RESUMO
Subacute necrotizing encephalopathy, or Leigh syndrome (LS), is the most common pediatric presentation of genetic mitochondrial disease. LS is a multi-system disorder with severe neurologic, metabolic, and musculoskeletal symptoms. The presence of progressive, symmetric, and necrotizing lesions in the brainstem are a defining feature of the disease, and the major cause of morbidity and mortality, but the mechanisms underlying their pathogenesis have been elusive. Recently, we demonstrated that high-dose pexidartinib, a CSF1R inhibitor, prevents LS CNS lesions and systemic disease in the Ndufs4(-/-) mouse model of LS. While the dose-response in this study implicated peripheral immune cells, the immune populations involved have not yet been elucidated. Here, we used a targeted genetic tool, deletion of the colony-stimulating Factor 1 receptor (CSF1R) macrophage super-enhancer FIRE (Csf1rΔFIRE), to specifically deplete microglia and define the role of microglia in the pathogenesis of LS. Homozygosity for the Csf1rΔFIRE allele ablates microglia in both control and Ndufs4(-/-) animals, but onset of CNS lesions and sequalae in the Ndufs4(-/-), including mortality, are only marginally impacted by microglia depletion. The overall development of necrotizing CNS lesions is not altered, though microglia remain absent. Finally, histologic analysis of brainstem lesions provides direct evidence of a causal role for peripheral macrophages in the characteristic CNS lesions. These data demonstrate that peripheral macrophages play a key role in the pathogenesis of disease in the Ndufs4(-/-) model.
Assuntos
Doença de Leigh , Doenças Mitocondriais , Humanos , Camundongos , Animais , Criança , Doença de Leigh/genética , Doença de Leigh/patologia , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Macrófagos/patologia , Tronco Encefálico/patologia , Modelos Animais de DoençasRESUMO
Mitochondrial diseases represent a spectrum of disorders caused by impaired mitochondrial function, ranging in severity from mortality during infancy to progressive adult-onset disease. Mitochondrial dysfunction is also recognized as a molecular hallmark of the biological ageing process. Rapamycin, a drug that increases lifespan and health during normative ageing, also increases survival and reduces neurological symptoms in a mouse model of the severe mitochondrial disease Leigh syndrome. The Ndufs4 knockout (Ndufs4-/-) mouse lacks the complex I subunit NDUFS4 and shows rapid onset and progression of neurodegeneration mimicking patients with Leigh syndrome. Here we show that another drug that extends lifespan and delays normative ageing in mice, acarbose, also suppresses symptoms of disease and improves survival of Ndufs4-/- mice. Unlike rapamycin, acarbose rescues disease phenotypes independently of inhibition of the mechanistic target of rapamycin. Furthermore, rapamycin and acarbose have additive effects in delaying neurological symptoms and increasing maximum lifespan in Ndufs4-/- mice. We find that acarbose remodels the intestinal microbiome and alters the production of short-chain fatty acids. Supplementation with tributyrin, a source of butyric acid, recapitulates some effects of acarbose on lifespan and disease progression, while depletion of the endogenous microbiome in Ndufs4-/- mice appears to fully recapitulate the effects of acarbose on healthspan and lifespan in these animals. To our knowledge, this study provides the first evidence that alteration of the gut microbiome plays a significant role in severe mitochondrial disease and provides further support for the model that biological ageing and severe mitochondrial disorders share underlying common mechanisms.
Assuntos
Doença de Leigh , Doenças Mitocondriais , Camundongos , Animais , Doença de Leigh/tratamento farmacológico , Doença de Leigh/genética , Acarbose/farmacologia , Acarbose/uso terapêutico , Doenças Mitocondriais/tratamento farmacológico , Mitocôndrias/genética , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Modelos Animais de Doenças , Complexo I de Transporte de ElétronsRESUMO
Mitochondrial dysfunction caused by aberrant Complex I assembly and reduced activity of the electron transport chain is pathogenic in many genetic and age-related diseases. Mice missing the Complex I subunit NADH dehydrogenase [ubiquinone] iron-sulfur protein 4 (NDUFS4) are a leading mammalian model of severe mitochondrial disease that exhibit many characteristic symptoms of Leigh Syndrome including oxidative stress, neuroinflammation, brain lesions, and premature death. NDUFS4 knockout mice have decreased expression of nearly every Complex I subunit. As Complex I normally contains at least 8 iron-sulfur clusters and more than 25 iron atoms, we asked whether a deficiency of Complex I may lead to iron perturbations, thereby accelerating disease progression. Consistent with this, iron supplementation accelerates symptoms of brain degeneration in these mice, while iron restriction delays the onset of these symptoms, reduces neuroinflammation, and increases survival. NDUFS4 knockout mice display signs of iron overload in the liver including increased expression of hepcidin and show changes in iron-responsive element-regulated proteins consistent with increased cellular iron that were prevented by iron restriction. These results suggest that perturbed iron homeostasis may contribute to pathology in Leigh Syndrome and possibly other mitochondrial disorders.
