Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Mais filtros

Medicinas Complementares
Intervalo de ano de publicação
1.
Mol Neurobiol ; 61(3): 1237-1270, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37698833

RESUMO

A neurodegenerative disorder (ND) refers to Huntington's disease (HD) which affects memory loss, weight loss, and movement dysfunctions such as chorea and dystonia. In the striatum and brain, HD most typically impacts medium-spiny neurons. Molecular genetics, excitotoxicity, oxidative stress (OS), mitochondrial, and metabolic dysfunction are a few of the theories advanced to explicit the pathophysiology of neuronal damage and cell death. Numerous in-depth studies of the literature have supported the therapeutic advantages of natural products in HD experimental models and other treatment approaches. This article briefly discusses the neuroprotective impacts of natural compounds against HD models. The ability of the discovered natural compounds to suppress HD was tested using either in vitro or in vivo models. Many bioactive compounds considerably lessened the memory loss and motor coordination brought on by 3-nitropropionic acid (3-NP). Reduced lipid peroxidation, increased endogenous enzymatic antioxidants, reduced acetylcholinesterase activity, and enhanced mitochondrial energy generation have profoundly decreased the biochemical change. It is significant since histology showed that therapy with particular natural compounds lessened damage to the striatum caused by 3-NP. Moreover, natural products displayed varying degrees of neuroprotection in preclinical HD studies because of their antioxidant and anti-inflammatory properties, maintenance of mitochondrial function, activation of autophagy, and inhibition of apoptosis. This study highlighted about the importance of bioactive compounds and their semi-synthetic molecules in the treatment and prevention of HD.


Assuntos
Produtos Biológicos , Doença de Huntington , Fármacos Neuroprotetores , Ratos , Animais , Doença de Huntington/metabolismo , Ratos Wistar , Acetilcolinesterase , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Produtos Biológicos/uso terapêutico , Nitrocompostos/farmacologia , Propionatos/farmacologia , Propionatos/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Modelos Animais de Doenças
2.
EBioMedicine ; 97: 104824, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37806287

RESUMO

BACKGROUND: Huntington or Huntington's disease (HD) is an autosomal dominant neurodegenerative disease characterised by both progressive motor and cognitive dysfunction; its pathogenic mechanisms remain poorly understood and no treatment can currently slow, stop, or reverse its progression. There is some evidence of metallomic dysfunction in limited regions of the HD brain; we hypothesised that these alterations are more widespread than the current literature suggests and may contribute to pathogenesis in HD. METHODS: We measured the concentrations of eight essential metals (sodium, potassium, magnesium, calcium, iron, zinc, copper, and manganese) and the metalloid selenium across 11 brain regions in nine genetically confirmed, clinically manifest cases of HD and nine controls using inductively-coupled plasma mass spectrometry. Case-control differences were assessed by non-parametric Mann-Whitney U test (p < 0.05), risk ratios, E-values, and effect sizes. FINDINGS: We observed striking decreases in selenium levels in 11 out of 11 investigated brain regions in HD, with risk ratios and effect sizes ranging 2.3-9.0 and 0.7-1.9, respectively. Increased sodium/potassium ratios were observed in every region (risk ratio = 2.5-8.0; effect size = 1.2-5.8) except the substantia nigra (risk ratio = 0.25; effect size = 0.1). Multiple regions showed increased calcium and/or zinc levels, and localised decreases in iron, copper, and manganese were present in the globus pallidus, cerebellum, and substantia nigra, respectively. INTERPRETATION: The observed metallomic alterations in the HD brain may contribute to several pathogenic mechanisms, including mitochondrial dysfunction, oxidative stress, and blood-brain barrier dysfunction. Selenium supplementation may represent a potential, much-needed therapeutic pathway for the treatment of HD that would not require localised delivery in the brain due to the widespread presence of selenium deficiency in regions that show both high and low levels of neurodegeneration. FUNDING: In Acknowledgments, includes the Lee Trust, the Endocore Research Trust, Cure Huntington's Disease Initiative, the Oakley Mental Health Research Foundation, the Medical Research Council (MRC), the New Zealand Neurological Foundation, and others.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Selênio , Humanos , Doença de Huntington/metabolismo , Selênio/metabolismo , Selênio/uso terapêutico , Cobre/metabolismo , Cobre/uso terapêutico , Manganês/metabolismo , Manganês/uso terapêutico , Doenças Neurodegenerativas/metabolismo , Cálcio/metabolismo , Encéfalo/patologia , Ferro/metabolismo , Zinco/metabolismo , Potássio/metabolismo , Sódio
3.
Toxicol Lett ; 381: 48-59, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37116597

