How. and Cuscuta chinensis Lam., which has been widely used to nourish kidney. Interestingly, Tian-Si-Yin has also been used to treat dementia, depression and other neurological conditions. However, its therapeutic potential for neurodegenerative diseases such as AD and the underlying mechanisms remain unclear. AIM OF THE STUDY: To evaluate the therapeutic effect of the herbal formula Tian-Si-Yin against AD and to explore the underlying mechanisms. MATERIALS AND METHODS: The N2a cells treated with amyloid ß (Aß) peptide or overexpressing amyloid precursor protein (APP) were used to establish cellular models of AD. The in vivo anti-AD effects were evaluated by using Caenorhabditis elegans and 3 × Tg-AD mouse models. Tian-Si-Yin was orally administered to the mice for 8 weeks at a dose of 10, 15 or 20 mg/kg/day, respectively. Its protective role on memory deficits of mice was examined using the Morris water maze and fear conditioning tests. Network pharmacology, proteomic analysis and ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UHPLC-MS/MS) were used to explore the underlying molecular mechanisms, which were further investigated by Western blotting and immunohistochemistry. RESULTS: Tian-Si-Yin was shown to improve cell viability of Aß-treated N2a cells and APP-expressing N2a-APP cells. Tian-Si-Yin was also found to reduce ROS level and extend lifespan of transgenic AD-like C. elegans model. Oral administration of Tian-Si-Yin at medium dose was able to effectively rescue memory impairment in 3 × Tg mice. Tian-Si-Yin was further shown to suppress neuroinflammation by inhibition of glia cell activation and downregulation of inflammatory cytokines, diminishing tau phosphoralytion and Aß deposition in the mice. Using UHPLC-MS/MS and network pharmacology technologies, 17 phytochemicals from 68 components of Tian-Si-Yin were identified as potential anti-AD components. MAPK1, BRAF, TTR and Fyn were identified as anti-AD targets of Tian-Si-Yin from network pharmacology and mass spectrum. CONCLUSIONS: This study has established the protective effect of Tian-Si-Yin against AD and demonstrates that Tian-Si-Yin is capable of improving Aß level, tau pathology and synaptic disorder by regulating inflammatory response.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Camundongos , Animais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doenças Neuroinflamatórias , Doenças Neurodegenerativas/tratamento farmacológico , Caenorhabditis elegans/metabolismo , Proteômica , Espectrometria de Massas em Tandem , Camundongos Transgênicos , Aprendizagem em Labirinto , Precursor de Proteína beta-Amiloide/metabolismo , Transtornos da Memória/tratamento farmacológico , Modelos Animais de Doenças
12.
Int J Biol Macromol ; 257(Pt 1): 128539, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048923

RESUMO

Alzheimer's disease (AD) is a complex, progressive and deadly disorder that exhibits various typical pathological characteristics. Till now no effective treatment has been found that can prevent or reverse AD. Here, the effects of 2 months of treatment with α-D-1,6-glucan (CPA) and selenium-containing α-D-1,6-glucan (Se-CPA) on early cognitive dysfunction and neuropathology were explored in the 3-month-old APP/PS1 transgenic mouse. The results of the Morris water maze and open-field test revealed that Se-CPA exerted more significant effects than CPA in improving cognitive function and depressive-like behavior by attenuating the oxidative stress, decreasing serum LPS level, downregulating the inflammation of astrocytes and microglia through inhibiting the activation of NLRP3 inflammasome, mitigating neuronal cells loss and improving synaptic plasticity. Moreover, Se-CPA exerted beneficial effects on reshaping gut microbiome by increasing the microbial α-diversity, enhancing the proportion of beneficial bacteria such as Akkermansia muciniphila and promoting the SCFAs concentration. These findings provide evidence that Se-CPA might be a potentially viable compound for AD prevention.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Selênio , Camundongos , Animais , Selênio/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Camundongos Transgênicos , Disfunção Cognitiva/tratamento farmacológico , Cognição , Modelos Animais de Doenças , Peptídeos beta-Amiloides
13.
J Ethnopharmacol ; 321: 117462, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37981117