Iron is a mineral that contributes to many vital body functions. But as people age, it accumulates in many organs, including the liver and the brain. Excess iron accumulation is linked to age-related diseases like Parkinson's disease. Too much iron may contribute to harmful chemical reactions in the body. Usually, the body has systems in place to mitigate this harm, but these mechanisms may fail as people age. Uncontrolled iron accumulation may damage essential proteins, DNA and fats in the brain. These changes may kill brain cells causing neurodegenerative diseases like Parkinson's disease. Mitochondria, the cell's energy-producing factories, use and collect iron inside cells. As people age, mitochondria fail, which is also linked with age-related diseases. It has been unclear if mitochondrial failure may also contribute to iron accumulation and associated diseases like Parkinson's. Kelly et al. show that mitochondrial dysfunction causes iron accumulation and contributes to neurodegeneration in mice. In the experiments, Kelly et al. used mice with a mutation in a key-iron processing protein in mitochondria. These mice develop neurodegenerative symptoms and die early in life. Feeding the mice a high-iron diet accelerated the animals' symptoms. But providing them with an iron-restricted diet slowed their symptoms and extended their lives. Low-iron diets also slowed iron accumulation in the animal's liver and reduced brain inflammation. The experiments suggest that mitochondrial dysfunction contributes to both iron overload and brain degeneration. The next step for scientists is understanding the processes leading to mitochondrial dysfunction and iron accumulation. Then, scientists can determine if they can develop treatments targeting these processes. This research might lead to new treatments for Parkinson's disease or other age-related conditions caused by iron overload.
Assuntos
Doença de Leigh , Doenças Mitocondriais , Camundongos , Animais , Doença de Leigh/genética , Doença de Leigh/patologia , Ferro/metabolismo , Doenças Neuroinflamatórias , Doenças Mitocondriais/patologia , Mitocôndrias/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Camundongos Knockout , Mamíferos/metabolismoRESUMO
Leigh disease, or subacute necrotizing encephalomyelopathy, a genetically heterogeneous condition consistently characterized by defective mitochondrial bioenergetics, is the most common oxidative-phosphorylation related disease in infancy. Both neurological signs and pathological lesions of Leigh disease are mimicked by the ablation of the mouse mitochondrial respiratory chain subunit Ndufs4-/-, which is part of, and crucial for, normal Complex I activity and assembly, particularly in the brains of both children and mice. We previously conveyed the human NDUFS4 gene to the mouse brain using either single-stranded adeno-associated viral 9 recombinant vectors or the PHP.B adeno-associated viral vector. Both these approaches significantly prolonged the lifespan of the Ndufs4-/- mouse model but the extension of the survival was limited to a few weeks by the former approach, whereas the latter was applicable to a limited number of mouse strains, but not to primates. Here, we exploited the recent development of new, self-complementary adeno-associated viral 9 vectors, in which the transcription rate of the recombinant gene is markedly increased compared with the single-stranded adeno-associated viral 9 and can be applied to all mammals, including humans. Either single intra-vascular or double intra-vascular and intra-cerebro-ventricular injections were performed at post-natal Day 1. The first strategy ubiquitously conveyed the human NDUFS4 gene product in Ndufs4-/- mice, doubling the lifespan from 45 to ≈100â days after birth, when the mice developed rapidly progressive neurological failure. However, the double, contemporary intra-vascular and intra-cerebroventricular administration of self-complementary-adeno-associated viral NDUFS4 prolonged healthy lifespan up to 9â months of age. These mice were well and active at euthanization, at 6, 7, 8 and 9â months of age, to investigate the brain and other organs post-mortem. Robust expression of hNDUFS4 was detected in different cerebral areas preserving normal morphology and restoring Complex I activity and assembly. Our results warrant further investigation on the translatability of self-complementary-adeno-associated viral 9 NDUFS4-based therapy in the prodromal phase of the disease in mice and eventually humans.
Assuntos
Doença de Leigh , Criança , Camundongos , Animais , Humanos , Doença de Leigh/genética , Doença de Leigh/terapia , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Dependovirus/genética , Fosforilação Oxidativa , Modelos Animais de Doenças , Camundongos Knockout , Mamíferos/metabolismoRESUMO
Mitochondrial cytopathies, among which the Leigh syndrome (LS), are caused by variants either in the mitochondrial or the nuclear genome, affecting the oxidative phosphorylation process. The aim of the present study consisted in defining the molecular diagnosis of a group of Tunisian patients with LS. Six children, belonging to five Tunisian families, with clinical and imaging presentations suggestive of LS were recruited. Whole mitochondrial DNA and targeted next-generation sequencing of a panel of 281 nuclear genes involved in mitochondrial physiology were performed. Bioinformatic analyses were achieved in order to identify deleterious variations. A single m.10197G>A (p.Ala47Thr) variant was found in the mitochondrial MT-ND3 gene in one patient, while the others were related to autosomal homozygous variants: two c.1412delA (p.Gln471ArgfsTer42) and c.1264A>G (p.Thr422Ala) in SLC19A3, one c.454C>G (p.Pro152Ala) in SLC25A19 and one c.122G>A (p.Gly41Asp) in ETHE1. Our findings demonstrate the usefulness of genomic investigations to improve LS diagnosis in consanguineous populations and further allow for treating the patients harboring variants in SLC19A3 and SLC25A19 that contribute to thiamine transport, by thiamine and biotin supplementation. Considering the Tunisian genetic background, the newly identified variants could be screened in patients with similar clinical presentation in related populations.