RESUMO

Redox homeostasis, mitochondrial functions, and mitochondria-endoplasmic reticulum (ER) communication were evaluated in the striatum of rats after 3-nitropropionic acid (3-NP) administration, a recognized chemical model of Huntington's disease (HD). 3-NP impaired redox homeostasis by increasing malondialdehyde levels at 28 days, decreasing glutathione (GSH) concentrations at 21 and 28 days, and the activities of glutathione peroxidase (GPx), superoxide dismutase (SOD) and glutathione S-transferase at 7, 21, and 28 days, catalase at 21 days, and glutathione reductase at 21 and 28 days. Impairment of mitochondrial respiration at 7 and 28 days after 3-NP administration was also observed, as well as reduced activities of succinate dehydrogenase (SDH) and respiratory chain complexes. 3-NP also impaired mitochondrial dynamics and the interactions between ER and mitochondria and induced ER-stress by increasing the levels of mitofusin-1, and of DRP1, VDAC1, Grp75 and Grp78. Synaptophysin levels were augmented at 7 days but reduced at 28 days after 3-NP injection. Finally, bezafibrate prevented 3-NP-induced alterations of the activities of SOD, GPx, SDH and respiratory chain complexes, DCFH oxidation and on the levels of GSH, VDAC1 and synaptophysin. Mitochondrial dysfunction and synaptic disruption may contribute to the pathophysiology of HD and bezafibrate may be considered as an adjuvant therapy for this disorder.


Assuntos
Doença de Huntington , Ratos , Animais , Doença de Huntington/induzido quimicamente , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Ratos Wistar , Bezafibrato/efeitos adversos , Bezafibrato/metabolismo , Sinaptofisina/metabolismo , Modelos Químicos , Estresse Oxidativo , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Mitocôndrias/metabolismo , Propionatos/toxicidade , Nitrocompostos/toxicidade , Nitrocompostos/metabolismo
4.
Brain ; 146(6): 2298-2315, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508327

RESUMO

Huntingtin (HTT)-lowering therapies show great promise in treating Huntington's disease. We have developed a microRNA targeting human HTT that is delivered in an adeno-associated serotype 5 viral vector (AAV5-miHTT), and here use animal behaviour, MRI, non-invasive proton magnetic resonance spectroscopy and striatal RNA sequencing as outcome measures in preclinical mouse studies of AAV5-miHTT. The effects of AAV5-miHTT treatment were evaluated in homozygous Q175FDN mice, a mouse model of Huntington's disease with severe neuropathological and behavioural phenotypes. Homozygous mice were used instead of the more commonly used heterozygous strain, which exhibit milder phenotypes. Three-month-old homozygous Q175FDN mice, which had developed acute phenotypes by the time of treatment, were injected bilaterally into the striatum with either formulation buffer (phosphate-buffered saline + 5% sucrose), low dose (5.2 × 109 genome copies/mouse) or high dose (1.3 × 1011 genome copies/mouse) AAV5-miHTT. Wild-type mice injected with formulation buffer served as controls. Behavioural assessments of cognition, T1-weighted structural MRI and striatal proton magnetic resonance spectroscopy were performed 3 months after injection, and shortly afterwards the animals were sacrificed to collect brain tissue for protein and RNA analysis. Motor coordination was assessed at 1-month intervals beginning at 2 months of age until sacrifice. Dose-dependent changes in AAV5 vector DNA level, miHTT expression and mutant HTT were observed in striatum and cortex of AAV5-miHTT-treated Huntington's disease model mice. This pattern of microRNA expression and mutant HTT lowering rescued weight loss in homozygous Q175FDN mice but did not affect motor or cognitive phenotypes. MRI volumetric analysis detected atrophy in four brain regions in homozygous Q175FDN mice, and treatment with high dose AAV5-miHTT rescued this effect in the hippocampus. Like previous magnetic resonance spectroscopy studies in Huntington's disease patients, decreased total N-acetyl aspartate and increased myo-inositol levels were found in the striatum of homozygous Q175FDN mice. These neurochemical findings were partially reversed with AAV5-miHTT treatment. Striatal transcriptional analysis using RNA sequencing revealed mutant HTT-induced changes that were partially reversed by HTT lowering with AAV5-miHTT. Striatal proton magnetic resonance spectroscopy analysis suggests a restoration of neuronal function, and striatal RNA sequencing analysis shows a reversal of transcriptional dysregulation following AAV5-miHTT in a homozygous Huntington's disease mouse model with severe pathology. The results of this study support the use of magnetic resonance spectroscopy in HTT-lowering clinical trials and strengthen the therapeutic potential of AAV5-miHTT in reversing severe striatal dysfunction in Huntington's disease.