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: In the ancient book "Shen Nong's Herbal Classic," Panax ginseng CA Mey was believed to have multiple benefits, including calming nerves, improving cognitive function, and promoting longevity. Ginsenosides are the main active ingredients of ginseng. Ginsenoside RK3 (RK3), a rare ginsenoside extracted from ginseng, displays strong pharmacological potential. However, its effect on neurogenesis remains insufficiently investigated. AIM OF THE STUDY: This study aims to investigate whether RK3 improves learning and memory by promoting neurogenesis, and to explore the mechanism of RK3 action. MATERIALS AND METHODS: The therapeutic effect of RK3 on learning and memory was determined by the Morris water maze (MWM) and novel object recognition test (NORT). The pathogenesis and protective effect of RK3 on primary neurons and animal models were detected by immunofluorescence and western blotting. Protein expression of cAMP response element-binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathway was detected by western blotting. RESULTS: Our results showed that RK3 treatment significantly improved cognitive function in APPswe/PSEN1dE9 (APP/PS1) mice and C57BL/6 (C57) mice. RK3 promotes neurogenesis and synaptogenesis in the mouse hippocampus. In vitro, RK3 prevents Aß-induced injury in primary cultured neurons and promotes the proliferation of PC12 as well as the expression of synapse-associated proteins. Mechanically, the positve role of RK3 on neurogenesis was combined with the activation of CREB/BDNF pathway. Inhibition of CREB/BDNF pathway attenuated the effect of RK3. CONCLUSION: In conclusion, this study demonstrated that RK3 promotes learning and cognition in APP/PS1 and C57 mice by promoting neurogenesis and synaptogenesis through the CREB/BDNF signaling pathway. Therefore, RK3 is expected to be further developed into a potential drug candidate for the treatment of Alzheimer's disease (AD).


Assuntos
Doença de Alzheimer , Ginsenosídeos , Camundongos , Animais , Doença de Alzheimer/patologia , Ginsenosídeos/farmacologia , Ginsenosídeos/uso terapêutico , Ginsenosídeos/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Camundongos Endogâmicos C57BL , Neurogênese , Modelos Animais de Doenças , Hipocampo
14.
Phytomedicine ; 123: 155281, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103316

RESUMO

BACKGROUND: Geniposide (GP) is an iridoid glycoside that is present in nearly 40 species, including Gardenia jasminoides Ellis. GP has been reported to exhibit neuroprotective effects in various Alzheimer's disease (AD) models; however, the effects of GP on AD models of Caenorhabditis elegans (C. elegans) and aging-accelerated mouse predisposition-8 (SAMP8) mice have not yet been evaluated. PURPOSE: To determine whether GP improves the pathology of AD and sarcopenia. METHODS: AD models of C. elegans and SAMP8 mice were employed and subjected to behavioral analyses. Further, RT-PCR, histological analysis, and western blot analyses were performed to assess the expression of genes and proteins related to AD and muscle atrophy. RESULTS: GP treatment in the AD model of C. elegans significantly restored the observed deterioration in lifespan and motility. In SAMP8 mice, GP did not improve cognitive function deterioration by accelerated aging but ameliorated physical function deterioration. Furthermore, in differentiated C2C12 cells, GP ameliorated muscle atrophy induced by dexamethasone treatment and inhibited FoxO1 activity by activating AKT. CONCLUSION: Although GP did not improve the AD pathology in SAMP8 mice, we suggest that GP has the potential to improve muscle deterioration caused by aging. This effect of GP may be attributed to the suppression of FoxO1 activity.