Assuntos
Doença de Leigh , Biotina/genética , Criança , DNA Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Doença de Leigh/diagnóstico , Doença de Leigh/genética , Doença de Leigh/terapia , Proteínas de Membrana Transportadoras/genética , Proteínas de Transporte da Membrana Mitocondrial , Proteínas Mitocondriais/genética , Mutação , Proteínas de Transporte Nucleocitoplasmático/genética , TiaminaRESUMO
BACKGROUND: Mice with deletion of complex I subunit Ndufs4 develop mitochondrial encephalomyopathy resembling Leigh syndrome (LS). The metabolic derangement and underlying mechanisms of cardio-encephalomyopathy in LS remains incompletely understood. METHODS: We performed echocardiography, electrophysiology, confocal microscopy, metabolic and molecular/morphometric analysis of the mice lacking Ndufs4. HEK293 cells, human iPS cells-derived cardiomyocytes and neurons were used to determine the mechanistic role of mitochondrial complex I deficiency. RESULTS: LS mice develop severe cardiac bradyarrhythmia and diastolic dysfunction. Human-induced pluripotent stem cell-derived cardiomyocytes (iPS-CMs) with Ndufs4 deletion recapitulate LS cardiomyopathy. Mechanistically, we demonstrate a direct link between complex I deficiency, decreased intracellular (nicotinamide adenine dinucleotide) NAD+ /NADH and bradyarrhythmia, mediated by hyperacetylation of the cardiac sodium channel NaV 1.5, particularly at K1479 site. Neuronal apoptosis in the cerebellar and midbrain regions in LS mice was associated with hyperacetylation of p53 and activation of microglia. Targeted metabolomics revealed increases in several amino acids and citric acid cycle intermediates, likely due to impairment of NAD+ -dependent dehydrogenases, and a substantial decrease in reduced Glutathione (GSH). Metabolic rescue by nicotinamide riboside (NR) supplementation increased intracellular NAD+ / NADH, restored metabolic derangement, reversed protein hyperacetylation through NAD+ -dependent Sirtuin deacetylase, and ameliorated cardiomyopathic phenotypes, concomitant with improvement of NaV 1.5 current and SERCA2a function measured by Ca2+ -transients. NR also attenuated neuronal apoptosis and microglial activation in the LS brain and human iPS-derived neurons with Ndufs4 deletion. CONCLUSIONS: Our study reveals direct mechanistic explanations of the observed cardiac bradyarrhythmia, diastolic dysfunction and neuronal apoptosis in mouse and human induced pluripotent stem cells (iPSC) models of LS.
Assuntos
Cardiomiopatias , Células-Tronco Pluripotentes Induzidas , Doença de Leigh , Animais , Bradicardia/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Complexo I de Transporte de Elétrons/deficiência , Complexo I de Transporte de Elétrons/metabolismo , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Doença de Leigh/genética , Doença de Leigh/metabolismo , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Doenças Mitocondriais , NAD/metabolismoRESUMO
BACKGROUND: SLC39A8, a gene located on chromosome 4q24, encodes for the manganese (Mn) transporter ZIP8 and its detrimental variants cause a type 2 congenital disorder of glycosylation (CDG). The common SLC39A8 missense variant A391T is associated with increased risk for multiple neurological and systemic disorders and with decreased serum Mn. Patients with SLC39A8-CDG present with different clinical and neuroradiological features linked to variable transferrin glycosylation profile. Galactose and Mn supplementation therapy results in the biochemical and clinical amelioration of treated patients. RESULTS: Here, we report clinical manifestations, neuroradiological features and glycophenotypes associated with novel SLC39A8 variants (c.1048G > A; p.Gly350Arg and c.131C > G; p.Ser44Trp) in two siblings of the same Italian family. Furthermore, we describe a third patient with overlapping clinical features harbouring the homozygous missense variant A391T. The clinical phenotype of the three patients was characterized by severe developmental disability, dystonic postural pattern and dyskinesia with a more severe progression of the disease in the two affected siblings. Neuroimaging showed a Leigh syndrome-like pattern involving the basal ganglia, thalami and white matter. In the two siblings, atrophic cerebral and cerebellum changes consistent with SLC39A8-CDG were detected as well. Serum transferrin isoelectric focusing (IEF) yielded variable results with slight increase of trisialotransferrin isoforms or even normal pattern. MALDI-MS showed the presence of hypogalactosylated transferrin N-glycans, spontaneously decreasing during the disease course, only in one affected sibling. Total serum N-glycome depicted a distinct pattern for the three patients, with increased levels of undergalactosylated and undersialylated precursors of fully sialylated biantennary glycans, including the monosialo-monogalacto-biantennary species A2G1S1. CONCLUSIONS: Clinical, MRI and glycosylation features of patients are consistent with SLC39A8-CDG. We document two novel variants associated with Leigh syndrome-like disease presentation of SLC39A8-CDG. We show, for the first time, a severe neurological phenotype overlapping with that described for SLC39A8-CDG in association with the homozygous A391T missense variant. We observed a spontaneous amelioration of transferrin N-glycome, highlighting the efficacy of MS-based serum glycomics as auxiliary tool for the diagnosis and clinical management of therapy response in patients with SLC39A8-CDG. Further studies are needed to analyse more in depth the influence of SLC39A8 variants, including the common missense variant, on the expression and function of ZIP8 protein, and their impact on clinical, biochemical and neuroradiological features.