Assuntos
Doença de Huntington , MicroRNAs , Humanos , Animais , Camundongos , Lactente , Doença de Huntington/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Corpo Estriado/metabolismo , Encéfalo/patologia , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Modelos Animais de Doenças
5.
Nat Commun ; 13(1): 7791, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543778

RESUMO

The complexity of affected brain regions and cell types is a challenge for Huntington's disease (HD) treatment. Here we use single nucleus RNA sequencing to investigate molecular pathology in the cortex and striatum from R6/2 mice and human HD post-mortem tissue. We identify cell type-specific and -agnostic signatures suggesting oligodendrocytes (OLs) and oligodendrocyte precursors (OPCs) are arrested in intermediate maturation states. OL-lineage regulators OLIG1 and OLIG2 are negatively correlated with CAG length in human OPCs, and ATACseq analysis of HD mouse NeuN-negative cells shows decreased accessibility regulated by OL maturation genes. The data implicates glucose and lipid metabolism in abnormal cell maturation and identify PRKCE and Thiamine Pyrophosphokinase 1 (TPK1) as central genes. Thiamine/biotin treatment of R6/1 HD mice to compensate for TPK1 dysregulation restores OL maturation and rescues neuronal pathology. Our insights into HD OL pathology spans multiple brain regions and link OL maturation deficits to abnormal thiamine metabolism.


Assuntos
Biotina , Doença de Huntington , Oligodendroglia , Tiamina , Animais , Humanos , Camundongos , Biotina/metabolismo , Biotina/farmacologia , Suplementos Nutricionais , Modelos Animais de Doenças , Doença de Huntington/metabolismo , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/metabolismo , Núcleo Solitário/metabolismo , Tiamina/metabolismo , Tiamina/farmacologia
6.
Molecules ; 27(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35956919

RESUMO

The longstanding progressive neurodegenerative conditions of the central nervous system arise mainly due to deterioration, degradation and eventual neuronal cell loss. As an individual ages, the irreversible neurodegenerative disorders associated with aging also begin to develop, and these have become exceedingly prominent and pose a significant burden mentally, socially and economically on both the individual and their family. These disorders express several symptoms, such as tremors, dystonia, loss of cognitive functions, impairment of motor activity leading to immobility, loss of memory and many more which worsen with time. The treatment employed in management of these debilitating neurodegenerative disorders, such as Parkinson's disease (which mainly involves the loss of dopaminergic neurons in the nigrostriatal region), Alzheimer's disease (which arises due to accumulation of Tau proteins causing diffusive atrophy in the brain), Huntington's disease (which involves damage of striatal and spinal neurons, etc.), have several adverse effects, leading to exploration of several lead targets and molecules existing in herbal drugs. The current review highlights the mechanistic role of natural products in the treatment of several neurodegenerative and cerebrovascular diseases such as Parkinson's disease, Alzheimer's disease, ischemic stroke and depression.


Assuntos
Doença de Alzheimer , Transtornos Cerebrovasculares , Doença de Huntington , Doenças Neurodegenerativas , Doença de Parkinson , Doença de Alzheimer/tratamento farmacológico , Transtornos Cerebrovasculares/tratamento farmacológico , Humanos , Doença de Huntington/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico
7.
Neuroscience ; 492: 67-81, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35413386

RESUMO

A number of studies has explored a positive correlation between low levels of serum Vitamin D3 (VD; cholecalciferol) and development of neurodegenerative diseases including Huntington's disease (HD). In the present study, the prophylactic effect of VD on motor dysfunction was studied in an experimental model of HD. An HD-like syndrome was induced in male C57BL/6 mice through an intraperitoneal injection (i.p) of 3-NP for 3 consecutive doses at 12 h interval of time as described previously (Amende et al. 2005). This study investigated thein-vivotherapeutic potential of VD (500 IU/kg/day) supplementation on movement, motor coordination, motor activity and biochemical changes in this HD model. Mice were divided into four groups: Group I: Control (saline); Group II: 3-NP induced HD (HD); Group III: Vitamin D3 (VD) and Group IV: 3-NP induced + post Vitamin D3 injection (HD + VD). All groups of mice were tested for locomotion, gait analysis and rotarod performances over a span of 30-days. VD administration rescued locomotor dysfunction and neuromuscular impairment in HD mice with no change in gait dynamics. In addition, administration of VD to 3-NP treated mice led to a significant enhancement in the expression of key neurotrophic factors including brain-derived neurotrophic factor (BDNF) and nerve-growth factor (NGF), the Vitamin D receptor (VDR), and antioxidant markers (catalases [Cat] and glutathione peroxidase [GpX4]) in the striatum, suggesting a detoxification effect of VD. Altogether, our results show that VD supplementation induces survival signals, diminishes oxidative stress, and reduces movement and motor dysfunction in HD.