Assuntos
Doença de Alzheimer , Caenorhabditis elegans , Iridoides , Camundongos , Animais , Doença de Alzheimer/patologia , Envelhecimento , Atrofia Muscular/tratamento farmacológico
15.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069333

RESUMO

This work aims to clarify the effect of dietary polyunsaturated fatty acid (PUFA) intake on the adult brain affected by amyloid pathology. McGill-R-Thy1-APP transgenic (Tg) rat and 5xFAD Tg mouse models that represent earlier or later disease stages were employed. The animals were exposed to a control diet (CD) or an HFD based on corn oil, from young (rats) or adult (mice) ages for 24 or 10 weeks, respectively. In rats and mice, the HFD impaired reference memory in wild-type (WT) animals but did not worsen it in Tg, did not cause obesity, and did not increase triglycerides or glucose levels. Conversely, the HFD promoted stronger microglial activation in Tg vs. WT rats but had no effect on cerebral amyloid deposition. IFN-γ, IL-1ß, and IL-6 plasma levels were increased in Tg rats, regardless of diet, while CXCL1 chemokine levels were increased in HFD-fed mice, regardless of genotype. Hippocampal 3-nitrotyrosine levels tended to increase in HFD-fed Tg rats but not in mice. Overall, an HFD with an elevated omega-6-to-omega-3 ratio as compared to the CD (25:1 vs. 8.4:1) did not aggravate the outcome of AD regardless of the stage of amyloid pathology, suggesting that many neurobiological processes relevant to AD are not directly dependent on PUFA intake.


Assuntos
Doença de Alzheimer , Ácidos Graxos Ômega-3 , Camundongos , Ratos , Animais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Encéfalo/patologia , Camundongos Transgênicos , Amiloide , Modelos Animais de Doenças , Ratos Transgênicos , Dieta Hiperlipídica
16.
J Alzheimers Dis ; 96(3): 1329-1338, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37980672

RESUMO

BACKGROUND: Cobalamin (Cbl) and folate are common supplements clinicians prescribe as an adjuvant therapy for dementia patients, on the presumption of their neurotrophic and/or homocysteine (Hcy) lowering effect. However, the treatment efficacy has been found mixed and the effects of Cbl/folate/Hcy on the human brain remain to be elucidated. OBJECTIVE: To explore the neurovascular correlates of Cbl/folate/Hcy in Alzheimer's disease (AD) and subcortical ischemic vascular dementia (SIVD). METHODS: Sixty-seven AD patients and 57 SIVD patients were prospectively and consecutively recruited from an outpatient clinic. Multimodal 3-Tesla magnetic resonance imaging was performed to quantitatively evaluate cerebral blood flow (CBF) and white matter integrity. The relationship between neuroimaging metrics and the serum levels of Cbl/folate/Hcy was examined by using the Kruskal-Wallis test, partial correlation analysis, and moderation analysis, at a significance level of 0.05. RESULTS: As a whole, CBF mainly associated with Cbl/folate while white matter hyperintensities exclusively associated with Hcy. As compared with AD, SIVD exhibited more noticeable CBF correlates (spatially widespread with Cbl and focal with folate). In SIVD, a bilateral Cbl-moderated CBF coupling was found between medial prefrontal cortex and ipsilateral basal ganglia, while in the fronto-subcortical white matter tracts, elevated Hcy was associated with imaging metrics indicative of increased injury in both axon and myelin sheath. CONCLUSIONS: We identified the neurovascular correlates of previously reported neurotrophic effect of Cbl/folate and neurotoxic effect of Hcy in dementia. The correlates exhibited distinct patterns in AD and SIVD. The findings may help improving the formulation of supplemental Cbl/folate treatment for dementia.