Assuntos
Defeitos Congênitos da Glicosilação , Doença de Leigh , Defeitos Congênitos da Glicosilação/genética , Glicosilação , Humanos , Manganês , PolissacarídeosRESUMO
Elevated citrulline and C5-OH levels are reported as part of the newborn screening of core and secondary disorders on the Recommended Uniform Screening Panel (RUSP). Additionally, some state laboratory newborn screening programs report low citrulline levels, which may be observed in proximal urea cycle disorders. We report six patients who were found on newborn screening to have low citrulline and/or elevated C5-OH levels in whom confirmatory testing showed the combination of these two abnormal analytes. Mitochondrial sequencing revealed known pathogenic variants in MT-ATP6 at high heteroplasmy levels in all cases. MT-ATP6 at these heteroplasmy levels is associated with Leigh syndrome, a progressive neurodegenerative disease. Patients were treated with supplemental citrulline and, in some cases, mitochondrial cofactor therapy. These six patients have not experienced metabolic crises or developmental regression, and early diagnosis and management may help prevent the neurological sequelae of Leigh syndrome. The affected mothers and siblings are asymptomatic or paucisymptomatic (e.g. intellectual disability, depression, migraines, obsessive-compulsive disorder, and poor balance) despite high heteroplasmy or apparent homoplasmy of the familial variant, thus expanding the clinical spectrum seen in pathogenic variants of MT-ATP6. Confirmatory plasma amino acid analysis and acylcarnitine profiling should be ordered in a patient with either low citrulline and/or elevated C5-OH, as this combination appears specific for pathogenic variants in MT-ATP6.
Assuntos
Testes Genéticos/métodos , Doença de Leigh/diagnóstico , Doença de Leigh/genética , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Triagem Neonatal/métodos , Carnitina/sangue , Carnitina/química , Citrulina/sangue , DNA Mitocondrial/genética , Feminino , Humanos , Recém-Nascido , Masculino , Estudos ProspectivosRESUMO
Leigh syndrome is a severe mitochondrial neurodegenerative disease with no effective treatment. In the Ndufs4-/- mouse model of Leigh syndrome, continuously breathing 11% O2 (hypoxia) prevents neurodegeneration and leads to a dramatic extension (~5-fold) in lifespan. We investigated the effect of hypoxia on the brain metabolism of Ndufs4-/- mice by studying blood gas tensions and metabolite levels in simultaneously sampled arterial and cerebral internal jugular venous (IJV) blood. Relatively healthy Ndufs4-/- and wildtype (WT) mice breathing air until postnatal age ~38 d were compared to Ndufs4-/- and WT mice breathing air until ~38 days old followed by 4-weeks of breathing 11% O2. Compared to WT control mice, Ndufs4-/- mice breathing air have reduced brain O2 consumption as evidenced by an elevated partial pressure of O2 in IJV blood (PijvO2) despite a normal PO2 in arterial blood, and higher lactate/pyruvate (L/P) ratios in IJV plasma revealed by metabolic profiling. In Ndufs4-/- mice, hypoxia treatment normalized the cerebral venous PijvO2 and L/P ratios, and decreased levels of nicotinate in IJV plasma. Brain concentrations of nicotinamide adenine dinucleotide (NAD+) were lower in Ndufs4-/- mice breathing air than in WT mice, but preserved at WT levels with hypoxia treatment. Although mild hypoxia (17% O2) has been shown to be an ineffective therapy for Ndufs4-/- mice, we find that when combined with nicotinic acid supplementation it provides a modest improvement in neurodegeneration and lifespan. Therapies targeting both brain hyperoxia and NAD+ deficiency may hold promise for treating Leigh syndrome.