Assuntos
Antioxidantes , Doença de Huntington , Animais , Antioxidantes/metabolismo , Colecalciferol/efeitos adversos , Doença de Huntington/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Crescimento Neural , Nitrocompostos , Propionatos , Ratos , Ratos Wistar
8.
Mol Metab ; 57: 101439, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35007790

RESUMO

OBJECTIVE: In Huntington's disease (HD), the disease-causing huntingtin (HTT) protein is ubiquitously expressed and causes both central and peripheral pathology. In clinical HD, a higher body mass index has been associated with slower disease progression, indicating the role of metabolic changes in disease pathogenesis. Underlying mechanisms of metabolic changes in HD remain poorly understood, but recent studies suggest the involvement of hypothalamic dysfunction. The present study aimed to investigate whether modulation of hypothalamic HTT levels would affect metabolic phenotype and disease features in HD using mouse models. METHODS: We used the R6/2 and BACHD mouse models that express different lengths of mutant HTT to develop lean- and obese phenotypes, respectively. We utilized adeno-associated viral vectors to overexpress either mutant or wild-type HTT in the hypothalamus of R6/2, BACHD, and their wild-type littermates. The metabolic phenotype was assessed by body weight measurements over time and body composition analysis using dual-energy x-ray absorptiometry at the endpoint. R6/2 mice were further characterized using behavioral analyses, including rotarod, nesting-, and hindlimb clasping tests during early- and late-time points of disease progression. Finally, gene expression analysis was performed in R6/2 mice and wild-type littermates in order to assess transcriptional changes in the hypothalamus and adipose tissue. RESULTS: Hypothalamic overexpression of mutant HTT induced significant gender-affected body weight gain in all models, including wild-type mice. In R6/2 females, early weight gain shifted to weight loss during the corresponding late stage of disease despite increased fat accumulation. Body weight changes were accompanied by behavioral alterations. During the period of early weight gain, R6/2 mice displayed a comparable locomotor capacity to wild-type mice. When assessing behavior just prior to weight loss onset in R6/2 mice, decreased locomotor performance was observed in R6/2 females with hypothalamic overexpression of mutant HTT. Transcriptional downregulation of beta-3 adrenergic receptor (B3AR), adipose triglyceride lipase (ATGL), and peroxisome proliferator-activated receptor-gamma (PPARγ) in gonadal white adipose tissue was accompanied by distinct alterations in hypothalamic gene expression profiles in R6/2 females after mutant HTT overexpression. No significant effect on metabolic phenotype in R6/2 was seen in response to wild-type HTT overexpression. CONCLUSIONS: Taken together, our findings provide further support for the role of HTT in metabolic control via hypothalamic neurocircuits. Understanding the specific central neurocircuits and their peripheral link underlying metabolic imbalance in HD may open up avenues for novel therapeutic interventions.


Assuntos
Doença de Huntington , Animais , Modelos Animais de Doenças , Feminino , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Hipotálamo/metabolismo , Camundongos , Camundongos Transgênicos , Fenótipo
9.
Sci Rep ; 11(1): 19732, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611196

RESUMO

Aggregation of proteins is a prominent hallmark of virtually all neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's diseases. Little progress has been made in their treatment to slow or prevent the formation of aggregates by post-translational modification and regulation of cellular responses to misfolded proteins. Here, we introduce a label-free, laser-based photothermal treatment of polyglutamine (polyQ) aggregates in a C. elegans nematode model of huntingtin-like polyQ aggregation. As a proof of principle, we demonstrated that nanosecond laser pulse-induced local photothermal heating can directly disrupt the aggregates so as to delay their accumulation, maintain motility, and extend the lifespan of treated nematodes. These beneficial effects were validated by confocal photothermal, fluorescence, and video imaging. The results obtained demonstrate that our theranostics platform, integrating photothermal therapy without drugs or other chemicals, combined with advanced imaging to monitor photothermal ablation of aggregates, initiates systemic recovery and thus validates the concept of aggregate-disruption treatments for neurodegenerative diseases in humans.


Assuntos
Doença de Huntington/etiologia , Doença de Huntington/metabolismo , Agregados Proteicos/efeitos da radiação , Agregação Patológica de Proteínas/metabolismo , Animais , Caenorhabditis elegans , Modelos Animais de Doenças , Humanos , Doença de Huntington/patologia , Doença de Huntington/terapia , Lasers , Terapia com Luz de Baixa Intensidade , Peptídeos/metabolismo , Terapia Fototérmica , Agregação Patológica de Proteínas/terapia , Proteínas Recombinantes de Fusão/metabolismo
10.
PLoS One ; 16(5): e0250606, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33989290

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by a dominant CAG-repeat expansion in the huntingtin gene. Microglial activation is a key feature of HD pathology, and is present before clinical disease onset. The kynurenine pathway (KP) of tryptophan degradation is activated in HD, and is thought to contribute to disease progression. Indoleamine-2,3-dioxygenase (IDO) catalyzes the first step in this pathway; this and other pathway enzymes reside with microglia. While HD brain microglia accumulate iron, the role of iron in promoting microglial activation and KP activity is unclear. Here we utilized the neonatal iron supplementation model to investigate the relationship between iron, microglial activation and neurodegeneration in adult HD mice. We show in the N171-82Q mouse model of HD microglial morphologic changes consistent with immune activation. Neonatal iron supplementation in these mice promoted neurodegeneration and resulted in additional microglial activation in adults as determined by increased soma volume and decreased process length. We further demonstrate that iron activates IDO, both in brain lysates and purified recombinant protein (EC50 = 1.24 nM). Brain IDO activity is increased by HD. Neonatal iron supplementation further promoted IDO activity in cerebral cortex, altered KP metabolite profiles, and promoted HD neurodegeneration as measured by brain weights and striatal volumes. Our results demonstrate that dietary iron is an important activator of microglia and the KP pathway in this HD model, and that this occurs in part through a direct effect on IDO. The findings are relevant to understanding how iron promotes neurodegeneration in HD.