Assuntos
Doença de Alzheimer , Isquemia Encefálica , Demência Vascular , Humanos , Vitamina B 12 , Ácido Fólico , Doença de Alzheimer/patologia , Demência Vascular/diagnóstico por imagem , Demência Vascular/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Isquemia Encefálica/patologia , Homocisteína
17.
Acta Neuropathol ; 146(4): 565-583, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37548694

RESUMO

Deficiency of dietary choline, an essential nutrient, is observed worldwide, with ~ 90% of Americans being deficient. Previous work highlights a relationship between decreased choline intake and an increased risk for cognitive decline and Alzheimer's disease (AD). The associations between blood circulating choline and the pathological progression in both mild cognitive impairment (MCI) and AD remain unknown. Here, we examined these associations in a cohort of patients with MCI with presence of either sparse or high neuritic plaque density and Braak stage and a second cohort with either moderate AD (moderate to frequent neuritic plaques, Braak stage = IV) or severe AD (frequent neuritic plaques, Braak stage = VI), compared to age-matched controls. Metabolomic analysis was performed on serum from the AD cohort. We then assessed the effects of dietary choline deficiency (Ch-) in 3xTg-AD mice and choline supplementation (Ch+) in APP/PS1 mice, two rodent models of AD. The levels of circulating choline were reduced while pro-inflammatory cytokine TNFα was elevated in serum of both MCI sparse and high pathology cases. Reduced choline and elevated TNFα correlated with higher neuritic plaque density and Braak stage. In AD patients, we found reductions in choline, its derivative acetylcholine (ACh), and elevated TNFα. Choline and ACh levels were negatively correlated with neuritic plaque load, Braak stage, and TNFα, but positively correlated with MMSE, and brain weight. Metabolites L-Valine, 4-Hydroxyphenylpyruvic, Methylmalonic, and Ferulic acids were significantly associated with circuiting choline levels. In 3xTg-AD mice, the Ch- diet increased amyloid-ß levels and tau phosphorylation in cortical tissue, and TNFα in both blood and cortical tissue, paralleling the severe human-AD profile. Conversely, the Ch+ diet increased choline and ACh while reducing amyloid-ß and TNFα levels in brains of APP/PS1 mice. Collectively, low circulating choline is associated with AD-neuropathological progression, illustrating the importance of adequate dietary choline intake to offset disease.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/patologia , Colina/farmacologia , Fator de Necrose Tumoral alfa , Placa Amiloide/patologia , Peptídeos beta-Amiloides/metabolismo , Acetilcolina , Inflamação , Proteínas tau/metabolismo
18.
Nanoscale ; 15(30): 12748-12770, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37477348

RESUMO

Aggregation of both amyloid beta (Aß) peptide and hyperphosphorylated tau proteins is the major pathological hallmark of Alzheimer's disease (AD). Moieties that carry anti-amyloidogenic potency against both of the aggregating entities are considered to be promising drug candidatures for the disease. In the current work, we have synthesized amphipathic dipeptide vesicle-templated selenium nanoparticles (RΔF-SeNPs) as potential entities to combat AD. We have investigated and established their anti-amyloidogenic activity against different peptide-based amyloid models, such as the reductionist model based on the dipeptide phenylalanine-phenylalanine (FF) derived from Aß; a model based on the hexapeptide Ac-PHF6 (306VQIVYK311) derived from tau protein; and the full-length Aß42 polypeptide-based model. We also evaluated the neuroprotective characteristics of RΔF-SeNPs against FF, Ac-PHF6, and Aß42 fibril-induced toxicity in neuroblastoma, SH-SY5Y cells. RΔF-SeNPs further exhibited neuroprotective effects in streptozotocin (STZ) treated neuronal (N2a) cells carrying AD-like features. In addition, studies conducted in an intra-cerebroventricular STZ-instigated rat model of dementia revealed that RΔF-SeNP-treated animals showed improved cognitive activity and reduced Aß42 aggregate burden in brain tissues as compared with the STZ-treated group. Moreover, in vivo brain distribution studies conducted in animal models additionally demonstrated the brain-homing ability of RΔF-SeNPs. All together, these studies supported the potency of RΔF-SeNPs as efficient and propitious disease-modifying therapeutic agents for combating AD.