Assuntos
Encéfalo/metabolismo , Complexo I de Transporte de Elétrons/genética , Doença de Leigh/metabolismo , NAD/genética , Oxigênio/metabolismo , Animais , Encéfalo/patologia , Hipóxia Celular/fisiologia , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Doença de Leigh/genética , Doença de Leigh/terapia , Metabolômica , Camundongos , Mitocôndrias , NAD/deficiência , Doenças Neurodegenerativas , Respiração/genéticaRESUMO
TRMU is a nuclear gene crucial for mitochondrial DNA translation by encoding tRNA 5-methylaminomethyl-2-thiouridylate methyltransferase, which thiolates mitochondrial tRNA. Biallelic pathogenic variants in TRMU are associated with transient infantile liver failure. Other less common presentations such as Leigh syndrome, myopathy, and cardiomyopathy have been reported. Recent studies suggested that provision of exogenous L-cysteine or N-acetylcysteine may ameliorate the effects of disease-causing variants and improve the natural history of the disease. Here, we report six infants with biallelic TRMU variants, including four previously unpublished patients, all treated with exogenous cysteine. We highlight the first report of an affected patient undergoing orthotopic liver transplantation, the long-term effects of cysteine supplementation, and the ability of the initial presentation to mimic multiple inborn errors of metabolism. We propose that TRMU deficiency should be suspected in all children presenting with persistent lactic acidosis and hypoglycemia, and that combined N-acetylcysteine and L-cysteine supplementation should be considered prior to molecular diagnosis, as this is a low-risk approach that may increase survival and mitigate the severity of the disease course.
Assuntos
Doença de Leigh/terapia , Falência Hepática/terapia , Proteínas Mitocondriais/genética , Biossíntese de Proteínas , tRNA Metiltransferases/genética , Acetilcisteína/administração & dosagem , Acetilcisteína/metabolismo , Acidose/genética , Acidose/metabolismo , Cisteína/administração & dosagem , Cisteína/metabolismo , DNA Mitocondrial/genética , Feminino , Humanos , Lactente , Doença de Leigh/genética , Doença de Leigh/metabolismo , Doença de Leigh/patologia , Falência Hepática/genética , Falência Hepática/metabolismo , Falência Hepática/patologia , Transplante de Fígado/métodos , Masculino , Mitocôndrias/enzimologia , Proteínas Mitocondriais/deficiência , RNA de Transferência/genética , tRNA Metiltransferases/deficiênciaRESUMO
Thiamine is a crucial cofactor involved in the maintenance of carbohydrate metabolism and participates in multiple cellular metabolic processes within the cytosol, mitochondria, and peroxisomes. Currently, four genetic defects have been described causing impairment of thiamine transport and metabolism: SLC19A2 dysfunction leads to diabetes mellitus, megaloblastic anemia and sensory-neural hearing loss, whereas SLC19A3, SLC25A19, and TPK1-related disorders result in recurrent encephalopathy, basal ganglia necrosis, generalized dystonia, severe disability, and early death. In order to achieve early diagnosis and treatment, biomarkers play an important role. SLC19A3 patients present a profound decrease of free-thiamine in cerebrospinal fluid (CSF) and fibroblasts. TPK1 patients show decreased concentrations of thiamine pyrophosphate in blood and muscle. Thiamine supplementation has been shown to improve diabetes and anemia control in Rogers' syndrome patients due to SLC19A2 deficiency. In a significant number of patients with SLC19A3, thiamine improves clinical outcome and survival, and prevents further metabolic crisis. In SLC25A19 and TPK1 defects, thiamine has also led to clinical stabilization in single cases. Moreover, thiamine supplementation leads to normal concentrations of free-thiamine in the CSF of SLC19A3 patients. Herein, we present a literature review of the current knowledge of the disease including related clinical phenotypes, treatment approaches, update of pathogenic variants, as well as in vitro and in vivo functional models that provide pathogenic evidence and propose mechanisms for thiamine deficiency in humans.
Assuntos
Proteínas de Membrana Transportadoras/deficiência , Deficiência de Tiamina/genética , Tiamina/metabolismo , Anemia Megaloblástica , Transporte Biológico , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Diabetes Mellitus , Perda Auditiva Neurossensorial , Humanos , Doença de Leigh , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Fenótipo , Tiamina/líquido cefalorraquidiano , Tiamina/uso terapêutico , Deficiência de Tiamina/congênito , Deficiência de Tiamina/tratamento farmacológico , Tiamina Pirofosfato/metabolismoRESUMO
Leigh syndrome is a mitochondrial disease characterized by neurological disorders, metabolic abnormality and premature death. There is no cure for Leigh syndrome; therefore, new therapeutic targets are urgently needed. In Ndufs4-KO mice, a mouse model of Leigh syndrome, we found that Complex I deficiency led to declines in NAD+ levels and NAD+ redox imbalance. We tested the hypothesis that elevation of NAD+ levels would benefit Ndufs4-KO mice. Administration of NAD+ precursor, nicotinamide mononucleotide (NMN) extended lifespan of Ndufs4-KO mice and attenuated lactic acidosis. NMN increased lifespan by normalizing NAD+ redox imbalance and lowering HIF1a accumulation in Ndufs4-KO skeletal muscle without affecting the brain. NMN up-regulated alpha-ketoglutarate (KG) levels in Ndufs4-KO muscle, a metabolite essential for HIF1a degradation. To test whether supplementation of KG can treat Ndufs4-KO mice, a cell-permeable KG, dimethyl ketoglutarate (DMKG) was administered. DMKG extended lifespan of Ndufs4-KO mice and delayed onset of neurological phenotype. This study identified therapeutic mechanisms that can be targeted pharmacologically to treat Leigh syndrome.
Assuntos
Doença de Leigh/tratamento farmacológico , Doença de Leigh/metabolismo , NAD/metabolismo , Mononucleotídeo de Nicotinamida/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Doença de Leigh/genética , Longevidade/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Terapia de Alvo MolecularRESUMO
COQ4 mutations have recently been shown to cause a broad spectrum of mitochondrial disorders in association with CoQ10 deficiency. Herein, we report the clinical phenotype, in silico and biochemical analyses, and intervention for a novel c.370 G > A (p.G124S) COQ4 mutation in a Chinese family. This mutation is exclusively present in the East Asian population (allele frequency of ~0.001). The homozygous mutation caused CoQ10 deficiency-associated Leigh syndrome with an onset at 1-2 months of age, presenting as respiratory distress, lactic acidosis, dystonia, seizures, failure to thrive, and detectable lesions in the midbrain and basal ganglia. No renal impairment was involved. The levels of CoQ10 and mitochondrial respiratory chain complex (C) II + III activity were clearly lower in cultured fibroblasts derived from the patient than in those from unaffected carriers; the decreased CII + III activity could be increased by CoQ10 treatment. Follow-up studies suggested that our patient benefitted from the oral supplementation of CoQ10, which allowed her to maintain a relatively stable health status. Based on the genetic testing, preimplantation and prenatal diagnoses were performed, confirming that the next offspring of this family was unaffected. Our cases expand the phenotypic spectrum of COQ4 mutations and the genotypic spectrum of Leigh syndrome.
Assuntos
Ataxia/genética , Testes Genéticos , Doença de Leigh/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Debilidade Muscular/genética , Ubiquinona/deficiência , Povo Asiático/genética , Ataxia/complicações , Pré-Escolar , Simulação por Computador , Feminino , Fibroblastos/metabolismo , Heterozigoto , Homozigoto , Humanos , Lactente , Doença de Leigh/complicações , Doença de Leigh/fisiopatologia , Masculino , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Mitocondriais/complicações , Debilidade Muscular/complicações , Mutação , Fenótipo , Ubiquinona/genética , Ubiquinona/farmacocinéticaRESUMO
Resumen El síndrome de Leigh (SL) es una enfermedad neurodegenerativa, descrita como una encefalomielopatía necrotizante subaguda, y es una de las enfermedades de origen mitocondrial más frecuentes. El SL es causado por el déficit en la producción de energía, originada en defectos en los genes que codifican alguno de los complejos mitocondriales; el gen afectado puede ser de codificación tanto nuclear como mitocondrial, lo que explica que se encuentren diferentes mecanismos de herencia, incluyendo autosómica recesiva y herencia materna, lo que, a su vez, hace más difícil su diagnóstico molecular. Clínicamente se presenta con regresión del desarrollo cognitivo y pérdida de habilidades motoras con trastorno de movimiento, de rápida progresión. El diagnóstico se basa en la demostración bioquímica de la elevación del ácido láctico y de la relación lactato/piruvato, así como hallazgos en las neuroimágenes por resonancia magnética que muestran lesiones focales, bilaterales y simétricas en ganglios basales o tallo cerebral asociadas a leucoencefalopatía y atrofia cerebral. Se reportan cinco casos con diagnóstico clínico y bioquímico del SL que ejemplifican la variabilidad clínica y gravedad encontrada en este grupo de pacientes.
Summary Leigh syndrome (LS) is a neurodegenerative disease, described as a subacute necrotizing encephalomyelopathy and is one of the most frequent diseases of mitochondrial origin. LS is caused by a deficit in the energy production due to defects in the genes that encode some of the mitochondrial complexes. The affected gene can be due to either nuclear and/or mitochondrial coding, which explains why there are different ways of inheriting the disease, including autosomal recessive and maternal inheritance, which makes its molecular diagnosis even more difficult. Clinically, LS is characterized by regression in cognitive development and motor abilities, as well as movement disorders of rapid progression. Its diagnosis is based on the biochemical demonstration of an increase in lactic acid and lactate / pyruvate ratio, as well as magnetic resonance neuroimaging findings showing focal, bilateral and symmetric lesions in basal ganglia or brainstem associated with leukoencephalopathy and cerebral atrophy. Five cases are reported with clinical and biochemical diagnosis of LS that exemplify the clinical variability and severity found in this group of patients.
Resumo A síndrome de Leigh (SL) é uma doença neurodegenerativa, descrita como uma encefalomielopatia necrotizante subaguda e é uma das doenças de origem mitocondrial mais frequente. A SL é causada pelo déficit na produção de energia originada em defeitos nos genes que codificam algum dos complexos mitocondriais; o gene afetado pode ser de codificação tanto nuclear como mitocondrial, o que explica que se encontrem diferentes mecanismos de herança, incluindo autossômica recessiva e herança materna, o que torna mais difícil seu diagnóstico molecular. Clinicamente se apresenta com regressão do desenvolvimento do desenvolvimento cognitivo e perda de habilidades motoras com transtorno de movimento, de rápida progressão. O diagnóstico se baseia na demonstração bioquímica da elevação do ácido láctico e da relação lactato/piruvato, assim como descobertas nas neuro imagens por ressonância magnética que mostram lesões focais, bilaterais e simétricas em gânglios basais ou talo cerebral associadas a leucoencefalopatia e atrofia cerebral. Reportam-se cinco casos com diagnóstico clínico e bioquímico da SL que exemplificam a variabilidade clínica e gravidade encontrada neste grupo de pacientes.
Assuntos
Humanos , Doença de Leigh , Bioquímica , Diagnóstico Clínico , ColômbiaRESUMO
The case is presented of a 3 year-old girl with mitochondrial disease (subacute necrotizing encephalomyelopathy of Leigh syndrome), v-stage chronic kidney disease of a diffuse mesangial sclerosis, as well as developmental disorders, and diagnosed with hyperthyroidism Graves-Basedow disease. Six weeks after starting the treatment with neo-carbimazole, the patient reported a serious case of agranulocytosis. This led to stopping the anti-thyroid drugs, and was treated successfully with 131I ablation therapy. The relevance of the article is that Graves' disease is uncommon in the paediatric age range (especially in children younger than 6 years old), and developing complications due to a possible late diagnosis. Agranulocytosis as a potentially serious adverse effect following the use of anti-thyroid drugs, and the few reported cases of ablation therapy with 131I at this age, makes this case unique.
Assuntos
Agranulocitose/induzido quimicamente , Antitireóideos/efeitos adversos , Carbimazol/efeitos adversos , Doença de Graves/radioterapia , Radioisótopos do Iodo/uso terapêutico , Agranulocitose/terapia , Antitireóideos/uso terapêutico , Transfusão de Sangue , Carbimazol/uso terapêutico , Pré-Escolar , Deficiências do Desenvolvimento/complicações , Quimioterapia Combinada , Feminino , Doença de Graves/complicações , Doença de Graves/tratamento farmacológico , Humanos , Doença de Leigh/complicações , Síndrome Nefrótica/complicações , Propranolol/uso terapêutico , Esclerose/complicaçõesRESUMO
Leigh syndrome is a mitochondrial disease characterized by subacute necrotizing encephalomyelopathy. Almost all cases of Leigh syndrome develop at infancy or early childhood and die within several years due to rapidly progressive muscle weakness and respiratory failure. Here, we present a rare case of a patient who developed Leigh syndrome associated with thiamine-responsive pyruvate dehydrogenase-complex deficiency at 2 years of age and has survived to adolescence through effective high dose thiamin therapy. At 15 years of age, the patient presented persecutory delusions and auditory hallucinations, suggesting an association between mitochondrial dysfunction and schizophrenia-like psychotic symptoms.
Assuntos
Doença de Leigh/complicações , Transtornos Psicóticos/etiologia , Adolescente , Humanos , Masculino , Esquizofrenia/etiologiaRESUMO
SLC39A8 variants have recently been reported to cause a type II congenital disorder of glycosylation (CDG) in patients with intellectual disability and cerebellar atrophy. Here we report a novel SLC39A8 variant in siblings with features of Leigh-like mitochondrial disease. Two sisters born to consanguineous Lebanese parents had profound developmental delay, dystonia, seizures and failure to thrive. Brain MRI of both siblings identified bilateral basal ganglia hyperintensities on T2-weighted imaging and cerebral atrophy. CSF lactate was elevated in patient 1 and normal in patient 2. Respiratory chain enzymology was only performed on patient 1 and revealed complex IV and II + III activity was low in liver, with elevated complex I activity. Complex IV activity was borderline low in patient 1 muscle and pyruvate dehydrogenase activity was reduced. Whole genome sequencing identified a homozygous Chr4(GRCh37):g.103236869C>G; c.338G>C; p.(Cys113Ser) variant in SLC39A8, located in one of eight regions identified by homozygosity mapping. SLC39A8 encodes a manganese and zinc transporter which localises to the cell and mitochondrial membranes. Patient 2 blood and urine manganese levels were undetectably low. Transferrin electrophoresis of patient 2 serum revealed a type II CDG defect. Oral supplementation with galactose and uridine led to improvement of the transferrin isoform pattern within 14 days of treatment initiation. Oral manganese has only recently been added to the treatment. These results suggest SLC39A8 deficiency can cause both a type II CDG and Leigh-like syndrome, possibly via reduced activity of the manganese-dependent enzymes ß-galactosyltransferase and mitochondrial manganese superoxide dismutase.
Assuntos
Proteínas de Transporte de Cátions/genética , Variação Genética/genética , Manganês/deficiência , Doenças Mitocondriais/genética , Criança , Defeitos Congênitos da Glicosilação/genética , Feminino , Glicosilação , Humanos , Lactente , Doença de Leigh/genéticaRESUMO
Mitochondrial complex I (CI) deficiency is the most prevalent defect in the respiratory chain in paediatric mitochondrial disease. This heterogeneous group of diseases includes serious or fatal neurological presentations such as Leigh syndrome and there are very limited evidence-based treatment options available. Here we describe that cell membrane-permeable prodrugs of the complex II substrate succinate increase ATP-linked mitochondrial respiration in CI-deficient human blood cells, fibroblasts and heart fibres. Lactate accumulation in platelets due to rotenone-induced CI inhibition is reversed and rotenone-induced increase in lactate:pyruvate ratio in white blood cells is alleviated. Metabolomic analyses demonstrate delivery and metabolism of [(13)C]succinate. In Leigh syndrome patient fibroblasts, with a recessive NDUFS2 mutation, respiration and spare respiratory capacity are increased by prodrug administration. We conclude that prodrug-delivered succinate bypasses CI and supports electron transport, membrane potential and ATP production. This strategy offers a potential future therapy for metabolic decompensation due to mitochondrial CI dysfunction.
Assuntos
Permeabilidade da Membrana Celular , Complexo I de Transporte de Elétrons/deficiência , Doenças Mitocondriais/metabolismo , Pró-Fármacos/farmacologia , Ácido Succínico/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Fibroblastos/patologia , Humanos , Lactatos/metabolismo , Doença de Leigh/patologia , Metabolômica , Modelos Biológicos , Pró-Fármacos/química , Ácido Succínico/químicaRESUMO
Thiamine transporter-2 deficiency is caused by mutations in the SLC19A3 gene. As opposed to other causes of Leigh syndrome, early administration of thiamine and biotin has a dramatic and immediate clinical effect. New biochemical markers are needed to aid in early diagnosis and timely therapeutic intervention. Thiamine derivatives were analysed by high performance liquid chromatography in 106 whole blood and 38 cerebrospinal fluid samples from paediatric controls, 16 cerebrospinal fluid samples from patients with Leigh syndrome, six of whom harboured mutations in the SLC19A3 gene, and 49 patients with other neurological disorders. Free-thiamine was remarkably reduced in the cerebrospinal fluid of five SLC19A3 patients before treatment. In contrast, free-thiamine was slightly decreased in 15.2% of patients with other neurological conditions, and above the reference range in one SLC19A3 patient on thiamine supplementation. We also observed a severe deficiency of free-thiamine and low levels of thiamine diphosphate in fibroblasts from SLC19A3 patients. Surprisingly, pyruvate dehydrogenase activity and mitochondrial substrate oxidation rates were within the control range. Thiamine derivatives normalized after the addition of thiamine to the culture medium. In conclusion, we found a profound deficiency of free-thiamine in the CSF and fibroblasts of patients with thiamine transporter-2 deficiency. Thiamine supplementation led to clinical improvement in patients early treated and restored thiamine values in fibroblasts and cerebrospinal fluid.
Assuntos
Doença de Leigh/dietoterapia , Doença de Leigh/metabolismo , Proteínas de Membrana Transportadoras/deficiência , Tiamina/metabolismo , Tiamina/uso terapêutico , Adolescente , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Estudos de Casos e Controles , Células Cultivadas , Criança , Pré-Escolar , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Recém-Nascido , Doença de Leigh/sangue , Doença de Leigh/líquido cefalorraquidiano , Doença de Leigh/genética , Masculino , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Complexo Piruvato Desidrogenase/metabolismo , Tiamina/sangue , Tiamina/líquido cefalorraquidiano , Tiamina Pirofosfato/metabolismoRESUMO
Mitochondria have a major role in energy production via oxidative phosphorylation, which is dependent on the expression of critical genes encoded by mitochondrial (mt)DNA. Mutations in mtDNA can cause fatal or severely debilitating disorders with limited treatment options. Clinical manifestations vary based on mutation type and heteroplasmy (that is, the relative levels of mutant and wild-type mtDNA within each cell). Here we generated genetically corrected pluripotent stem cells (PSCs) from patients with mtDNA disease. Multiple induced pluripotent stem (iPS) cell lines were derived from patients with common heteroplasmic mutations including 3243A>G, causing mitochondrial encephalomyopathy and stroke-like episodes (MELAS), and 8993T>G and 13513G>A, implicated in Leigh syndrome. Isogenic MELAS and Leigh syndrome iPS cell lines were generated containing exclusively wild-type or mutant mtDNA through spontaneous segregation of heteroplasmic mtDNA in proliferating fibroblasts. Furthermore, somatic cell nuclear transfer (SCNT) enabled replacement of mutant mtDNA from homoplasmic 8993T>G fibroblasts to generate corrected Leigh-NT1 PSCs. Although Leigh-NT1 PSCs contained donor oocyte wild-type mtDNA (human haplotype D4a) that differed from Leigh syndrome patient haplotype (F1a) at a total of 47 nucleotide sites, Leigh-NT1 cells displayed transcriptomic profiles similar to those in embryo-derived PSCs carrying wild-type mtDNA, indicative of normal nuclear-to-mitochondrial interactions. Moreover, genetically rescued patient PSCs displayed normal metabolic function compared to impaired oxygen consumption and ATP production observed in mutant cells. We conclude that both reprogramming approaches offer complementary strategies for derivation of PSCs containing exclusively wild-type mtDNA, through spontaneous segregation of heteroplasmic mtDNA in individual iPS cell lines or mitochondrial replacement by SCNT in homoplasmic mtDNA-based disease.