Assuntos
Encéfalo/patologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Proteína Huntingtina/genética , Doença de Huntington/patologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Ferro/farmacologia , Microglia/patologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Doença de Huntington/etiologia , Doença de Huntington/metabolismo , Cinurenina/metabolismo , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo
11.
Mol Neurobiol ; 58(8): 3992-4006, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33904021

RESUMO

Impairment of proteostasis network is one of the characteristic features of many age-related neurodegenerative disorders including autosomal dominantly inherited Huntington's disease (HD). In HD, N-terminal portion of mutant huntingtin protein containing expanded polyglutamine repeats accumulates as inclusion bodies and leads to progressive deterioration of various cellular functioning including proteostasis network. Here we report that Withaferin A (a small bioactive molecule derived from Indian medicinal plant, Withania somnifera) partially rescues defective proteostasis by activating heat shock response (HSR) and delays the disease progression in a HD mouse model. Exposure of Withaferin A activates HSF1 and induces the expression of HSP70 chaperones in an in vitro cell culture system and also suppresses mutant huntingtin aggregation in a cellular model of HD. Withaferin A treatment to HD mice considerably increased their lifespan as well as restored progressive motor behavioral deficits and declined body weight. Biochemical studies confirmed the activation of HSR and global decrease in mutant huntingtin aggregates load accompanied with improvement of striatal function in Withaferin A-treated HD mouse brain. Withaferin A-treated HD mice also exhibit significant decrease in inflammatory processes as evident from the decreased microglial activation. These results indicate immense potential of Withaferin A for the treatment of HD and related neurodegenerative disorders involving protein misfolding and aggregation.


Assuntos
Modelos Animais de Doenças , Progressão da Doença , Proteínas de Choque Térmico HSP70/biossíntese , Doença de Huntington/metabolismo , Vitanolídeos/uso terapêutico , Animais , Relação Dose-Resposta a Droga , Proteínas de Choque Térmico HSP70/genética , Humanos , Proteína Huntingtina/biossíntese , Proteína Huntingtina/genética , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Camundongos , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Vitanolídeos/farmacologia
12.
Biofactors ; 47(4): 570-586, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33893674

RESUMO

Amyloidosis is a concept that implicates disorders and complications that are due to abnormal protein accumulation in different cells and tissues. Protein aggregation-associated diseases are classified according to the type of aggregates and deposition sites, such as neurodegenerative disorders and type 2 diabetes mellitus. Polyphenolic phytochemicals such as curcumin and its derivatives have anti-amyloid effects both in vitro and in animal models; however, the underlying mechanisms are not understood. In this review, we summarized possible mechanisms by which curcumin could interfere with self-assembly processes and reduce amyloid aggregation in amyloidosis. Furthermore, we discuss clinical trials in which curcumin is used as a therapeutic agent for the treatment of diseases linking to protein aggregates.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Amiloidose/prevenção & controle , Síndrome de Creutzfeldt-Jakob/tratamento farmacológico , Curcumina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Doença de Huntington/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Amiloidose/genética , Amiloidose/metabolismo , Amiloidose/patologia , Ensaios Clínicos como Assunto , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/metabolismo , Síndrome de Creutzfeldt-Jakob/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Hipoglicemiantes/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Estresse Oxidativo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Agregados Proteicos/efeitos dos fármacos , alfa-Sinucleína/antagonistas & inibidores , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Proteínas tau/antagonistas & inibidores , Proteínas tau/genética , Proteínas tau/metabolismo
13.
Neurotherapeutics ; 18(2): 1039-1063, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33786806