Assuntos
Doença de Alzheimer , Nanopartículas , Neuroblastoma , Selênio , Ratos , Humanos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Selênio/farmacologia , Arginina , Fenilalanina/farmacologia , Dipeptídeos , Estreptozocina/uso terapêutico , Nanopartículas/uso terapêutico , Fragmentos de Peptídeos/farmacologia
19.
Neurology ; 101(14): 610-620, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37295957

RESUMO

The amyloid cascade model of the pathogenesis of Alzheimer disease (AD) is well supported in observational studies. Its therapeutic corollary asserts that removal of amyloid-ß peptide ("amyloid") would provide clinical benefits. After 2 decades of pursuing the strategy of amyloid removal without success, clinical trials of the antiamyloid monoclonal antibody (AAMA) donanemab and a phase 3 clinical trial of lecanemab have reported clinical benefits linked to amyloid removal. Lecanemab (trade name, Leqembi) is the first with published phase 3 trial results. When administered through IV every 2 weeks to patients with elevated brain amyloid and mild cognitive impairment or mild dementia, lecanemab delayed cognitive and functional worsening by approximately 5 months in an 18-month double-blind, placebo-controlled trial. The trial was well conducted, and the results favoring lecanemab were internally consistent. The demonstration that lecanemab treatment delayed clinical progression in persons with mild symptoms due to AD is a major conceptual achievement, but a better appreciation of the magnitude and durability of benefits for individual patients will require extended observations from clinical practice settings. Amyloid-related imaging abnormalities (ARIA) that were largely asymptomatic occurred in approximately 20%, slightly more than half of which were attributable to treatment and the rest to underlying AD-related amyloid angiopathy. Persons who were homozygous for the APOE ε4 allele had greater ARIA risks. Hemorrhagic complications with longer-term lecanemab use need to be better understood. Administration of lecanemab will place unprecedented pressures on dementia care personnel and infrastructure, both of which need to grow exponentially to meet the challenge.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Humanos , Doença de Alzheimer/patologia , Angiopatia Amiloide Cerebral/patologia , Peptídeos beta-Amiloides , Anticorpos Monoclonais/uso terapêutico , Assistência ao Paciente
20.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372944

RESUMO

Post-translationally modified N-terminally truncated amyloid beta peptide with a cyclized form of glutamate at position 3 (pE3Aß) is a highly pathogenic molecule with increased neurotoxicity and propensity for aggregation. In the brains of Alzheimer's Disease (AD) cases, pE3Aß represents a major constituent of the amyloid plaque. The data show that pE3Aß formation is increased at early pre-symptomatic disease stages, while tau phosphorylation and aggregation mostly occur at later stages of the disease. This suggests that pE3Aß accumulation may be an early event in the disease pathogenesis and can be prophylactically targeted to prevent the onset of AD. The vaccine (AV-1986R/A) was generated by chemically conjugating the pE3Aß3-11 fragment to our universal immunogenic vaccine platform MultiTEP, then formulated in AdvaxCpG adjuvant. AV-1986R/A showed high immunogenicity and selectivity, with endpoint titers in the range of 105-106 against pE3Aß and 103-104 against the full-sized peptide in the 5XFAD AD mouse model. The vaccination showed efficient clearance of the pathology, including non-pyroglutamate-modified plaques, from the mice brains. AV-1986R/A is a novel promising candidate for the immunoprevention of AD. It is the first late preclinical candidate which selectively targets a pathology-specific form of amyloid with minimal immunoreactivity against the full-size peptide. Successful translation into clinic may offer a new avenue for the prevention of AD via vaccination of cognitively unimpaired individuals at risk of disease.


Assuntos
Doença de Alzheimer , Vacinas Anticâncer , Camundongos , Animais , Doença de Alzheimer/prevenção & controle , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Ácido Pirrolidonocarboxílico , Imunoterapia , Placa Amiloide/patologia , Encéfalo/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA