RESUMO
Extramammary Paget's disease (EMPD) is an intra-epidermal adenocarcinoma. Till now, the mechanisms underlying the pathogenesis of scrotal EMPD is poorly known. This present study aims to explore the knowledge of molecular mechanism of scrotal EMPD by identifying the hub genes and candidate drugs using integrated bioinformatics approaches. Firstly, the microarray datasets (GSE117285) were downloaded from the GEO database and then analyzed using GEO2R in order to obtain differentially expressed genes (DEGs). Moreover, hub genes were identified on the basis of their degree of connectivity using Cytohubba plugin of cytoscape tool. Finally, GEPIA and DGIdb were used for the survival analysis and selection of therapeutic candidates, respectively. A total of 786 DEGs were identified, of which 10 genes were considered as hub genes on the basis of the highest degree of connectivity. After the survival analysis of ten hub genes, a total of 5 genes were found to be altered in EMPD patients. Furthermore, 14 drugs of CHEK1, CCNA2, and CDK1 were found to have therapeutic potential against EMPD. This study updates the information and yields a new perspective in the context of understanding the pathogenesis of EMPD. In future, hub genes and candidate drugs might be capable of improving the personalized detection and therapies for EMPD.
Assuntos
Biologia Computacional , Bases de Dados de Ácidos Nucleicos , Regulação da Expressão Gênica , Doenças dos Genitais Masculinos , Doença de Paget Extramamária , Preparações Farmacêuticas , Escroto/metabolismo , Biomarcadores/metabolismo , Intervalo Livre de Doença , Perfilação da Expressão Gênica , Doenças dos Genitais Masculinos/tratamento farmacológico , Doenças dos Genitais Masculinos/genética , Doenças dos Genitais Masculinos/metabolismo , Doenças dos Genitais Masculinos/mortalidade , Humanos , Masculino , Doença de Paget Extramamária/tratamento farmacológico , Doença de Paget Extramamária/genética , Doença de Paget Extramamária/metabolismo , Doença de Paget Extramamária/mortalidade , Taxa de SobrevidaRESUMO
Although the prognosis of advanced extramammary Paget's disease (EMPD) is poor, there have been no preclinical research models for the development of novel therapeutics. This study aims to establish a preclinical research model for EMPD. We transplanted EMPD tissue into immunodeficient NOD/Scid mice. Histopathological and genetic analyses using a comprehensive cancer panel were performed. For in vivo preclinical treatments, trastuzumab, lapatinib, docetaxel, or eribulin were administered to patient-derived xenograft (PDX) models. Tissue transplanted from the EMPD patient was enlarged in NOD/Scid mice and was transplanted into further generations. Both the transplantation of PDX into nu/nu mice and the reanimation of the cryopreserved xenografted tumors in NOD/Scid mice were successful. We also established an EMPD-PDX-derived primary cell culture. Histopathologically, the xenografted tumors were positive for CK7, which was consistent with the patient's tumors. Genetically, the pathogenic mutation ERBB2 S310F was detected in the patient's tumors (primary intraepidermal lesion, metastatic lymph node) and was observed in the xenografted tumors even after continued passages. The xenografted tumors responded well to trastuzumab and lapatinib therapy. Also, cytotoxic agents (docetaxel and eribulin) were effective against the xenografted tumors. This PDX model (EMPD-PDX-H1) could be a powerful tool for the research and development of EMPD treatments.