RESUMO

Huntington's disease (HD) is caused by an expansion of the CAG repeat in the huntingtin gene leading to preferential neurodegeneration of the striatum. Disease-modifying treatments are not yet available to HD patients and their development would be facilitated by translatable pharmacodynamic biomarkers. Multi-modal magnetic resonance imaging (MRI) and plasma cytokines have been suggested as disease onset/progression biomarkers, but their ability to detect treatment efficacy is understudied. This study used the R6/2 mouse model of HD to assess if structural neuroimaging and biofluid assays can detect treatment response using as a prototype the small molecule p75NTR ligand LM11A-31, shown previously to reduce HD phenotypes in these mice. LM11A-31 alleviated volume reductions in multiple brain regions, including striatum, of vehicle-treated R6/2 mice relative to wild-types (WTs), as assessed with in vivo MRI. LM11A-31 also normalized changes in diffusion tensor imaging (DTI) metrics and diminished increases in certain plasma cytokine levels, including tumor necrosis factor-alpha and interleukin-6, in R6/2 mice. Finally, R6/2-vehicle mice had increased urinary levels of the p75NTR extracellular domain (ecd), a cleavage product released with pro-apoptotic ligand binding that detects the progression of other neurodegenerative diseases; LM11A-31 reduced this increase. These results are the first to show that urinary p75NTR-ecd levels are elevated in an HD mouse model and can be used to detect therapeutic effects. These data also indicate that multi-modal MRI and plasma cytokine levels may be effective pharmacodynamic biomarkers and that using combinations of these markers would be a viable and powerful option for clinical trials.


Assuntos
Doença de Huntington/diagnóstico por imagem , Doença de Huntington/metabolismo , Isoleucina/análogos & derivados , Morfolinas/metabolismo , Morfolinas/uso terapêutico , Neuroimagem/métodos , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/urina , Estudos Transversais , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Doença de Huntington/tratamento farmacológico , Isoleucina/metabolismo , Isoleucina/farmacologia , Isoleucina/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Morfolinas/farmacologia
14.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525510

RESUMO

Huntington disease (HD) is a devastating and presently untreatable neurodegenerative disease characterized by progressively disabling motor and mental manifestations. The sigma-1 receptor (σ1R) is a protein expressed in the central nervous system, whose 3D structure has been recently determined by X-ray crystallography and whose agonists have been shown to have neuroprotective activity in neurodegenerative diseases. To identify therapeutic agents against HD, we have implemented a drug repositioning strategy consisting of: (i) Prediction of the ability of the FDA-approved drugs publicly available through the ZINC database to interact with σ1R by virtual screening, followed by computational docking and visual examination of the 20 highest scoring drugs; and (ii) Assessment of the ability of the six drugs selected by computational analyses to directly bind purified σ1R in vitro by Surface Plasmon Resonance and improve the growth of fibroblasts obtained from HD patients, which is significantly impaired with respect to control cells. All six of the selected drugs proved able to directly bind purified σ1R in vitro and improve the growth of HD cells from both or one HD patient. These results support the validity of the drug repositioning procedure implemented herein for the identification of new therapeutic tools against HD.


Assuntos
Fibroblastos/citologia , Doença de Huntington/metabolismo , Preparações Farmacêuticas/química , Receptores sigma/metabolismo , Adulto , Proliferação de Células , Células Cultivadas , Simulação por Computador , Bases de Dados de Produtos Farmacêuticos , Avaliação Pré-Clínica de Medicamentos , Reposicionamento de Medicamentos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Doença de Huntington/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Simulação de Acoplamento Molecular , Conformação Proteica , Receptores sigma/química , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Receptor Sigma-1
15.
Neurobiol Dis ; 153: 105318, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33636386

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder characterized by accumulation of mutant huntingtin protein and significant loss of neurons in striatum and cortex. Along with motor difficulties, the HD patients also manifest anxiety and loss of cognition. Unfortunately, the clinically approved drugs only offer symptomatic relief and are not free from side effects. This study underlines the importance of glyceryl tribenzoate (GTB), an FDA-approved food flavoring ingredient, in alleviating HD pathology in transgenic N171-82Q mouse model. Oral administration of GTB significantly reduced mutant huntingtin level in striatum, motor cortex as well as hippocampus and increased the integrity of viable neurons. Furthermore, we found the presence of sodium benzoate (NaB), a FDA-approved drug for urea cycle disorders and glycine encephalopathy, in the brain of GTB-fed HD mice. Accordingly, NaB administration also markedly decreased huntingtin level in striatum and cortex. Glial activation is found to coincide with neuronal death in affected regions of HD brains. Interestingly, both GTB and NaB treatment suppressed activation of glial cells and inflammation in the brain. Finally, neuroprotective effect of GTB and NaB resulted in improved motor performance of HD mice. Collectively, these results suggest that GTB and NaB may be repurposed for HD.


Assuntos
Benzoatos/administração & dosagem , Aromatizantes/farmacologia , Conservantes de Alimentos/farmacologia , Proteína Huntingtina/efeitos dos fármacos , Doença de Huntington/metabolismo , Córtex Motor/efeitos dos fármacos , Neostriado/efeitos dos fármacos , Benzoato de Sódio/farmacologia , Administração Oral , Animais , Benzoatos/farmacologia , Ácido Benzoico/farmacologia , Análise da Marcha , Força da Mão , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/fisiopatologia , Camundongos , Camundongos Transgênicos , Córtex Motor/metabolismo , Neostriado/metabolismo , Teste de Campo Aberto , Teste de Desempenho do Rota-Rod , Benzoato de Sódio/metabolismo
16.
Int J Mol Sci ; 21(19)2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33050117

RESUMO

A mismatch between ß-oxidation and the tricarboxylic acid cycle (TCA) cycle flux in mitochondria produces an accumulation of lipid metabolic intermediates, resulting in both blunted metabolic flexibility and decreased glucose utilization in the affected cells. The ability of the cell to switch to glucose as an energy substrate can be restored by reducing the reliance of the cell on fatty acid oxidation. The inhibition of the carnitine system, limiting the carnitine shuttle to the oxidation of lipids in the mitochondria, allows cells to develop a high plasticity to metabolic rewiring with a decrease in fatty acid oxidation and a parallel increase in glucose oxidation. We found that 3-(2,2,2-trimethylhydrazine)propionate (THP), which is able to reduce cellular carnitine levels by blocking both carnitine biosynthesis and the cell membrane carnitine/organic cation transporter (OCTN2), was reported to improve mitochondrial dysfunction in several diseases, such as Huntington's disease (HD). Here, new THP-derived carnitine-lowering agents (TCL), characterized by a high affinity for the OCTN2 with a minimal effect on carnitine synthesis, were developed, and their biological activities were evaluated in both in vitro and in vivo HD models. Certain compounds showed promising biological activities: reducing protein aggregates in HD cells, ameliorating motility defects, and increasing the lifespan of HD Drosophila melanogaster.


Assuntos
Drosophila melanogaster/efeitos dos fármacos , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Longevidade/efeitos dos fármacos , Metilidrazinas/farmacologia , Membro 5 da Família 22 de Carreadores de Soluto/antagonistas & inibidores , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Animais , Carnitina/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Drosophila melanogaster/genética , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Camundongos , Simulação de Acoplamento Molecular , Agregação Patológica de Proteínas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Membro 5 da Família 22 de Carreadores de Soluto/genética , Transfecção , Resultado do Tratamento
17.
Cereb Cortex ; 30(4): 2372-2388, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-31761935

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder characterized by involuntary movements, cognitive deficits, and psychiatric disturbances. Although evidence indicates that projections from motor cortical areas play a key role in the development of dysfunctional striatal activity and motor phenotype, little is known about the changes in cortical microcircuits and their role in the development of the HD phenotype. Here we used two-photon laser-scanning microscopy to evaluate network dynamics of motor cortical neurons in layers II/III in behaving transgenic R6/2 and knock-in Q175+/- mice. Symptomatic R6/2 mice displayed increased motion manifested by a significantly greater number of motion epochs, whereas symptomatic Q175 mice displayed decreased motion. In both models, calcium transients in symptomatic mice displayed reduced amplitude, suggesting decreased bursting activity. Changes in frequency were genotype- and time-dependent; for R6/2 mice, the frequency was reduced during both motion and nonmotion, whereas in symptomatic Q175 mice, the reduction only occurred during nonmotion. In presymptomatic Q175 mice, frequency was increased during both behavioral states. Interneuronal correlation coefficients were generally decreased in both models, suggesting disrupted interneuronal communication in HD cerebral cortex. These results indicate similar and contrasting effects of the HD mutation on cortical ensemble activity depending on mouse model and disease stage.


Assuntos
Cálcio , Modelos Animais de Doenças , Doença de Huntington/diagnóstico por imagem , Doença de Huntington/genética , Córtex Motor/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Animais , Cálcio/metabolismo , Feminino , Doença de Huntington/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Córtex Motor/metabolismo , Neurônios Motores/metabolismo , Rede Nervosa/metabolismo
18.
Neurotox Res ; 37(1): 77-92, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31332714

RESUMO

Systemic administration of 3-nitropropionic acid (3-NPA) is commonly used to induce Huntington's disease (HD)-like symptoms in experimental animals. Here, the potential neuroprotective efficiency of rutin and selenium (RSe) co-administration on 3-NPA-induced HD-like symptoms model in mice was investigated. 3-NPA injection evoked severe alterations in redox status, as indicated via increased striatal malondialdehyde and nitric oxide levels, accompanied by a decrease in levels of antioxidant molecules including glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase. Moreover, 3-NPA potentiated inflammatory status by enhancing the production of interleukin-1ß, tumor necrosis factor-α, and myeloperoxidase activity. Pro-apoptotic cascade was also recorded in the striatum as evidenced through upregulation of cleaved caspase-3 and Bax, and downregulation of Bcl-2. 3-NPA activated astrocytes as indicated by the upregulated glial fibrillary acidic protein and inhibited brain-derived neurotrophic factor. Furthermore, perturbations in cholinergic and monoaminergic systems were observed. RSe provided neuroprotective effects by preventing body weight loss, oxidative stress, neuroinflammation, and the apoptotic cascade. RSe inhibited the activation of astrocytes, increased brain-derived neurotrophic factor, and improved cholinergic and monoaminergic transmission following 3-NPA intoxication. Taken together, RSe co-administration may prevent or delay the progression of HD and its associated impairments through its antioxidant, anti-inflammatory, anti-apoptotic, and neuromodulatory effects.


Assuntos
Doença de Huntington/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Rutina/farmacologia , Selênio/farmacologia , Animais , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Caspase 3 , Catalase/metabolismo , Corpo Estriado/metabolismo , Regulação para Baixo , Sinergismo Farmacológico , Proteína Glial Fibrilar Ácida/biossíntese , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Doença de Huntington/induzido quimicamente , Doença de Huntington/metabolismo , Interleucina-1beta/biossíntese , Masculino , Malondialdeído/metabolismo , Camundongos , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico/metabolismo , Nitrocompostos , Peroxidase/metabolismo , Propionatos , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Superóxido Dismutase/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Fator de Necrose Tumoral alfa/biossíntese , Regulação para Cima , Proteína X Associada a bcl-2/biossíntese
19.
Hum Mol Genet ; 29(11): 1757-1771, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-30768179

RESUMO

Altered cellular metabolism is believed to be an important contributor to pathogenesis of the neurodegenerative disorder Huntington's disease (HD). Research has primarily focused on mitochondrial toxicity, which can cause death of the vulnerable striatal neurons, but other aspects of metabolism have also been implicated. Most previous studies have been carried out using postmortem human brain or non-human cells. Here, we studied bioenergetics in an induced pluripotent stem cell-based model of the disease. We found decreased adenosine triphosphate (ATP) levels in HD cells compared to controls across differentiation stages and protocols. Proteomics data and multiomics network analysis revealed normal or increased levels of mitochondrial messages and proteins, but lowered expression of glycolytic enzymes. Metabolic experiments showed decreased spare glycolytic capacity in HD neurons, while maximal and spare respiratory capacities driven by oxidative phosphorylation were largely unchanged. ATP levels in HD neurons could be rescued with addition of pyruvate or late glycolytic metabolites, but not earlier glycolytic metabolites, suggesting a role for glycolytic deficits as part of the metabolic disturbance in HD neurons. Pyruvate or other related metabolic supplements could have therapeutic benefit in HD.


Assuntos
Corpo Estriado/metabolismo , Metabolismo Energético/genética , Doença de Huntington/metabolismo , Neurônios/metabolismo , Trifosfato de Adenosina/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Corpo Estriado/patologia , Glicólise/genética , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Metaboloma/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios/patologia , Fosforilação Oxidativa
20.
Mol Neurobiol ; 57(3): 1570-1593, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31797328

RESUMO

Perturbations in insulin/IGF signaling and manganese (Mn2+) uptake and signaling have been separately reported in Huntington's disease (HD) models. Insulin/IGF supplementation ameliorates HD phenotypes via upregulation of AKT, a known Mn2+-responsive kinase. Limited evidence both in vivo and in purified biochemical systems suggest Mn2+ enhances insulin/IGF receptor (IR/IGFR), an upstream tyrosine kinase of AKT. Conversely, Mn2+ deficiency impairs insulin release and associated glucose tolerance in vivo. Here, we test the hypothesis that Mn2+-dependent AKT signaling is predominantly mediated by direct Mn2+ activation of the insulin/IGF receptors, and HD-related impairments in insulin/IGF signaling are due to HD genotype-associated deficits in Mn2+ bioavailability. We examined the combined effects of IGF-1 and/or Mn2+ treatments on AKT signaling in multiple HD cellular models. Mn2+ treatment potentiates p-IGFR/IR-dependent AKT phosphorylation under physiological (1 nM) or saturating (10 nM) concentrations of IGF-1 directly at the level of intracellular activation of IGFR/IR. Using a multi-pharmacological approach, we find that > 70-80% of Mn2+-associated AKT signaling across rodent and human neuronal cell models is specifically dependent on IR/IGFR, versus other signaling pathways upstream of AKT activation. Mn2+-induced p-IGFR and p-AKT were diminished in HD cell models, and, consistent with our hypothesis, were rescued by co-treatment of Mn2+ and IGF-1. Lastly, Mn2+-induced IGF signaling can modulate HD-relevant biological processes, as the reduced glucose uptake in HD STHdh cells was partially reversed by Mn2+ supplementation. Our data demonstrate that Mn2+ supplementation increases peak IGFR/IR-induced p-AKT likely via direct effects on IGFR/IR, consistent with its role as a cofactor, and suggests reduced Mn2+ bioavailability contributes to impaired IGF signaling and glucose uptake in HD models.


Assuntos
Doença de Huntington/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo , Animais , Transporte Biológico/fisiologia , Glucose/metabolismo , Doença de Huntington/genética , Fosforilação , Ratos , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA